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The susceptible-infectious-recovered �SIR� model describes the evolution of three species of individuals
which are subject to an infection and recovery mechanism. A susceptible S can become infectious with an
infection rate � by an infectious I type provided that both are in contact. The I type may recover with a rate �
and from then on stay immune. Due to the coupling between the different individuals, the model is nonlinear
and out of equilibrium. We adopt a stochastic individual-based description where individuals are represented
by nodes of a graph and contact is defined by the links of the graph. Mapping the underlying master equation
onto a quantum formulation in terms of spin operators, the hierarchy of evolution equations can be solved
exactly for arbitrary initial conditions on a linear chain. In the case of uncorrelated random initial conditions,
the exact time evolution for all three individuals of the SIR model is given analytically. Depending on the
initial conditions and reaction rates � and �, the I population may increase initially before decaying to zero.
Due to fluctuations, isolated regions of susceptible individuals evolve, and unlike in the standard mean-field
SIR model, one observes a finite stationary distribution of the S type even for large population size. The exact
results for the ensemble-averaged population size are compared with simulations for single realizations of the
process and also with standard mean-field theory, which is expected to be valid on large fully connected
graphs.
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I. INTRODUCTION

Infections produce further infections. This observation has
long inspired theoreticians to find simple tractable evolution
equations to model such a situation. One traditional and
rather simple approach is the so-called susceptible-
infectious-recovered �SIR� model originally introduced in
�1�; see also �2,3�. Here a certain population is divided into
three distinct classes: the susceptible S, wherein the indi-
vidual is healthy, but is allowed to catch the disease; further,
there are the infectious, denoted as I, which is infected and
can transmit the disease, and the recovered R, which is im-
mune to further infection �4�

Although the model is quite simple, it captures important
features of the temporal dynamics of an infection cycle in-
sofar as the model is appropriate to describe a well-localized
disease outburst. Due to the coupling of the three different
groups S, I, and R the process is nonlinear. Furthermore, as
long as there is an infectious population, the system is in a
nonequilibrium state not characterized by any physical a pri-
ori principle such as detailed balance. Despite its simplicity,
the SIR model has not been solved exactly if fluctuations,
which inevitably occur in a real system, are included in its
description. In this paper we present such an exact solution
using a mapping of the underlying master equation onto a
quantum formulation. There appears a whole hierarchy of

evolution equations for certain expectation values which can
be closed and from which among other things the exact time
evolution of the expected population size for each class can
be extracted analytically in closed form.

Our effort can be grouped in the permanent attraction ex-
erted by modern biology and social science to understand the
evolution of cooperative behavior. It is well known that in
unstructured populations, natural selection favors defectors
over cooperators. For that problem we also need the insight
provided by mathematical tools. The SIR model offers a
simple approach by a set of evolution equations �3,5–10�. To
discuss the spreading of epidemics the SIR model can be
implemented on a network �11�, which is further discussed in
�12–15�. The general scheme and the properties of networks
are elaborated in detail �16�. In such a network approach,
individuals are represented by nodes which are in either of
the three states S, I, or R. Contact between individuals is
modeled by links between the nodes. For maximal connec-
tivity, where each individual is in contact with every other—
i.e., for the fully connected graph—one expects the deter-
ministic standard mean-field equations for the SIR model to
be valid for large population size even if the infection and
recovery are stochastic. In contrast, fluctuations are expected
to cause substantial deviations from the mean-field behavior
if the connectivity is low. Hence it is highly desirable to
study the opposite case of minimal connectivity as realized
in a linear chain. In the present paper we analyze the SIR
model on a linear chain based upon the master equation �17�,
which is reformulated in terms of second-quantized operators
�18–23�. The method enables us to apply the algebraic prop-
erties of spin operators to determine a closed set of evolution
equations for higher-order cluster functions. These cluster
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functions describe groups of susceptibles which can be in-
fected from the boundary of the region. The time evolution
for the cluster functions can be closed, which makes the
problem exactly solvable. This allows for a quantitative com-
parison with the mean-field solution as given by the deter-
ministic standard SIR model and also with the random be-
havior of single realizations of the process obtained from
Monte Carlo simulations.

The paper is organized as follows. In Sec. II we first de-
fine the standard deterministic SIR model and then introduce
the stochastic dynamics that we consider to account for fluc-
tuations. In Sec. III we describe the mathematical apparatus
required for obtaining the exact results. This section can be
skipped by readers not interested in the mathematical details.
For an introduction into the quantum approach used there,
we refer to the reviews in �21,22�. In Sec. IV we present the
exact results for the expected population densities and com-
pare them with analytical results from the mean-field ap-
proach. In Sec. V we discuss results of Monte Carlo simula-
tions for single realizations of the process. In Sec. VI we
finish with some conclusions.

II. STOCHASTIC SIR MODEL ON A GRAPH

Let us denote by S�t�, I�t�, and R�t� the number of sus-
ceptible, infectious, and recovered individuals. The total
number N is conserved:

S�t� + I�t� + R�t� = N . �1�

In the traditional treatment of the SIR model, the population
strength is treated as a real number and infection and recov-
ery are governed by the nonlinear set of coupled equations

dS

dt
= − �SI ,

dI

dt
= �SI − �I ,

dR

dt
= �I . �2�

The first equation describes the decrease of the susceptible
population through the infection of a susceptible individual
by an infectious one. The loss is proportional to the infection
rate �, and since by definition S and I are non-negative, the
loss is monotone. The second equation describes the gain of
the infectious population of individuals by infection of sus-
ceptibles as described in the first equation and the spontane-
ous recovery with rate �. The last equation follows simply
from the conservation of the total number of individuals.

These equations describe a deterministic evolution for
each population class which entirely neglects fluctuations
and which offers no description of the state of an individual
member of the entire population. These equations may be
regarded as a mean-field treatment of some fluctuating ran-
dom process, and therefore we shall refer to this standard
SIR model as the mean-field SIR model. In view of our

further approach, it is appropriate to introduce the population
densities nX�t�=X�t� /N, where X stands for one of three
classes S, I, or R. Obviously, the densities satisfy nS�t�
+nI�t�+nR�t�=1.

We now define a stochastic SIR dynamics that describes
the state of each individual. This description allows for ran-
domness and hence fluctuations in both the infection and
recovery processes. In our individual-based version of the
model, the individuals are represented by the nodes of a
graph. For each node i we introduce state variables which
specify the state of the node. For reasons that become clear
below, we represent these state variables as occupation num-
bers which take value 0 or 1 as follows: If node i is in the
susceptible state at time t, we say that nS�i , t�=1. If node i is
in the infectious or recovered state, then nS�i , t�=0. Like-
wise, we define occupation numbers nI�i , t� and nR�i , t�,
which by definition are subject to the constraint nS�i , t�
+nI�i , t�+nR�i , t�=1. With this definition we define the �ran-
dom� population sizes of class of individuals:

X̂�t� = �
i

nX�i,t� , �3�

where the sum is taken over all nodes of the graph. Consid-

ering N nodes ensures a strict conservation law Ŝ+ Î+ R̂=N
analogous to �1� for the deterministic SIR model. Contact
between two individuals is represented by a link between
two nodes. This defines the graph. In our treatment we shall
focus on a very simple graph—viz., the linear chain—and
compare our results with what one expects for large fully
connected graphs. However, for setting the stage for the
questions that we shall address, we introduce here the model
on a general graph.

The stochastic dynamics of the model is realized by the
following Markov process. A susceptible individual at a node
i becomes infectious after an exponentially distributed ran-
dom time with rate �I�i , t� where

I�i,t� = �
j�i�

nI�j,t� �4�

is the total number of infectious individuals j�i� which are in
contact with i at time t. This quantity is an integer random
variable that depends on the current state of the system. On
the other hand, an infectious individual at node i recovers
after an exponentially distributed random time with fixed
rate �. Once an individual is recovered, it remains so. All
infection and recovery processes occur independently of
each other.

Thus this stochastic process is in double contrast to the
evolution studied in the mean-field approach. There recovery
and infection are deterministic and the infection rate is pro-
portional to the size of the full population of infectious indi-
viduals. The latter property is recovered in our individual-
based approach if each individual is in contact with every
other—i.e., if the underlying network is the complete graph
of N nodes. If then in addition the population size N is send
to infinity, one expects fluctuations to disappear by the law of
large numbers. Hence the traditional SIR model as described
by �2� may be regarded as a deterministic limit of the evo-
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lution of our stochastic process on a complete graph in the
thermodynamic limit of infinite population size. We remark
that interesting fluctuations of the stochastic model defined
on a finite complete graph have been studied in �24�. The
authors study for an initial state with just a few infected
individuals the average size of the outbreak near the epi-
demic threshold and find interesting scaling with population
size. This is not the case in our setting where straightforward
analysis reveals that an outbreak staring from a finite number
of infected individuals remains localized.

In our stochastic model the main quantity of interest is the
expected state �nX�i , t�� of a node i at time t, given some
initial distribution. We shall focus on uncorrelated random
initial distributions with some given mean population size
for infectious and susceptible individuals. In this case the
expectation value is independent of the node i and we write
it in a slight abuse of notation nX�t�= �nX�i , t�� and X�t�
= �X̂�t�� �25�. Moreover, in order to quantify and highlight
the possible effect of fluctuations due to incomplete connec-
tivity between individuals, we study the most “non-mean-
field” setting possible. I.e., we consider the lowest possible
connectivity between individuals which is realized in a peri-
odic chain of N nodes. The dynamics of the model is then
realized by the following transitions on neighboring nodes:

IS → II with rate � ,

SI → II with rate � ,

I → R with rate � . �5�

The first two processes mean that a single susceptible S can
catch the disease when it is in contact with infectious indi-
viduals situated on the neighboring nodes. The last process in
Eq. �5� characterizes the recovering process, where an infec-
tious individual recovers and becomes immunized, indepen-
dently of the state of other individuals.

III. QUANTUM APPROACH TO NONEQUILIBRIUM
SYSTEMS

A. Master equation in a quantum Hamiltonian representation

Since the combined influence of noise and spatial degrees
of freedom is an important issue in a theoretical understand-
ing of biological and ecological processes �26�, the dynamics
due to Eq. �5� is formulated in a master equation for the full
probability distribution of the process. Here we use a very
transparent method, the transformation of the master equa-
tion into a quantum language, which originally goes back to
Glauber �27� for treating the kinetic Ising model and then
adapted to more general processes �18–23�. This exact map-
ping provides a convenient approach to getting an exact so-
lution for the process defined above. Since the method bor-
rows techniques from condensed-matter and particle physics,
we use well-established jargon that is slightly different from
that above. In particular, we shall refer to nodes of the graph
as sites on a lattice and to the state variable nX�i� as occupa-
tion numbers by particles of type X.

Let us summarize briefly the most important steps; for a
detailed account of the approach, see �21,22�. The master
equation for the joint probability P�n� , t� reads

�tP�n� ,t� = LP�n� ,t� . �6�

Here n� stands for a certain configuration of S, I, and R par-
ticles at time t. In a lattice gas description each lattice point
is either empty or singly occupied, leading to nX�i�=0,1 for
each type. Using the expansion

�F�t�� = �
ni

P�n� ,t��n�� , �7�

Eq. �6� can be rewritten as an equivalent equation in a Fock
space:

�t�F�t�� = − H�F�t�� , �8�

where the operator H is determined in such a manner that its
matrix elements correspond to those of L. The formal solu-
tion of that equation is

�F�t�� = e−Ht�F�0�� . �9�

This expression gives the probability distribution at time t in
terms of the initial distribution at time t=0.

It should be emphasized that the procedure has been up to
now independent of the realization of the basic vectors �n��.
As shown by Doi �18�, the average of an arbitrary physical
quantity R�n�� can be calculated by the average of the corre-
sponding diagonal operator R�t�:

�R�t�� = �
ni

P�n� ,t�R�n�� = �s�R�F�t�� , �10�

with the summation vector �s�=��n� �. The evolution equation
for an operator R�t� can be cast in a commutator relation,
which reads

�t�R� = �s��R�t�,H��F�t�� . �11�

Here �R ,H�=RH−HR is the usual commutator of two opera-
tors. As the result of the procedure, all the dynamical equa-
tions governing the classical problem are determined by the
structure of the evolution operator H and the commutation
rules of the operators. The evolution operator for the process
defined by Eq. �5� reads

− H = ��
i

�bi+1
† ai+1 + bi−1

† ai−1 − Ai+1�1 − Bi+1�

− Ai−1�1 − Bi−1��Bi + ��
i

�bi − Bi� . �12�

Here ai, ai
† and bi, bi

† are the annihilation and creation op-
erators for S and I types. The operators Ai=ai

†ai and Bi
=bi

†bi represent the particle number operators with eigenval-
ues 0 and 1. The particle number operator Ai corresponds to
the occupation variable nS�i�, and Bi corresponds to nI�i�.

The meaning of the evolution operator defined in Eq. �12�
is now transparent: The first term on the right-hand side �rhs�
describes the annihilation of a susceptible at site i+1 and a
simultaneous creation of an infected individual at the same
site provided the neighboring lattice site i is occupied by an
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infected individual indicated by the number operator Bi
=bi

†bi, which projects on sites occupied by infected individu-
als. Similarly, the second term represents the same process
for the left-neighboring site i−1. The term bi in the second
sum includes the spontaneous recovery—i.e., annihilation of
an infected individual into an empty site which represents the
recovered individuals. The diagonal terms involving only
number operators ensure conservation of probability.

Mathematically, the creation and annihilation properties
are manifest in the commutator relation

�bi,bj
†� = �1 − 2bi

†bi��ij �13�

and similar rules for the a and a†. The operators for the same
species �a or b� anticommute at the same lattice site. The
anticommutator rule implies the exclusion principle; i.e., one
has ai

2=bi
2=aibi=biai=0 and also the mixed relation

�bi ,ai
†�=0 and corresponding relations for the daggered op-

erators. On different lattice sites, all operators commute.
Moreover, the exclusion principle implies that the eigenval-
ues of the particle operators are restricted to 0 and 1, and
therefore the corresponding averages fulfills 0� �Ai��1.
Similar relations hold for Bi. From the definition follows

�nS�i,t�� = �Ai� , �14�

�nI�i,t�� = �Bi� , �15�

and correspondingly

�nR�i,t�� = 1 − �Ai� − �Bi� �16�

for the probability of finding node i in the recovered state.
Notice that these expectation values imply a double average
over the initial distribution and over realizations of the sto-
chastic dynamics.

B. Cluster functions

Using Eqs. �11� and �13�, we get

d

dt
�Ar� = − ���ArBr−1� + �ArBr+1�� ,

d

dt
�Br� = ���ArBr−1� + �ArBr+1�� − ��Br� . �17�

These equations involve second-order, correlators, which
hints at the nonlinear nature of the problem. To analyze the
situation let us further study the higher-order correlators ap-
pearing in Eqs. �17�. For illustration we present the result for
the two-point correlator:

d

dt
�ArBr+1� = − �� + ���ArBr+1� + ���ArAr+1Br+2�

− �Br−1ArBr+1�� �18�

To make a more systematic approach let us define the n-point
cluster functions

Hr�n� = �ArAr+1 ¯ Ar+n−1Br+n� ,

Gr�n� = �Br−1ArAr+1 ¯ Ar+n−1Br+n� . �19�

Obviously, these functions are zero if one of the sites inside
of the cluster is recovered with probability 1. Furthermore,
the functions H�n� and G�n� are sensitive to the fact that a
cluster of susceptible individuals is diminished by infection
at the border of the cluster. The introduction of these cluster
functions is the decisive trick of our treatment which makes
the nonlinear problem solvable.

The cluster equations simplify under the natural assump-
tion of a translation invariant initial distribution. Then one
can drop the r dependence. After a straightforward calcula-
tion only taking into account the algebraic properties, Eq.
�13�, we end up with the following set of coupled equations
for the cluster functions:

d

dt
H�n� = − �� + ��H�n� + ��H�n + 1� − G�n�� ,

d

dt
G�n� = − 2�� + ��G�n� + 2�G�n + 1� for n � 1.

�20�

For non-translation-invariant distributions the evolution
equations for the cluster functions still close, but retain an
extra r dependence. The meaning of the evolution equations
is immediately visible. The expectation value of the cluster
described by H�n� changes by the following processes: It
increases proportional to the probability of having a longer
cluster �given by H�n+1�� since in the longer cluster the
rightmost susceptible individual �at site r+n� gets infected
with rate � by the infected individual at site r+n+1. This
accounts for the positive contribution on the rhs of the equa-

tion for Ḣ�n�. The negative contributions come from �i� re-
covery of infected individual at site r+n in the cluster H�n�
with rate �, �ii� infection of the susceptible individual at site
r+n−1 by the infected individual at site r+n in the cluster
H�n� with rate �, and �iii� infection of the susceptible indi-
vidual at site r with rate �, provided there was an infected
individual at site r−1. This last term gives rise to the contri-
bution proportional to the expectation G�n�. This competi-
tion between growth and reduction processes of the clusters
and the coupling to the G cluster yields a nontrivial steady
state of the process as discussed below.

The exact evolution equation of the G cluster can be made
plausible in similar terms. Indeed, the second-quantization
technique, which gives rise to the quantum Hamiltonian for-
malism introduced above, is just a convenient means to sys-
tematically generate all contributions to the change in the
expectation value of a cluster. The study of cluster expecta-
tion values has a long history in the study of one-
dimensional stochastic particle systems, both with �see, e.g.,
�22,28�� and without using the quantum Hamiltonian formal-
ism �see, e.g., �29��.

The second cluster equation for the G cluster can be
solved recursively by treating the term G�n+1� as an inho-
mogeneity of the remaining homogeneous first-order linear
ordinary differential equation. One obtains
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G�n,t� = e−2��+��t�
l=0

�
�2�t�l

l!
G�l + n,0� , �21�

where G�n+ l ,0� is an arbitrary initial condition.
Inserting this solution in the first equation, we find in a

similar fashion the solution

H�n,t� = e−��+��t�
l=0

�
��t�l

l!
H�l + n,0�

− �	
0

t

dt�e−��+���t−t���
l=0

�
���t − t���l

l!
G�n + l,t�� .

�22�

These results are exact for arbitrary translation-invariant
initial distributions. For the uncorrelated random initial dis-
tribution of each class of individuals, the initial conditions
for the cluster functions read

G�n,0� = nS�0�nnI�0�2, H�n,0� = nS�0�nnI�0� . �23�

Here the initial densities of infectious and susceptible indi-
viduals are nI�0� and nS�0�. Inserting this into Eqs. �21� and
�22� results in

G�n,t� = nS�0�nnI�0�2 exp
−
2t

�
� , �24�

H�n,t� = nS�0�nnI�0�exp
−
t

�
��1 − �nI�0���1 − exp�− t/���
 ,

�25�

where the relaxation time � is defined by

� =
1

� + ��1 − nS�0��
. �26�

We draw attention to the fact that the relaxation time depends
on the initial conditions through the initial density of suscep-
tibles. This is a consequence of the highly nonergodic and
far-from-equilibrium nature of the process. Both cluster
functions decay monotonically in time to zero.

IV. EXACT SOLUTION

Using the exact result for the cluster expectation values
for random initial conditions obtained in the previous section
from the quantum approach, we are now in a position to
obtain the exact time evolution for the expected number of
individuals of each class. In terms of the cluster functions
G�n� and H�n�, the evolution equations for the quantities

nS�t� = �Ar� and nI�t� = �Br� �27�

read

d

dt
nS�t� = − 2�H�1,t� ,

d

dt
nI�t� = 2�H�1,t� − �nI�t� . �28�

Notice that H�1, t� is strictly positive for all finite times.
Hence the density of susceptible individuals is strictly mono-
tonically decreasing, which follows from the fact that no
susceptibles are generated in the process.

The averaged number of susceptible person at time t fol-
lows immediately from Eqs. �24�, leading to

nS�t� = nS�0� − 2��nS�0�nI�0���
1 − exp
−
t

�
��

	�1 − ��nI�0�� + �1 − exp
−
2t

�
����nI�0�

2
� .

�29�

The decay of susceptible persons S is not purely Arrhenius-
like, but given by a superposition of two relaxation times.

In the long-time limit we find a nonzero stationary solu-
tion

n
S
* � nS�t → �� = nS�0��1 − ��nI�0��2, �30�

which can be written in the more transparent form

n
S
*

nS�0�
= �� + ��1 − nS�0� − nI�0��

� + ��1 − nS�0�� �2

, �31�

which makes the dependence on initial conditions and the
recovery/infection ratio � /� fully explicit.

In the same manner we find the expected density of infec-
tious persons

nI�t� = nI�0��exp�− �t� + 2��nS�0�f�t�� , �32�

with

f�t� =
exp�− t/�� − exp�− �t�

�� − 1
�1 − �nI�0���

+
�nI�0��
�� − 2

�exp�− 2t/�� − exp�− �t�� . �33�

Due to Eq. �1�, 1−nS−nI is the expected density of recovered
individuals.

For a comparison with the predictions of the original SIR
model defined by the set of differential equations �2�—the
mean-field solution—we highlight some features of this
mean-field model. From the first equation in Eqs. �2�, we
conclude that S�t� is a monotonically decreasing function.
Moreover, the last equation implies that the stationary value
for the infectious class is I*=0. Both properties are shared by
our stochastic SIR model. In the condition for the existence
of a maximum in the number of infectious individuals, the
situation is more subtle. Writing the second equation in Eqs.
�2� in the form

İ = I��S − �� , �34�

one realizes that a maximum occurs if S�0�
� /�. It is
reached at a time � where S���=� /�. Inserting this into the
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first equation, one may write in terms of the normalized
population densities ṅS���=�nI���. Interestingly, the exact
relation �28� asserts that in our stochastic model the maxi-
mum occurs at a time determined by the same relation in the
case of random initial conditions. Hence, our model repro-
duces several key features of the original SIR model. For
these features, the low connectivity and stochasticity are un-
important for a comparison of average behavior of the sto-
chastic dynamics with the deterministic behavior of the
mean-field model. Notice, though, that the actual value of �
is not the same in the two models. It is also interesting to
observe that the mean-field expression for � can be written
in terms of the concentration in the form nS���=� / ��N�;
i.e., the maximum in I occurs at a time where an initial
concentration of susceptibles of order 1 has almost disap-
peared and only a finite total number �of order 1� of suscep-
tibles are left in the population. This is in contrast to our
stochastic model where the maximum in I occurs at a con-
centration of susceptibles which is of order 1. In this respect,
the mean-field model fails to capture the effects of low con-
nectivity.

For a more detailed analysis of the mean-field SIR model,
we introduce g�t�=ln S�t�, which due to the first equation in
Eqs. �2� satisfies ġ=−�I. Differentiating again and using the
second equation gives an integrable second-order equation
for g. After one integration one obtains

dg

dt
= �eg − �g + � , �35�

where � is an integration constant. In case of the initial con-
ditions S�0�=S0, I�0�= I0, and R�0�=0, it results �=� ln S0
−��S0+ I0�. Combining the last relation for g�t� with Eqs.
�2�, we then find the relation

I�t� = − �S�t� +
�

�
ln

S�t�
S0

+ N . �36�

In the same manner we find

R�t� = −
�

�
ln

S�t�
S0

, �37�

where R�t� obeys

dR

dt
= − �S0 exp
−

�

�
R� + ��N − R� . �38�

It corresponds to an overdamped motion in a potential

dR

dt
= −

dU�R�
dR

,

with

U�R� = −
S0�2

�
exp
−

�

�
R� +

�R

2
�R − 2N� . �39�

This equation of motion does not allow for a closed solution
in terms of elementary functions.

In the limit t→�, Eq. �36� gives a transcendental equa-
tion for the stationary population of susceptibles:

�S* − ln
S*

S0

− �N = 0. �40�

This has no solution in closed form, but for large N one
obtains

S* � S0 exp
−
�

�
N� , �41�

which decays exponentially in population size N. This result
is strongly different from the exact solution �31� where one
finds a finite stationary value of order 1 even for infinite N.

As a final remark, we point out that in the mean-field
approximation one decomposes higher-order correlators ac-
cording to �AB�= �A� �B�. Identifying �A� with the density of
susceptibles nS�t� and correspondingly �B�=nI�t�, we get
from �28� mean-field equations of the form �2�, but with an
infection rate �mf =� /N. Hence the mean-field approxima-
tion of our stochastic model yields a deterministic SIR dy-
namics with renormalized infection rate �mf.

V. MONTE CARLO SIMULATION DATA

Our exact results are obtained for the thermodynamic
limit of infinite population size, and they are results for a
statistical ensemble of processes, averaged both over random
initial states and histories. Here we present Monte Carlo
simulation results for single runs of the process which dem-
onstrate that even if the population size is moderate, fluctua-
tions around the computed expectation value are rather
small. This means that the computed expectation values rep-
resent the typical behavior that one expects in a single out-
break of the disease. Only for very small populations do the
fluctuations around the expected mean become significant.

We have performed the numerical simulation of the prob-
lem as follows. Initially, each site is occupied independently
and randomly by a susceptible with probability nS�0� and by
an infectious individual with probability nI�0�=1−nS�0�. For
the dynamics we have chosen a random sequential update
algorithm as follows. An arbitrary lattice site j is chosen
randomly. If this site is occupied with an infectious I, then
the I state decays to R with probability � / �2�+��. If it does
not decay, then with equal probability 1 /2 an adjacent site on
the left- or right-hand site is chosen. If the chosen neighbor-
ing site is occupied by a susceptible S, then S is converted
into I with probability 2��2�+��. If lattice site j is occupied
by a susceptible S or the site is recovered, nothing happens.
Then a new site is selected randomly and the procedure is
repeated. N such update steps then define one Monte Carlo
time step. We remark that for an efficient implementation of
the process one may keep a list of coordinates of infectious
sites and select sites only from this list. However, for popu-
lation sizes of the order of 103 such optimization is irrelevant
for the study of single realizations of the process.

In Fig. 1 we show simulation data for two different runs
with population size 1000, demonstrating the absence �Fig.
1�a�� or presence �Fig. 1�b��, respectively, of a maximum in
the number of infectious particles. The maximum occurs at
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values of ns, which is of order 1, rather than 1 /N as predicted
by mean-field theory. The finite limiting value of the suscep-
tible population density is also clearly seen. The correspond-
ing mean-field value �400 exp�−7000� would be nearly
zero. For a comparison of this single run with the computed
mean values, the corresponding exact expressions nS�t�, Eq.
�29�, and nI�t�, Eq. �32�, are shown as well. The deviations
are at most in the range of a few percent.

In Fig. 2 we show simulation data and the exact solution
for different total number of individuals. Figure 2 demon-
strates the he increasing effect of fluctuations for small popu-
lation sizes. For population sizes of the order of 104, fluctua-
tions become irrelevant.

VI. CONCLUSIONS

In this work we have analyzed a SIR model for a popu-
lation of susceptible S, infectious I, and recovered R indi-
viduals evolving under a stochastic dynamics. In order to
study the effect of fluctuations due to incomplete contact
between the individuals, we have defined the model on a
linear chain. As an appropriate tool, we have considered the
master equation for the probability density which we wrote
in a quantum formulation in terms of second-squantized op-
erators. These operators obey the commutation rules of Pauli
operators; i.e., they commute at different lattice sites and
anticommute at the same site. This property led us to find a

coupled set of evolution equations for certain cluster func-
tions. These clusters describe the behavior of susceptibles
surrounded by infectious individuals at the edges of the clus-
ters and allow for an exact analytical treatment of the whole
hierarchy of evolution equations. We stress that in the exact
solution all fluctuations are included.

Comparing this exact solution with the behavior of the
traditional mean-field SIR model, we find a significant dif-
ference. Whereas the mean-field solution yields a stationary
density for the susceptibles n

S
*�exp�−�N /��, which de-

pends on the population size and is extremely small for large
N, the exact solution reveals a stationary density independent
of N and of order 1. This shows on a quantitative level how
fluctuations due to low connectivity of individuals are crucial
for understanding the spreading of a disease in the frame-
work of the SIR mechanism.

We remark that by making a mean-field approximation to
the exact evolution equations �28� of our model, one obtains
a deterministic set of evolution equations similar to those of
the mean-field SIR model but with an infection rate �mf
=� /N. Indeed, inserting �mf in the stationary density of the
mean-field SIR model yields a finite stationary density of
susceptibles of order 1, as in our stochastic SIR model. Thus
the effect of the low-connectivity model can be qualitatively
described by a mean-field model with a small renormalized
infection rate �mf. Capturing the precise form of the time
evolution, however, is beyond the capabilities of the mean-
field description.
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FIG. 1. Time evolution of sus-
ceptibles nS and infectious nI indi-
viduals. Whereas the bold solid
line corresponds to the simulation
of nS�t�, the bold dashed line rep-
resents the exact solution. The
corresponding thin lines stand for
nI�t�. Different rates � and � and
different initial conditions are
shown in �a� and �b�. The popula-
tion size is in both cases N=103.
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FIG. 2. Time evolution of sus-
ceptibles and infectious individu-
als for different population size:
The rates are in both cases �
=0.9 and �=0.1; the initial values
are nS�0�=0.8 and nI�0�=0.2. The
bold line �solid and dashed� corre-
sponds to nS�t�, and the thin ones
represent nI�t�.
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The analytical findings are illustrated by numerical simu-
lations which demonstrate that fluctuations due to finite
population size are negligible for population sizes of order
1000 or larger. We stress that while here we have focused on
uncorrelated initial distributions which are on average spa-
tially homogeneous, our exact analytical approach can be
extended to study the effect of correlations and spatial inho-
mogeneities in the initial distribution. The model remains
exactly solvable also for finite population size.
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