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Self-trapping at the liquid-vapor critical point: A path-integral study
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Experiments suggest that localization via self-trapping plays a dominant role in the behavior of a low-mass
particle, e.g., an electron, positron, or positronium atom, in both liquids and supercritical fluids. In the latter
case, the behavior is dominated by the liquid-vapor critical point. However, because of its large isothermal
compressibility, the critical point is difficult to probe both experimentally and theoretically. Here we present the
results of path-integral computations of the characteristics of a generic self-trapped particle at the critical point
of a Lennard-Jones fluid for a positive particle-atom scattering length. We carefully investigate the dependence
of the properties of both the self-trapped quantum particle and the proximal fluid on the range of the direct
particle-atom interaction. To the extent that the generic particle mimics the behavior of ortho-positronium,
qualitative information is provided on the pick-off decay rate. In general, compared with self-trapping at higher
temperature, we find that the localized quantum defect has a much larger range of influence on the host fluid.
In particular, it appears that long-range density oscillations are induced in the fluid surrounding the defect. The
results also suggest that, even at the critical point, there is a minimum interaction range below which self-

trapping does not occur.
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I. INTRODUCTION

Starting with the work of Einstein [1], the system consist-
ing of a massive particle equilibrated in a host fluid, known
to physicists and chemists as Brownian motion, has played a
seminal role in the development of statistical physics. How-
ever, the opposite regime of an equilibrated low-mass par-
ticle is equally challenging and manifests a richer set of be-
haviors. Except at very high temperatures, quantum
mechanics is required to model the low mass particle. Pos-
sible quantum particle (QP) candidates are an electron, pos-
itron, or positronium atom, while the host can be either a
dense gas or liquid below the critical temperature, or a su-
percritical fluid above it. Experimental measurements of the
properties of a low-mass particle equilibrated in a fluid
strongly suggest that it can induce a local deformation in the
fluid in which the QP becomes self-trapped, or localized
[2,3]. Since the QP has a long de Broglie wavelength, intu-
itively we anticipate that it simultaneously interacts with a
large group of atoms or molecules in the host fluid, forming
a mesoscopic region of altered fluid density. Depending on
whether the effective QP-atom interaction is attractive or re-
pulsive, the local density of the host is either augmented or
suppressed near the QP, resulting in the formation of either a
“microdroplet” or a “microbubble.” The intuitive picture is
completed by imagining that the QP occupies the ground
state of the potential well induced by the formation of the
density inhomogeneity, i.e., the droplet or bubble, thus stabi-
lizing the deformation.

Since the positron always has a negative scattering length,
the experimental manifestation of self-trapping is a sharp de-
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crease in the positron lifetime due to the increase in the local
electron density resulting from the formation of a droplet.
The reverse is true for ortho-positronium: Angular momen-
tum conservation eliminates the two photon decay process
for o-Ps so its natural lifetime in the vacuum is about 140 ns
[2]. However, its positron can annihilate more easily with a
host electron. A consequence of the fermionic repulsion be-
tween the electron in o-Ps and the electrons of the host fluid
is that this “pick-off” annihilation rate is reduced when self-
trapping occurs, demonstrating bubble formation [2]. De-
pending on the host, the electron-atom scattering length can
have either sign, so both behaviors are possible. While the
most dramatic manifestation of self-trapping of the positron
or positronium is a change in lifetime, the fingerprint of elec-
tron self-trapping is a change in mobility [4].

In addition to the liquid state [5,6], self-trapping occurs in
a broad region of density p and temperature 7" surrounding
the liquid-vapor critical point (p,.,T,) [7]. Since the isother-
mal compressibility diverges at the critical point [8], this is
not surprising: The QP can more easily alter the local density
in this region of temperature and density. However, as a re-
sult of the large density gradient induced by the earth’s gravi-
tational field, there are few reliable experimental studies of
self-trapping close to the critical point [9,10]. Thus, although
it dominates the self-trapping regime above T, the effect of
close proximity to this point on self-trapping is not generally
known [9,10].

The theory of self-trapping has evolved through different
stages: In the earliest models, the QP simply sits in the
ground state of a spherical step potential which is assumed to
be proportional to the local fluid density [11]. In modeling
the QP-host interaction the atomic nature of the host is ig-
nored, and it is represented by a type of jellium. By mini-
mizing the free energy of the QP-fluid system, it is possible
to show that the deformation is stable in a bounded region of
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temperature and density near the critical point [11]. Later
versions of mean field theory (MFT) permitted a continuous
density profile [7,12] and took into account the atomic nature
of the host at an intermediate level [13]. An interesting im-
provement was obtained by including the effect of correla-
tions between the fluid atoms via the Percus-Yevick equation
[14]. An advantage of MFT is that computations are reduced
to numerical integration of a pair of coupled ordinary differ-
ential equations. However, in practice, they have proved use-
ful only for fluids at low temperatures [7,12,14,15]. This
problem may arise because mean field theories include only
a single bound state for the QP. This approach was comple-
mented by the work of Hernandez, who carefully considered
the role of the QP density of states [3].

More microscopically complete models have evolved dur-
ing the last few decades based on the Feynman-Kac path
integral [16], which overcome a number of shortcomings of
the earlier work. These account for the details of the QP-fluid
interaction, and also take into account local fluctuations in
the disturbed fluid. Three general approaches have been
used, analytic methods that couple the density functional
theory of complex fluids with the Fourier representation of
the path integral [17-19], the more direct alternative employ-
ing Monte Carlo algorithms [20,21] and the application of
molecular dynamics to the equivalent classical system
[22,23]. For reviews see [24,25]. While the latter two avoid
approximation, the computational cost is higher. The first
two approaches have been employed to examine the self-
trapping of electrons, positrons, and positronium in super-
critical xenon [15,26-31].

Here we employ the path integral Monte Carlo (PIMC)
technique to investigate self-trapping of a generic quantum
particle at the liquid-vapor critical point. Improvements in
fluid equilibrium theory provide accurate critical point pa-
rameters for the Lennard-Jones 6-12 potential in both the
truncated and continuous versions [32,33]. We take advan-
tage of these results in selecting the values of the Lennard-
Jones parameters that correspond to the correct critical den-
sity and temperature. Using the PIMC technique, we model
the QP-atom interaction with a hard-sphere potential and
study the dependence of the physical and statistical proper-
ties of self-trapping on the hard sphere diameter Ryq at the
liquid-vapor critical point. In particular, we investigate the
dependence on Ryg of the spreading of the QP wave func-
tion, and the behavior of the QP-atom correlation function
and the local density of fluid atoms surrounding the average
QP center of mass. Since a repulsive QP-atom interaction is
approximately representative of positronium [2], we also es-
timate the pick-off annihilation rate for a simplified model of
the atomic charge distribution.

Although, for reasons given above, no experimental mea-
surements of the pick-off decay rate have been carried out
precisely at the critical point, for the case of xenon they exist
for two supercritical temperatures (300 and 340 K) over a
large density range, and strongly suggest the existence of the
Ps self-trapped state [34]. In previous work, we have used
the PIMC method and the reference interaction site model
(RISM) polaron theory to carry out simulations of both e*
[27,29] and Ps in xenon [26,30] at these temperatures, so it is
natural to select the critical point of xenon as a test case. The
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truncated version of the Lennard-Jones (LJ) 6-12 potential
was chosen to represent the interatomic potential because
Wilding has established numerically accurate connections
between the LJ distance and energy parameters (o and €) and
the critical temperature and density (7, and p,) [32]. In the
following we chose values of o and & and the QP mass, m,
suitable for positronium equilibrated in xenon.

The paper is organized as follows. In Sec. II we explain
the path-integral formulation of the system, the potentials
that were selected to approximate the QP-atom and inter-
atomic interactions, the computational methods employed,
and the important structural quantities that characterize the
localized QP such as the QP-atom radial distribution func-
tion, and how they determine the decay rate [21]. In Sec. IIT
the results from the PIMC calculations are examined. In a
preliminary study, we considered the same system with a
fixed size and number of fluid atoms for three values of the
hard sphere diameter [35,36]. Here, in this expanded inves-
tigation, we obtain the dependence of the mean values on the
hard sphere diameter from 0.5 to 9.5 A in 0.5 A increments.
Furthermore, we consider the convergence of the mean val-
ues in terms of the size of the number of imaginary time
slices [24], the system size, and the total number of trials. In
Sec. IV we present our conclusions and suggestions for fu-
ture investigations.

II. PATH-INTEGRAL MONTE CARLO TECHNIQUE
A. Hybrid model

Except at very low temperatures, the translational degrees
of freedom of an atomic fluid can be approximated with
classical mechanics. Thus the energy of the QP-fluid system
is well represented by a hybrid classical-quantum Hamil-
tonian:

N
H=2P2M+ 2 U(R-R)+Hgp, (1)
1 N=j>k=1
where
X
Hop=—-—A+ ; V(r-R))). (2)

Here P; and R; are the momenta and positions of the N
host atoms, r is the position of the QP, and U and V are the
pairwise additive atom-atom and QP-atom interaction poten-
tials. This is known as the adiabatic approximation and re-
sults in a hybrid partition function [30]

Z= J dR e PU®) f dr(r|e PHar|r)/(N1AY), (3)

where here R represents the complete 3N-dimensional con-
figuration space of the atoms with classical potential energy
U(R), and A is the atomic thermal wavelength. Thus, in prin-
ciple, the quantum statistical average of the physical operator

can be computed from

(©)= f dR e PUR) f dr(r|ePHer@|r)/ (N1APNZ).  (4)
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To obtain a formulation that is useful for computation, we
follow the Feynman-Kac path-integral construction [16].
First, by applying the Trotter formula to the quantum part of
Zs

e = (¢ PP, (5)
we can express the trace over r as a sum over discretized

paths of P steps,

P-1

f dr(r|e~PHop|r) = 11

i=0

drr e PreePlr,, ), (6)

where r=ry=rp. Each r; represents a different position for
the particle at a different imaginary time slice. For suffi-
ciently large P, the kinetic and potential energy operators
approximately commute in each step, yielding the following
expression for the partition function [16]:

P-1

Zp=fd1_{ e"BU(B)(H fdriQi(ri’ri+1’R,B)>7 (7)

i=0
where
Q,(r.r;y . R, B) =(r e " |r,, )
= eI P Y (e, RS BIP). (8)

V27N is the QP thermal wavelength and { is the density
matrix contribution arising from the interaction between the
particle and the fluid. In the limit P— o0, Zp— Z. This is the
discretized path-integral formulation and is equivalent to a
closed chain of P classical particles equilibrated in a fluid at
the augmented temperature (P/kpB) [20,37]. This equivalence
is known as the classical isomorphism and it is important
because it allows Monte Carlo methods developed for clas-
sical systems to be used to compute quantum mechanical
equilibrium values. The spread of the chain corresponds to
the mean quantum spread of the QP wave function. If we
take O to be equal to exp(—BV/P), Eq. (8) is known as the
primitive approximation. The path-integral Monte Carlo
method has been used successfully by a number of groups,
including our own, to compute the equilibrium properties of
quantum systems [15,29,30,38].

B. Polymer-fluid interaction potential

The interaction between the QP and the fluid is vested in
U, whose form depends on the type of approximation used to
represent the interaction between the QP and the fluid atoms
or molecules. In the primitive approximation ¢ is repre-
sented by exp— B2, ;V(|r,~R;|)/ P, where |r;—~R/| is the dis-
tance between the ith polymer particle and the jth fluid mol-
ecule. To provide a good representation of the strong, short-
range, fermionic repulsion between the electron of the Ps
atom and the electrons of the fluid molecules, in our previous
calculations we used the hard sphere interaction to simulate
Ps in xenon. The interaction has one parameter, the hard
sphere diameter (Ryg), which is the minimum distance that
can occur between the centers of a polymer particle and a
fluid molecule. If the distance between the center of a poly-
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mer particle and a fluid molecule, |r;—R/|, is less than Ryg
then the interaction potential becomes infinite, making this
an unacceptable configuration [9=0,V(|r;-R/|)=]. In the
primitive approximation, when the distance is greater than
Ry then the potential is zero and the configuration is accept-
able [9=1,V(|r,-R;)=0].

The path-integral formulation is known to be accurate
only if the interaction potential changes slowly over dis-
tances on the order of the separation between adjacent poly-
mer particles. Thus, the greater the gradient of the potential,
the more classical pseudoparticles (or imaginary time slices)
needed to accurately simulate the polymer-fluid interaction
potential. Because the hard sphere potential is discontinuous
at Ryg, in principle an infinite number of particles are re-
quired to satisfy this condition at the hard sphere boundary.
In practice, convergence can be obtained but requires a large
value of P and the convergence is very slow. An impressive
reduction in the value of P can be obtained by replacing the
strict hard sphere potential with the image approximation
[39]. Tt represents the discontinuity as a rapidly decreasing
but continuous exponential function. In our computations we
use the function devised by Whitlock and Kalos [40]. This
approximation sets the density matrix equal to zero when
Ir;—R| or [r;,;—R;|<Rys and

9(r;,r;,1,R;;8/P) = 1 —exp[- ZPF(ri,r,-+1,Rj)/()\RHS)2],
)
where
F(rory.R)=(r;-RJ*- Rig)(|riy) - R[> - Riis)
(10)

when both [r;—R;| and |r;,;—R;[=Rys. The gradient of &
with respect to R}, calculated from Eq. (9), just beyond Rys
is sufficiently large to approximate the hard sphere potential
at the discontinuity and yet result in reasonable values of P.
Alternatively, rapid convergence could also have been ob-
tained by the scattering approach for approximating the
imaginary time propagator introduced by Storer [41,42] and
applied to the hard sphere interaction by Cao and Berne [43].

C. Fluid-fluid interaction potential

The truncated version of the Lennard-Jones 6-12 poten-
tial,

UR')=4€(a/R")"* - (a/R")%], (11)

where R'=|R;-R/| and o and & are the LJ distance and
energy parameters, respectively, was chosen to represent the
interaction potential between the fluid atoms. In the truncated
version U(R') is computed only when R’ <2.5¢. Otherwise
it is defined as zero. Using finite-size-scaling techniques,
Wilding has established numerically accurate connections
between o and € and the critical temperature and density (T,
and p,), namely, p:=p,0°=0.3197 and kT,/e=1.1876 [32].
Since experimental values of the o-Ps pick-off decay rate
have been measured over a wide density range not too far
from the critical temperature, we chose values of o and &
suitable for positronium equilibrated in xenon. The experi-
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mentally measured values of the critical temperature and
density of xenon are given in the literature as 7,.=289 K and
Pe=5.299X 1073 atoms/A>, thus yielding 0=3.92 A and
e/k=243.5 K.

D. Computational methods

The most common Monte Carlo method used in statistical
simulations of equilibrium is the Metropolis sampling algo-
rithm (MSA) [44]. The standard MSA creates new configu-
rations for each particle of the system separately by moving
the particle a random distance from its initial point and re-
computing the system’s energy in this trial configuration. If
the ratio of the Boltzmann weight of the trial configuration to
the original configuration is less than a random number be-
tween zero and one, then the trial position is accepted and it
replaces the original. If not, then the trial position is rejected
and the original position for this particle is kept. After an
attempted movement has been made for each particle in the
system, which is our definition of a pass, the equilibrium
properties of the system are computed. A large enough num-
ber of passes must be carried out to ensure the convergence
of the average values. In our algorithm the standard MSA is
used to compute the average of the equilibrium properties of
the fluid. However, because of the unique convergence issues
involved with the polymer, sequential trial movements of the
particles on the chain do not sufficiently explore its configu-
ration space. The most efficient way of sampling different
configurations for the chain would be to create a new con-
figuration of the complete chain for each pass. However, this
results in a high degree of failed configurations in which the
interaction potential energy is too high. As a compromise
between, on the one hand, moving the entire chain or, on the
other, moving particles one at a time, trial positions for the
polymer particles can be created on a subchain consisting of
n particles. A balance must be struck in which a large enough
number of particles on the subchain are moved to ensure that
the phase space is adequately explored, yet not so many that
a majority of attempted configurations is rejected. In test
computations it was determined that an effective value of n
was 10% of the total number of particles on the chain [20].

E. Important quantities

1. Structural quantities

The important quantities characterizing the QP-fluid sys-
tem fall into two categories, those directly indicating how the
fluid is affected by the QP and, conversely, those that show
how the fluid affects the QP. We chose to examine two quan-
tities in each group. The polymer-fluid radial distribution
function gpp(r) and the density of fluid molecules a distance
r from the polymer center of mass, gs.m (r), are the quanti-
ties structurally related to how the QP affects the fluid. The
function gpp(r) is the average density of fluid molecules at a
distance r from the polymer particles and is normalized to 1
at large distances. It is represented by the expression

P-1 N

gpr(r) = E 2 5(ri—Rj_l')

i=0 j=1

(pP),  (12)

where p is the average molecular number density and r is the
displacement between the ith polymer particle and the jth
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fluid molecule. Due to homogeneity and isotropy, gpr only
depends on r. In an extended state, the polymer chain is
spread out over a distance scale of order A\, and the density of
fluid molecules just beyond Ryg should be nearly equal to the
average density. However, in a self-trapped state, the poly-
mer chain becomes wrapped in such a tight arrangement that
some of the particles become confined to the internal portion
of the chain configuration, and the fluid molecules cannot
penetrate the cluster of these segregated particles as they can
those on the outside of the chain. Thus, in a plot of gpg
versus position, the gpp curve increases toward the average
density much more slowly than that for an extended state.

The density of fluid molecules measured from the poly-
mer center of mass can be used to directly determine whether
a self-trapped state exists. It is given by

N
gfc.m.(r) = E 5(R] —Tem — r) P (13)
j=1

where r., is the position of the polymer center of mass. In
an extended state, fluid atoms are able to penetrate into the
vicinity of the chain c.m. because it is relatively spread out.
On the other hand, in a completely self-trapped state, ground
state dominance prevails, the chain is folded upon itself
within the volume of the bubble, and fluid atoms are totally
expelled from this region.

There are also two convenient structural quantities that
explore how the polymer chain is affected by the fluid. The
root mean square displacement between two particles on the
chain, D(|t-t']), is

D(t' = 1) =\(|r(t) = r(t")*), (14)

where ¢ labels the time slice, or polymer pseudoparticle,
along the chain. Like g ., this quantity directly indicates
the existence of a self-trapped state. In an extended state the
polymer is spread out so that D(|[t—¢'|) increases with respect
to |t—¢'| until the halfway point of the chain (|t—t'|=P/2),
where it achieves its maximum value. In a self-trapped state
the polymer chain folds up on itself so that the displacement
between particles ¢ and ¢’ becomes constant except near the
end points ([t—¢'|=0 or P). Another measure of the effect of
the fluid on the polymer is measured by the mean density of
polymer particles from the polymer c.m. g, (7). In a self-
trapped state most of the psuedoparticles become confined to
the vicinity of the c.m., in contrast with an extended state
where a higher percentage of the particles are able to spread
out much further from the c.m. The density of polymer par-
ticles from the c.m. is given by

P-1
gpc.m.(r) = 2 5(1'1' —Tem — I’) (15)
i=0

and is proportional to the mean square of the QP wave func-
tion. The final structural quantity is the fluid intermolecular
radial distribution function:
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N
> SR,-R;-1)

i>j=1

8r) = (pN),  (16)

which measures the average density of fluid molecules from
each other. Although a different approach was employed
here, because of the uniqueness of the g plot at the critical
point, in principle it can be used to determine whether the
fluid is at the critical point. A more detailed discussion of
these quantities and how they are computed can be found in
our previous paper on the self-trapping of Ps in xenon [30].

2. Decay rate

Because the positron annihilates with an electron belong-
ing to one of the fluid molecules, the pick-off decay rate
depends directly upon the local molecular density near the Ps
atom. Unlike the structural quantities mentioned above, this
is the property of the system that is measured in experiments.
The formation of a self-trapped state around the Ps atom
results in a decrease in the density of electrons available for
annihilation. The decay rate observable can be represented
by the operator

N
N= 2 f(R; - x,]), (17)
j=1

where f(|R;—x,]) is the electron density contributed by the
Jjth atom at the position of the positron (x,). Since we are
interested in temperatures well below the excitation energy
of positronium, we assume that it remains in the ground state
until annihilation occurs, in which case the Ps wave function
separates into the product ¢g(X) (X, m) Where X, =(X,
+x_)/2 is the center of mass of the Ps atom, and X, =r,
—r_ is the vector displacement between the positron and the
electron. Then, fixing the molecular positions, the condi-

tional average of X in the adiabatic representation is

N
<w|x|l//>=jjEf('Rj_Xc.m._xrel/ZD
1

X | ¢O(Xrel) | 2| @b(xc.m‘) |2dxc.m.dxrel’ ( 1 8)

where we have transformed the integral to the relative and
center of mass coordinates. The hydrogenic ground state
wave function for the relative coordinate is simply propor-
tional to exp(—x,e/2a,). To apply the Feynman-Kac formu-
lation to positronium, we treat it as a composite particle with
translational coordinate X, . Then, in the adiabatic represen-
tation, the center of mass density is represented by a sum of
o0 functions centered at the time slices r; of the discretized
path integral [see Eq. (15)].

Here our goal is to obtain useful qualitative information
concerning the behavior of the dependence of the mean de-
cay rate on the positronium-molecule interaction at the criti-
cal point. Then, for simplicity, we will assume that the elec-
trons available for pick-off annihilation are concentrated at
the molecular positions, i.e., f(|R;—x,[)~ 8(R;-x,). With
these assumptions, the conditional quantum average is easily
reduced to
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R 2
<¢|)\|‘/I>= : ECXP<_a_O|Rj—ri|)' (19)

77(1(2)P i

Using the weights of the discretized path integral to aver-
age over time slices and molecular positions quickly yields

r=-E
may

dr exp(-2r/ag)gp(r) (20)

for the mean decay rate modulo a normalization factor. Thus
the pick-off decay rate is determined by the distribution of
fluid atoms in the neighborhood of the chain pseudoparticles.
The existence of a stable localized QP will depress the value
of gpp(r) and, consequently, the value of the decay rate. The
pick-off decay rate is the property that is actually measured
in experiments examining the self-trapping of positronium
[30].

III1. RESULTS
A. Convergence

An important factor in PIMC computations is the issue of
convergence, assuring that the computed equilibrium values
of the system do not change significantly when the system
size (the number of fluid molecules N), the number of
pseudoparticles P, and the number of statistical samples
(passes) are increased. To accomplish this we simply in-
creased all three parameters while maintaining a constant
temperature and average fluid density until there was no sig-
nificant change in the results. From previous test runs, the
number of polymer particles required for convergence was
found to be dependent upon the density and temperature. A
value of P=2000 was found to be more than adequate for
densities greater than p:. Since most of the CPU time was
expended on repositioning the atoms, this large value of P
did not pose a problem and helped ensure convergence. The
number of samples was found to be only weakly dependent
upon the system characteristics, with at least several thou-
sand required for convergence.

The number of fluid atoms is related to the volume in
which the system resides. In our previous calculations we
assumed the volume to be a cube, and our initial assumption
was that the sides should be three times the length of the QP
thermal wavelength to minimize size effects. The positions
of the fluid atoms were distributed based on periodic bound-
ary conditions. While this assumption worked fairly well for
our simulations in xenon at 7=300 and 340 K, the large
isothermal compressibility at the critical point may require a
larger volume so that the fluid molecules are not forced to
crowd upon each other at the edge of the cube (simulations
were always initiated with the chain c.m. at the cube center).
This possibility was investigated at the critical point using
test runs computing the pick-off decay rate at different values
of N. The minimum value of N was calculated as before
using the critical density (pj=0.319) and assuming a cube
wig sides of length three times the thermal wavelength,
3v2m\, resulting in a value of N=4254. We computed the
decay rate using both N=4254 and 8500 to test the conver-
gence with respect to N. The percent difference between
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FIG. 1. Root mean square displacement D (A) versus the num-
ber of imaginary time links (r—7") along the chain for three values
of the QP-atom interaction range Ryg; 0.5 (top line), 5.0 (middle
line), and 9.5 A (bottom line).

these results was 2.24, indicating that near the liquid-vapor
critical point the system size needs to be increased to account
for the impact of the long-range intermolecular correlations.
Computations were again carried out using a value of N
=10 000, which resulted in a percent difference of only 0.95
as compared to the decay rate computed at N=8500. We also
tested the accuracy of the algorithm by carrying out the
simulations at a very small Ryg. This reduces the self-
trapping effect, which should result in a pick-off decay rate
equal to the average density (p;=0.3190). These computa-
tions were carried out at an Ryg of 0.005 A for N=4254,
8500, and 10 000. The calculated decay rates were 0.309,
0.316, and 0.321, resulting in percent errors of 3.1, 0.9, and
0.6, respectively, showing that at the liquid-vapor critical
point edge effects significantly affect the calculations. The
issue of size effects as it relates to structural quantities will
be discussed in more detail in the next section.

B. Structural results

Here we report on the results of path-integral simulations
over the range 0.5<Rps<9.5 A in 0.5 A increments. Two
important characteristics of the QP are the root mean square
displacement D between two particles along the chain, and
the density of chain particles from the chain center of mass
Zpem.(r). As mentioned earlier, both D and g, (r) provide
direct measures of self-trapping. Figure 1 is a plot of D ver-
sus |t—1t'| for three values of Ryg stated above. The upper
curve has a parabolic shape that would be expected for an
extended state. In fact, for small Ryg, the shape of the curve
is very close to that of a free particle, one where there are no
fluid molecules. As Ry increases, the figure shows that the
shape of the plots changes from parabolic, corresponding to
a nearly free particle, to one that is essentially constant in the
central region, indicating that the chain has become more
confined [20,37]. The strength of trapping can be related to
the length over which D is constant. The longer this region,
the more deeply the QP is trapped in the effective potential
well. Increasing the value of Ryg expels fluid atoms from the
vicinity of the chain particles. At the same time, the pressure
applied by the fluid atoms compresses the chain. Since there
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FIG. 2. Density of chain particles as a function of distance from
the chain centroid, g,c. (r), for the smallest (0.5 A), median
(5.0 A), and largest (9.5 A) values of Rys.

are no repulsive forces between the pseudoparticles compris-
ing the chain, their density near the chain center of mass can
become quite large. This can be seen in Fig. 2, a plot of
gpem (1) versus distance from the c.m., where g, (r) be-
comes more peaked around the chain c.m. as the chain be-
comes more confined within its self-trapped bubble. The
maximum value for the case Rys=0.5 A is approximately
one-third that of the 9.5 A curve; however, it has a much
longer nonzero tail than the other curves.

The structural properties of the fluid are the chain-fluid
radial distribution function gpg(r) and the mean local density
of fluid atoms about the chain c.m., gz (). These proper-
ties can be used to determine the local deformation of the
fluid caused by the creation of the self-trapped state. gpg(r)
yields the mean density of fluid atoms at a distance of r from
a chain particle, while g, (r) provides the same quantity
with respect to the chain c.m. As usual, they are normalized
to unity in the large-r limit. Figures 3 and 4 are, respectively,
plots of gpp(r) and gf.p, (r) vs position. As can be seen in
Fig. 3, the larger the value of Ry, the smaller the likelihood
that a fluid molecule will be near a pseudoparticle. Because
the positronium pick-off decay rate depends upon the num-
ber of valence electrons available for annihilation, a conse-
quence is a much smaller value of the decay rate in a self-
trapped state as compared to that in an extended state. In the
trapped state the positron is shielded from the host atomic
electrons by the impenetrable, tightly wound, cluster of
pseudoparticles discussed above. Figure 4 shows even more
clearly than the previous figure the effect the formation of a
self-trapped state has on the fluid. We see the transition from
an extended state, with a nonzero value of the fluid density at
the origin, to a fully trapped state, where the fluid molecules
have been completely excluded from the neighborhood of
the chain c.m. Hints of oscillation on large scales, which we
are unable to accurately resolve with the present system size,
can be seen in both plots. An interesting question is whether
these are simply finite size effects, or represent a coupling

061123-6



SELF-TRAPPING AT THE LIQUID-VAPOR CRITICAL...

0.8

~—R,g=0.5

=R, =5.0

g0
o
S

—a— RHS=9'5

0.4 4

0.2 4

0 5 10 15 20 25 30 35 40 45
Position

FIG. 3. Scaled density (radial distribution function) of host fluid
atoms a distance r from a QP representation (i.e., a time slice or
“chain particle”) gpp(r) for three values of Ryg.

between the correlation length of the fluid and the thermal
(or de Broglie) wavelength of the QP. We will return to this
point in Sec. III D.

C. Decay rate

As an added bonus, gy, (r) can be used to compute the
number of fluid atoms excluded from the vicinity of the
chain. We found that the volume of the fluid atoms excluded
from the trapping region is at least twice as great for Ryg
=9.5 A as it is for either 0.5 or 5.0 A. Since increases in Ry
will lead to decreases in the number of fluid molecule va-
lence electrons around the chain particles available for anni-
hilation, the pick-off decay rate is expected to decrease with
increasing Ryg. In Fig. 5 we see that the decay rate in our
simulations is an exponentially decreasing function of Ryg
with a characteristic length of 3.71 A. Although a realistic
estimate of the Ps-atom interaction radius would place it in

1.2
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FIG. 4. Scaled density of fluid atoms (radial distribution func-
tion) as a function of distance from the chain c.m., g/ (r), for
three values of Ryg.
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FIG. 5. Natural logarithm of the scaled pick-off decay rate ver-
sus Rys.

the interval of 1.0-5.0 A, extending the range in the compu-
tations clinches the exponential dependence. In our model
the Ps atom is treated as a composite particle in its hydro-
genic ground state with an exponentially decreasing wave
function representing the spread of the positron from the Ps
center of mass. This is justified by the small ratio =4
X 1073 of kT, to the positronium excitation energy. For sim-
plicity, the electron density associated with each fluid atom is
modeled as a & function. Thus the decay rate is dependent
upon both the portion of the positron ground state wave
function that manages to leak beyond Ryg and the number of
fluid atoms centers it overlaps. The exponential decrease in
the decay rate with increasing Ryg results from the decrease
in both the density of fluid atoms and the amplitude of the
positron wave function in the shell surrounding the hard
sphere surface.

D. Comparison of size effects

In Figs. 3 and 4 the curves seem to oscillate around unity
at large distances away from the origin for all three Ryg
values. At these distances the direct effect from the Ps atom
should be minimal. As mentioned earlier, it is possible that
these oscillations indicate an interaction between the Ps ther-
mal wavelength and the local fluid density. It is expected that
the coupling will be greatest at the critical point because of
the large isothermal compressibility. In our previous simula-
tions there was no hint of these oscillations except at the
critical density for 7=300 K. It is also possible that the den-
sity increases beyond unity in these plots because the system
volume is not large enough and the fluid molecules crowd
upon each other at the boundary. A possible approach for
resolving this conundrum is to compare the gpr and gyc .
curves for different values of N with correspondingly differ-
ent system sizes. In both cases we anticipate that the plots
would remain the same well below the QP thermal wave-
length, i.e., below say 10-15 A, while major differences
could occur at greater distances. If the latter conjecture is
correct, then the maximum of the curves will occur further
from the origin with increasing N, indicating that edge ef-
fects alone are responsible for the rise in density at large
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FIG. 6. Radial distribution function gpg versus position for four
different values of N (4000, 6000, 8000, and 10 000), showing the
evidence of finite-size effects near the critical point.

distances from the Ps atom. On the other hand if the former
possibility is correct, while the curves will not lie on top of
one another, the maxima of the plots will be near each other.
Figure 6 is a plot of gpp for four different values of N for an
Ryg of 5.0 A. As shown in the figure, as N is increased, as a
result of the larger system size the distance that the curve
covers also increases. However, for all curves, the maximum
of the first crest occurs at about 30 A and, for N=10 000,
clear oscillations are observed, indicating that they are a real
effect and not an artifact of the system size being too small.

IV. CONCLUSIONS

In this work we have employed the path-integral Monte
Carlo technique [24] to investigate the equilibrium properties
of a generic particle obeying quantum mechanics (QP) inter-
acting with a classical fluid for the interesting case where the
fluid is very close to the liquid-vapor critical point. The QP-
fluid interaction was modeled by the hard sphere potential
and the fluid atoms interacted with each other via a truncated
Lennard-Jones 6-12 potential [32]. We have studied both
how the presence of the fluid modifies the intrinsic properties
of the QP, and the converse, how the QP disrupts the local
density of the fluid in its neighborhood. An important focus
of the work is the dependence of these local properties on the
range of the hard sphere QP-fluid interaction, Ryg. In particu-
lar, we computed the dependence of the local density of both
the QP and the fluid on the distance from the QP center of
mass. We also investigated properties directly related to the
discretized form of the Feynman-Kac path integral, such as
the rms separations between QP positions separated by ¢ time
slices on the chain, and the radial distribution of fluid atoms
surrounding each of these “pseudoparticle” positions.

A major motivating factor for this study is the fact that the
singular isothermal compressibility at the liquid-vapor criti-
cal point strongly enhances the ability of a QP to localize in
a mesoscopic, reduced density fluctuation. Two noteworthy
features that were revealed by this study concern the mini-
mum interaction range for localization, and the long-range
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behavior of the QP-atom radial distribution function. In our
investigation of the short-range behavior of the fluid atom
density in the neighborhood of the QP, we found that, when
the hard sphere interaction diameter fell below 1.5 A, fluid
atoms were able to penetrate within the core of the thermal-
ized chain, indicating that self-trapping was no longer com-
plete. This was revealed by the fact that g, (0)>0 when
Rus<1.5 A. Thus, even at the critical point, there is a mini-
mum QP-atom scattering length required for localization.

A result of the divergent correlation length at the critical
point is the presence of strong finite-size effects in Monte
Carlo and molecular dynamics simulations [45]. To deter-
mine their role, we carried out our Monte Carlo simulations
for a range of fluid populations such that the system size
varied between three and four QP thermal wavelengths.
Compared with our earlier simulations at higher temperature
[30], here we found visible evidence of QP-induced fluid
structure out to r=70 A. For example, the plot of gpp(r) for
Rps=5.0 A shown in Fig. 6 for a system of 10000 atoms
suggests a slow, decreasing, spatial oscillation with a period
on the order of 60—70 A, much greater than the interatomic
spacing or direct interaction ranges. It is highly probable that
this remarkable feature is a consequence of the proximity to
the critical point of the pure fluid. In addition to the short-
range length scales associated with the direct interatomic and
QP-atom interactions, and the very long-range interatomic
critical point correlation length, the de Broglie wavelength
also plays an important role. It is interesting that the slow
oscillations observed in the local fluid density are on the
order of the de Broglie wavelength at the critical tempera-
ture, 87 A, which may play an enhanced role near the critical
point.

An important experimental signature of localization is the
reduced positronium pick-off annihilation rate. Some time
ago we showed that for an unstable particle, such as a posi-
tron or the composite positronium, the annihilation rate could
be expressed in terms of the discretized path-integral QP-
atom radial distribution function gpr(r) and the local atomic
or molecular electron density [21]. Since the positronium-
atom scattering length is typically positive [2], its behavior is
dominated by the repulsive core and thus reasonably well
represented by the hard sphere interaction employed here. In
the present work we took advantage of this connection to
show how the annihilation rate at the critical point depends
on the range of interaction for a simplified form of the elec-
tron distribution. As demonstrated above, the dependence is
nearly exponential with a characteristic distance of about
3.7 A for the model parameters corresponding to the critical
point of xenon. Thus the decay rate depends sensitively on
the interaction range. This feature may be useful for extract-
ing information concerning the QP-atom interaction from ex-
perimental lifetime measurements. It is likely that this sensi-
tivity prevails at other temperatures and densities, but it has
not been investigated to date. Two extensions for the future
are the introduction of a more realistic atomic electron dis-
tribution and a positronium-atom interaction potential that
accounts for both dispersion forces and a softer core.

In contrast with mean field models, the power of the
PIMC method is that it reveals the complete picture of both
the distribution of QP quantum states and the response of the
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fluid to the QP “impurity.” In general we have found that,
compared with mean field calculations carried out for liquids
[5,6], the mesoscopic region in which the QP is localized is
much larger at the critical point. Moreover, the density pro-
file of the fluid has a different shape—the “walls” are not
nearly as steep and the structure is less sharply defined. Our
PIMC calculations for a supercritical fluid at other densities
and higher temperatures show similarities with the critical
point, but the behavior is less extreme [30]. In particular,
rapid oscillations on the scale of the Lennard-Jones distance
parameter are clearly articulated in gy, (), the radial distri-
bution function of fluid atoms surrounding the pseudoparticle
center of mass, at higher density [30]. These all but vanish in
the present work. Since the model includes all effects, e.g.,
the long-range correlation length and the large compressibil-
ity near the critical point, it is not possible to unequivocally
state which particular fluid feature is responsible for the
change in structure, although one is tempted to make conjec-
tures.

The importance of the density of states in understanding
self-trapping of quantum particles was pointed out some time
ago by Hernandez [3]. In future work we will employ the
PIMC technique to directly evaluate the density of states of
the QP. We will thus be able to decide when excited states
play a role in determining the fluid structure. From the den-
sity of states we will also be able to determine the angular
distribution of the annihilation photons from para-
positronium, which can be directly compared with experi-
ment. To date this could only be approached from the mean
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field theory formulations [7,11,12,15]. It will be interesting
to see what changes result from an ab initio computation that
includes the effects of correlated fluctuations occurring from
both quantum statistics and the fluid density.

Although the earth’s weak gravitational field can be ig-
nored in many equilibrium experiments, as the liquid-vapor
critical point is approached it induces a density gradient in
the vertical direction that, in theory, is singular at the critical
point [8]. In practice, at a given temperature near 7., only a
thin layer of the fluid can be considered to be uniform and
close to the critical point density. Thus, when experiments
are performed very close to the critical point on the earth’s
surface, the severe gravitational-induced density gradient im-
poses an effective size restriction [46,47]. The ideal environ-
ment for experimentally exploring self-trapping at the critical
point would be provided by microgravity. This would
strongly reduce the influence of gravitationally induced size
effects on the results, so that the full range of the interatomic
correlations would be manifest on the trapping probability.
With luck, we will not have to wait overly long for this to
occur.
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