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Tricritical point of the J;-J, Ising model on a hyperbolic lattice
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The ferromagnetic-paramagnetic phase transition of the two-dimensional frustrated Ising model on a hyper-
bolic lattice is investigated by use of the corner transfer matrix renormalization group method. The model
contains a ferromagnetic nearest-neighbor interaction J; and a competing antiferromagnetic interaction J,. A
mean-field-like second-order phase transition is observed when the ratio k=J,/J; is less than 0.203. In the
region 0.203 <k <1/4, the spontaneous magnetization is discontinuous at the transition temperature. Such
tricritical behavior suggests that the phase transitions on hyperbolic lattices need not always be mean-field-like.
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I. INTRODUCTION

The Ising model on the Cayley tree is known for its sin-
gular property, where the magnetic susceptibility of the spin
at the root of the tree diverges at a temperature 7, despite the
fact that there is no singularity in the partition function of the
whole system [1]. This is a kind of phase transition which
can be explained by the Ising model on the Bethe lattice. It is
known that the Ising model on hyperbolic lattices, which are
negatively curved in the two-dimensional (2D) space [2],
exhibits similar aspects [3-5]. The universality class of the
ferromagnetic-paramagnetic phase transition of this model
has been so far considered to be mean-field-like. Recent nu-
merical studies have supported this conjecture [6-9].

In this paper we study the effects of the antiferromagnetic
next-nearest-neighbor (NNN) interaction J,, which competes
with the ferromagnetic nearest-neighbor (NN) interaction J,
on the ferromagnetic-paramagnetic phase transition of the
2D Ising model on a hyperbolic lattice. We use the corner
transfer matrix renormalization group (CTMRG) method
[13—15], which is a variant of the density matrix renormal-
ization group (DMRG) method [16—19], for calculations of
thermodynamic functions. As we show in the following, the
transition temperature 7, monotonically decreases with in-
creasing frustration parameter x=J,/J; in the region 0=«
<1/4, where the ground-state spin configuration is com-
pletely ferromagnetic. We find that there is a tricritical point
when the parameter « is equal to «.=0.203. The
ferromagnetic-paramagnetic phase transition is of the second
order for 0 < k=< k., whereas it turns into a first-order one for
K <k<l1/4.

In the next section, we explain the so-called (5,4) lattice
in the 2D hyperbolic space and introduce the Ising Hamil-
tonian on it. As a theoretical ideal, we consider a phase tran-
sition on a Bethe lattice with coordination number 4, which
is equivalent to the (e0,4) hyperbolic lattice. In Sec. III we
present numerical results. The temperature dependence of the
free energy and spontaneous and induced magnetizations is
shown. We analyze these thermodynamic functions around
the transition temperature 7, for several values of «, and
determine the critical exponents «, 8, and 6. We summarize

1539-3755/2008/78(6)/061119(6)

061119-1

PACS number(s): 05.50.+q, 05.70.Jk, 64.60.F—, 75.10.Hk

the observed phase transition in the last section.

II. FRUSTRATED ISING MODEL ON A HYPERBOLIC
LATTICE

We consider the hyperbolic 2D lattice shown in Fig. 1,
where four pentagons share their apexes. Such a lattice is
conventionally called the (5,4) lattice, where the number 5
represents the number of sides of each pentagon and the
number 4 is the coordination number. Consider the Ising
model on this lattice, where on each lattice site labeled by i
there is an Ising spin variable o;= *= 1. We assume ferromag-
netic interactions between NN spin pairs, shown by the full
lines in Fig. 1, and antiferromagnetic interactions between
NNN pairs, shown by the dashed lines. The Hamiltonian of
the system is represented as

H=—J1 2 (Ti(Tj+J2 E g;0y, (1)
(ij)=NN (ik)=NNN

where J; >0 is the ferromagnetic coupling constant between
the NN pairs (ij) and J,>0 is the antiferromagnetic one

FIG. 1. (5,4) hyperbolic lattice drawn in the Poincaré disk. The
open circles represent the Ising spin sites. The next-nearest-
neighbor interactions are here represented by the dashed lines inside
the pentagons.
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FIG. 2. Ground-state spin configurations for x<<1/4 (left) and
k> 1/4 (right) on the (o0,4) lattice, which coincides with the Bethe
lattice with the coordination number 4. Note that only a finite num-
ber of spins is here depicted from the (%0,4) lattice. Open circles
represent spin variable o=+ 1 whereas the full circles correspond to
o=-1.

between the NNN pairs (ik). Let us define a parameter
=J,/J; that represents the strength of the frustration.

For the purpose of obtaining brief insight into the phase
structure of the (5,4) Ising model, we observe the model in a
wider framework. Let us introduce the Ising model on the
(n,4) lattice where four n-gons (polygons of the nth order)
meet at each lattice point. When the number of sides n (=5)
is a multiple of 4, including the case n=2%, the ground-state
spin configuration at zero temperature is easily obtained. Fig-
ure 2 shows the ground-state configurations for the case n
=, where the lattice is nothing but the Bethe lattice with the
coordination number 4. For the complete ferromagnetic con-
figuration shown on the left, the energy expectation value per
site is

Eferro =~ 2'Jl + 4"]2» (2)

and for the “up-up-down-down” structure shown on the
right, the value is

Eydd=— 4. (3)

Therefore, the energy crossover &g.,o==~&uudq 1S located at J;
=4J,, or equivalently at k=1/4. This ground-state alterna-
tion is common for all the cases where n (=5) is a multiple
of 4. If not, the ground-state spin configuration for large « is
not unique and is probably disordered. In the case of the
(5,4) lattice, one of the ground states in the large-« region
can be constructed by joining the pentagons with either “up-
up-up-down-down” or “up-up-down-down-down” spin con-
figurations. After some algebra, one obtains the energy per
site

12
= =—=-J1—-—/J 4
€uuudd = €uuddd 5 1 5 2 (4)

for the assumed configurations. Hence the energy crossover
Eferro=Euuudd also occurs at J;=4J,.

At finite temperature, a ferromagnetic-paramagnetic phase
transition is observed in the small-« region [20]. Consider a
single-site mean-field approximation on an arbitrary (n,4)
lattice. The mean-field variable % is expressed as
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h=(-4J,+8/,){0)=— (4 -8k)J (o), (5)

where (o) is the expectation value of the Ising spin. The
self-consistent condition for (o) leads to a ferromagnetic-
paramagnetic phase transition with the critical temperature
TICVIF(K)=(4—8K)J1/ kg, where kg is the Boltzmann constant.
Within this approximation, the transition is always of the
second order in the region 0= x<<1/4, since the effect of J,
appears as a rescaling of the mean-field variable / as in Eq.
(5). It should be noted that TICV['F'(K=1/4)=2J1/kB is larger
than zero. The mean-field approximation predicts another or-
dered state in the region x>1/4, where the up-up-down-
down spin configuration is favored if the lattice geometry
allows the ordering.

An improvement to the mean-field approximation is
achieved by increasing the number of sites that are not aver-
aged. The simplest case is the Bethe approximation, which
treats additional spins o, 0,, 03, and o, that surround the
central site o, as shown in Fig. 2 (left). On an arbitrary (n,4)
lattice, the mean field for the surrounding four spins oy, 05,
a3, and oy is given by

he=(=3J;+6Jy){0). (6)

As an effect of the next-nearest-neighbor interaction, the
central spin o also experiences a mean field, but of different
strength,

hy,=87x0), (7

in addition to the direct ferromagnetic interaction with the
surrounding spins —J, (0 + 0+ 03+0,). Considering these
interaction terms, one obtains the self-consistent relation

1
(o) = 7 E o exp[— Bh,(o) + 0y + 03+ 04) = Bhyo + BT (0

+ 0y + 03+ 04) 0 — BLr(0,0y + 0o03 + 0304 + 0407) ],
()
where B=1/kgT and where Z is the partition function
Z=> expl- Bh,(o) + 0y + 03 + 03) — Bhyo + Bl (o) + 0y
+ 03+ 04)0 — Bly(0103 + 0203 + 0304 + 0407)]. 9)

The configuration sums in Egs. (8) and (9) are taken over the
five spins o, 0|, 0y, 03, and o,. The factorization

W(o;,0) = exp(— Bh,o;+ B o0 — ,8%0’) (10)

for i=1, 2, 3, and 4 further simplifies the expression so that
the partition function has the form

Z= E W(ay,0)W(0op,0)W(o3,0)W(ay, a)expl- Bls(a 0,
+0'20'3+0'30'4+0'40'1)]. (11)

Since it is not a trivial task to find an analytical solution of
the self-consistent Egs. (6)—(9), we solved them numerically.
We use the parametrization J;=1 and kg=1 throughout this
paper in the numerical calculations. Figure 3 shows the cal-
culated spontaneous magnetization M=(co). The second-
order phase transition is detected in the whole region 0= «
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FIG. 3. Spontaneous magnetization (o) obtained by the Bethe
approximation.

< 1/4. As observed in the single-site mean-field approxima-
tion, the transition is of the second order, and the transition
temperature remains finite even at k=1/4. Further improve-
ment of the Bethe approximation can be achieved by means
of a gradual increase of the unaveraged spin sites. A series of
such approximations is known as the coherent anomaly
method (CAM) [21]. Here, we do not proceed with the CAM
analysis; we perform extensive numerical calculations by the
CTMRG method instead.

It is known that the spin expectation value (o) can be
calculated exactly at the root of the Cayley tree, which can
be treated as a Bethe lattice [1]. For the frustrated Ising
model on the (e0,4) lattice shown in Fig. 2, the expectation
value is expressed as

1
(oy=— > oW (g, )W (0, @)W (073, )W (04, 0)

Xexpl- plr(0105+ 0,03+ o304 + oy0)]  (12)
with the definition of the effective partition function
Z' =2 W (0, 0)W (0 )W (3,0) W (04, 0)
Xexp[— By(010y + 0,03+ 0304 + 0407)],  (13)

where the new factor W'(o;,0) represents a Boltzmann
weight for a branch that connects the root spin o with the
nearest spin site o; (cf. Fig. 2). This new factor W' (o7, 0) can
be calculated from W(o;,0) in Eq. (10) by repeating the
application of the recursive transformation,

Wnew(a-i’o-)= E W(SPO-)W(SZ’U)W(SZ%O-)

51,52:83
XexplBJ 0,0 — B (Ts) + 5155 + $283 + 530)]
(14)

many times until it converges [1]. Thus W’(o;,0) contains
the effect of distant sites on the Bethe lattice. Figure 4 shows
the spontaneous magnetization M=(o) calculated by Eq.
(12) using W'(o;,0) numerically obtained from Eq. (14).
The transition is of the second order in the region 0=«
=<0.183 and is of the first order in 0.184 < x<<1/4. One can
carry out perturbative calculations to ensure that the transi-
tion temperature on the Bethe lattice is zero at k=1/4. The
difference between Figs. 3 and 4 comes from the effect of
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FIG. 4. Spontaneous magnetization of the J;-J, Ising model on
the (,4) lattice.

distant interacting spin sites, which might be essential in the
tricritical behavior on the (5, 4) lattice as studied in the next
section.

III. NUMERICAL RESULTS BY CTMRG

In this section we analyze the thermodynamic property of
the Ising model on the (5, 4) lattice by use of the CTMRG
method [13-15]. The method is a variant of the DMRG
method [16—18] applied to 2D classical models [22]. It is
known that the partition function Z of a square-shaped finite-
size system can be calculated as a trace of the fourth power
of the so-called corner transfer matrix (CTM), which repre-
sents the Boltzmann weight of a quadrant of the whole sys-
tem [1]. Although the matrix dimension of the CTM, which
is denoted by C, increases exponentially with the linear size
of the system, it is possible to transform it into a renormal-

ized one C with a smaller matrix dimension m [23] by means
of the RG transformation obtained from the diagonalization
of p=C* or C[1,13,15]. This transformation is not exact but

is highly accurate in the sense that Z=TrC*is a good ap-
proximation of Z=Tr C*. One can precisely calculate ther-
modynamic (or one-point) functions, such as the free energy

F=—kgTInZ and the spontaneous magnetization M, for a
sufficiently large finite-size system by use of the CTMRG
method. Since the (n,4) lattice can be divided into four
equivalent parts (the quadrants), which share the central site
o on their edges, it is also possible to apply the CTMRG
method to statistical models on these lattices [8,9,12].
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FIG. 5. Phase diagram of the J,-J, Ising model on the (5, 4)
hyperbolic lattice.
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FIG. 6. Dependence of the free energy F(x;T) on temperature
when k=(a) 0.18 and (b) 0.22.

In order to study critical phenomena correctly on hyper-
bolic lattices, we put the following remarks. We always con-
sider a lattice system whose linear size L is several times
larger than the corresponding correlation length &, so that the
central site o is sufficiently away from the system boundary.
The lattice sites in the area within the distance of the order of
& from the system boundary are affected by the imposed
ferromagnetic boundary condition, where all the Ising spins
at the system boundary point to the same direction. It should
also be noted that the portion of such sites that are “near the
boundary” in the hyperbolic geometry remains finite even in
the thermodynamic limit L— oo [10,11], where the situation
is similar to the case of the Cayley tree [1]. Disregarding all
these sites near the boundary, we focus on the thermody-
namic properties of the Ising spins deep inside the system
[3,12].

Figure 5 shows the phase diagram of the system in the
parameter region O0=<x<1/4. The ferromagnetic-
paramagnetic phase boundary is determined from the tem-
perature dependence of the free energy F(«;T) and the spon-
taneous magnetization M(x;T) which we show in the
following. As an effect of the competing interactions, the
transition temperature T(x) monotonically decreases with
increasing « towards Ty(1/4)=0. In the region 0<«k
=0.203 the transition is of the second order. In contrast,
when 0.203 < k< 1/4, we observe a first-order transition; the
tricritical point is located at x.=0.203. Figure 6 shows the
free energy F(k;T) at x=0.18 and 0.22. In the region
0.203<k<1/4, the free energy F(k;T) is not a differen-
tiable function at the transition temperature, as shown in Fig.
6(b).
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FIG. 7. Spontaneous magnetization M for x=0.
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FIG. 8. Inverse of the prefactor B(k), which characterizes the
mean-field-like  transition observed in the spontaneous
magnetization.

Figure 7 shows the spontaneous magnetization M and its
square M?, when there is no frustration, k=0. The squared
magnetization M2 is proportional to T,—T, a behavior that
agrees with the critical exponent S=1/2. In the second-order
transition region 0 < k<<0.203, the universality class remains
mean-field-like and the magnetization curve satisfies the
scaling form

M(k;T) =B(x)[Ty(x) - T]"? (15)

around the transition temperature T(«). The prefactor B(k)
is an increasing function of « and diverges at a certain point
k=k,. Figure 8 shows the inverse of the prefactor B(k)
which linearly decreases to zero in the vicinity of .. We
obtain «.=0.2027 from the linear fitting.

One can also estimate k. out of the discontinuity in the
spontaneous magnetization M(«;T) in the region 0.203 <k
< 1/4. Figure 9 shows M(«;T) around =k, We calculate
the discontinuity function (or the jump in the magnetization)
D(k)=M(k;T,), where T} corresponds to a temperature just
below the transition temperature Ty (). As shown in Fig. 10,
the discontinuity function satisfies the relation

D(k) & (k= k)" (16)

around k=k,. Performing the linear fitting shown by the
dashed lines, we obtain «.=0.2033. Comparing this value
with x.=0.2027 obtained from the data in the second-order
region, we conclude that the tricritical point is located at
k.=0.203 £0.001.
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FIG. 9. Temperature dependence of the spontaneous magnetiza-
tion M(k;T) for several values « around k..
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FIG. 10. Discontinuity function of the spontaneous magnetiza-
tion at the transition temperature 7|, in the first-order transition re-
gion k., <k<1/4.

The observed tricritical behavior around =k, is in accor-
dance with the Landau free energy

F(M,1) =aM® + b(k. — k)M* + ctM?, (17)

where a, b, and c are positive constants or slowly varying
functions of temperature. In the second-order transition re-
gion k<k,, the second and the third terms in F(M,t) are
dominant in the vicinity of the phase transition, and the pa-
rameter ¢ coincides with [T—Ty(x)]/Ty(x). Neglecting the
first term in F(M,r) below T<Ty(k), we can obtain the
spontaneous magnetization M that minimizes F(M,f) from
the equation 4b(k.—k)M?*+2ct=0. The behavior M|t co-
incides with the numerical result shown in Fig. 7. In the
first-order transition region k> k_, all three terms in F(M ,t)
are important for the minimum of the free energy. After short
calculations, one can confirm that the jump of the spontane-
ous magnetization at the transition temperature coincides
with Eq. (16), which we have verified from the numerical
data shown in Fig. 10.

At the tricritical point k= k_, the second term in F(M ,¢) in
Eq. (17) vanishes. Thus, the spontaneous magnetization is
determined from 6aM*+2ct=0, and M* is proportional to
T—-T,. The dependence of M* with respect to temperature T
obtained from the numerical calculation is shown in Fig. 11.
The data are in accordance with M o (T—T,)"4, which corre-
sponds to the exponent S=1/4 at tricriticality. In the same
manner it is expected that the specific heat diverges as (T
—T)72, which corresponds to the critical exponent a=1/2.
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FIG. 11. Fourth power of the spontaneous magnetization around
K=K.
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Figure 12 shows the numerically calculated specific heat at
k.=0.203, which agrees with the expected temperature de-
pendence. For comparison, in the inset of Fig. 12, we show
the data at k=0.18, which agree with a=0.

Effect of an external magnetic field H may be included in
the Landau free energy by adding the interaction term dHM
to F(M,t) in Eq. (17), where d is a positive constant. From
the assumed form of the free energy it is expected that M?
and M° are, respectively, proportional to Ty,—7 when k< k,
and when x=«k,. For confirmation, we observe the induced
magnetization at criticality when « =< k. Figure 13 shows the
induced M with respect to H. In the region of the second-
order phase transition, we obtained the magnetic exponent
0=3 as expected. However, the value of the exponent J is
around 7 at the tricritical point, not 5 as expected from the
Landau free energy F(M,1)+dHM. Such pathological behav-
ior in the induced magnetization is a remaining piece of the
puzzle of the current study on the (5,4) hyperbolic lattice.
Considering the J,-J, Ising model on the (©,4) Bethe lattice,
we obtain 6~ 6 at the tricritical point from numerical calcu-
lations. Future studies on (n,4) lattices for n=6 would pro-
vide information about these unexpected values of .

IV. CONCLUSIONS

We have studied a ferromagnetic-paramagnetic phase
transition of the J,-J, Ising model on the (5,4) hyperbolic
lattice. A tricritical point has been found when the ratio «
=J,/J;, which represents the strength of frustration, is equal
to 0.203. It should be noted that the presence of the first-
order transition cannot be obtained by the single-site mean-

005 757002 o
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0.02 581
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FIG. 13. Induced magnetization at the tricritical point k=« and
(inset) at the transition temperature when k<<,.
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field approximation applied to this system. This is in contrast
to the known fact that the phase transition of the nearest-
neighbor Ising, Potts, and clock models exhibits a mean-field
nature [3,6-9,12].

The observed second-order phase transition in the param-
eter region xk<<k.=0.203 belongs to the mean-field univer-
sality class, which is characterized by the exponents a=0,
B=1/2, and 6=3. At the tricritical point we observe «
=1/2, B=1/4, which are in accordance with the Landau free
energy written as an even polynomial of the order parameter.
The observed value of the exponent d=7 at the tricritical
point is the only exception, and requires further detailed
studies.

As an effect of the frustration, the entropy of the ordered
phase will be enhanced compared with the ordered state that
has the same spontaneous magnetization under J,=0. We
conjecture that this enhancement effect creates a minimum in
the Landau free energy, which may be the reason for the
first-order transition we have observed here. The tricritical
point is also present in the (%0,4) lattice, which is nothing but
the Bethe lattice. This suggests that the suppression of the

PHYSICAL REVIEW E 78, 061119 (2008)

loop-back effect in the hyperbolic lattice is essential for the
appearance of tricritical behavior.

Determination of the phase diagram in the region
k>1/4 is challenging because the ground-state spin con-
figuration becomes nontrivial, as has been discussed in Sec.
I1. Because the (5,4) hyperbolic lattice consists of pentagons,
the lattice does not decouple into sublattices even when J;
=0. For the study of this region, we have to modify the
CTMRG algorithm in order to treat ordered states with non-
trivial spin patterns.
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