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Persistent random walk on a one-dimensional lattice with random asymmetric transmittances
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We study the persistent random walk of photons on a one-dimensional lattice of random asymmetric trans-
mittances. Each site is characterized by its intensity transmittance ¢ (¢’ # ) for photons moving to the right

(left) direction. Transmittances at different sites are assumed independent, distributed according to a given
probability density F(z,7). We use the effective medium approximation and identify two classes of F(z,t")
which lead to the normal diffusion of photons. Monte Carlo simulations confirm our predictions. We mention
that the metamaterial introduced by Fedetov ef al. [Nano Lett. 7, 1996 (2007)] can be used to realize a lattice

of random asymmetric transmittances.
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I. INTRODUCTION

Random walks in random environments is a field of con-
tinuous research [ 1-4]. Hopping conduction of classical par-
ticles or excitations [5], transport in porous and fractured
rocks [6], and diffusive transport of light in disordered media
[7] are a few examples.

Random walks with correlated displacements figure in a
multitude of different problems. Among the correlated walks,
the persistent random walk introduced by Fiirth [8] and Tay-
lor [9], is possibly the simplest one to incorporate a form of
momentum in addition to random motion. In its basic real-
ization on a one-dimensional lattice, a persistent random
walker possesses constant probabilities for either taking a
step in the same direction as the immediately preceding one
or for reversing its motion [1,2,4]. Generalized persistent
random walk models are utilized in the description of poly-
mers [10], chemotaxis [11], general transport mechanisms
[12,13], Landauer diffusion coefficient for a one-dimensional
solid [14], etc.

Recently, the persistent random walk model was used to
study the role of liquid films for diffusive transport of light in
foams [15,16]. Diffusing-wave spectroscopy experiments
have confirmed the photon diffusion in foams [17]. A rela-
tively dry foam consists of cells separated by thin liquid
films [18]. Cells in a foam are much larger than the wave-
length of light, thus one can employ ray optics and follow a
light beam or photon as it is transmitted through the liquid
films with a probability ¢ called the intensity transmittance.
This naturally leads to a persistent random walk of the pho-
tons. In the ordered honeycomb (Kelvin) foams, the one-
dimensional persistent walk arises when the photons move
perpendicular to a cell edge (face). Thin-film transmittance
depends on the film thickness. Films are not expected to have
the same thickness. These observations motivated us to con-
sider persistent random walk on a one-dimensional lattice of
random transmittances [16]. We assumed that transmittances
at different sites are independent random variables, distrib-
uted according to a given probability density f(z). Assuming
that (1/1)= éf(t)/tdt is finite, we validated the classical per-
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sistent random walk with an effective transmittance 7.,
where 1/t.4=(1/1). We also investigated the transport on a
line with infinite (1/f). We showed that if f(r)— f(0) as ¢
—0, the mean square displacement after n steps is propor-
tional to n/In(n). If f(r)~ft* (0<a<l) as t—0, we
found that the mean square displacement is proportional to
n2-20/2-9) _ Quite interesting, we found that anomalous dif-
fusion of persistent walkers and hopping particles on a site-
disordered lattice [5,19] are similar. To observe photon sub-
diffusion experimentally, we suggested a dielectric film stack
for realization of a distribution f(r) [16].

In the realm of diffusion on one-dimensional lattices with
random hopping rates w;; from site j' to site j, the asym-
metric hopping model with w;; ; #w;,,; has gained much
attention [20-26]: At variance with the symmetric case, the
asymmetric model can display anomalous diffusion behavior
without broad distribution of hopping rates. The asymmetric
hopping model has been used to discuss hopping conductiv-
ity in presence of an external electric field, molecular motors
[27], evolution of a domain wall in a one-dimensional ran-
dom field Ising model [3], helix-coil transition of heteropoly-
mers [3,28], etc. These points suggest us to investigate per-
sistent random walk of photons on a one-dimensional lattice
with random asymmetric transmittances. For a given dielec-
tric stack, the transmittance for incidence on the right side, is
equal to that for incidence on the left side [29]. However,
optical elements with different transmission in the forward
and backward directions, and even optical diodes which al-
low unidirectional propagation, are realized [30]. For ex-
ample, Fedetov et al. [31] showed that asymmetric transmis-
sion through a planar metal nanostructure consisting of
twisted elements can be observed in the optical part of the
spectrum. For a normally incident circularly polarized light
of wavelength 630 nm, this metamaterial is 1.3 times more
transparent from one side than from the other. There is a
good reason to believe that the experimental observation of
photons’ persistent random walk is not out of reach: Bar-
thelemy, Bertolotti, and Wiersma have recently verified Lévy
flight of photons in their synthesized Lévy glass [32].

Apart from interest in the optics of random media, our
work has been motivated by the Lorentz gas model intro-
duced to describe the diffusion of conduction electrons in
metals [33,34]. One-dimensional persistent random walk and
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stochastic Lorentz gas are intimately related [35]. Stochastic
Lorentz model consists of fixed scatterers on a lattice and
one moving light particle. The light particle runs at velocity
¢ or —c, and when collides with a scatterer it is transmitted
with a site-dependent probability 7 or reflected with a prob-
ability 1-r. In other words, the light particle performs a per-
sistent random walk. Thus here we are investigating a variant
of the one-dimensional Lorentz gas, where each scatterer is
characterized by a random asymmetric transmission coeffi-
cient.

In this paper we consider the persistent random walk of
photons on a one-dimensional lattice of random asymmetric
transmittances. Each site is characterized by its intensity
transmittance ¢ (¢') for photons moving to the right (left)
direction. Transmittances at different sites are assumed inde-
pendent, distributed according to a given probability density
F(z,t"). We generalize a variant of the effective medium ap-
proximation introduced by Sahimi, Hughes, Scriven, and
Davis [19,36] to identify two classes of F(z,1") which lead to
the normal diffusion of photons: (i) (1/7) is finite and (¢'/1)
is less than 1 and (ii) {1/¢’) is finite and {¢/¢") is less than 1.
Here (---) denotes averaging with respect to the distribution
F(t,t").

Our paper is organized as follows. In Sec. II we introduce
the model. In Sec. III we present the effective medium ap-
proach to the problem. The numerical treatment and its re-
sults are reported in Sec. IV. Section V is devoted to a dis-
cussion of our results.

II. MODEL

We consider a one-dimensional lattice random walk in
which steps are permitted to the nearest-neighbor sites only.
We normalize the length and duration of a step to 1. Appar-
ently, on a one-dimensional lattice the walker can move ei-
ther to the right (+) or to the left (—) direction. Each site j is
characterized by forward and backward transmittances j,
f"md tJf -1 respectwe;ly: Qn arriving at s1t'e J», a walker moving
in the right (left) direction takes a step in the same direction
with thF: probabi'lity tijer (8 ,1;-1)- Here we assume asymmetric
transmittances, 1.€., th+1 * tjj_].

We assume that (i) transmittances ¢ and ¢’ at each site are
random variables. In general, these random variables are not
independent, (ii) transmittances at two different sites are in-
dependent, (iii) transmittances at all sites are distributed ac-
cording to a given normalized probability density F(¢,t').
Apparently [(f3F(t,t')dtdt’=1. The probability density
functions of ¢ and ¢ are f*(t):f(l)]-'(t,t’)dt’ and f(¢')
= [ F(t,t")dt, respectively. The joint probability distribution
can be written as F(z,t')=f"(¢)f~(t') when random variables
t and ¢’ are independent. For any function A(z,t'), we define
(h(t,t")y=J[on(e,t) F(e,t")drdr'.

We denote by P*(n,j) [P™(n,j)] the probability that the
walker after its nth step arrives at site j with positive (nega-
tive) momentum. A set of two master equations can be es-
tablished to couple the probabilities at step n+ 1 to the prob-
abilities at step n:

Pr(n+ 1) =l‘j_1,jP+(nJ'_ 1)+ rj,—l,jP_(nxi_ 1),
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P (n+1yj)= Pr(nj+ 1) +1,;

(T, P (nj+1), (1)
where rj;_=1~1;;,, and rj;,;=1~1;; ; denote forward and
backward reflectances at site j, respectively.

We are mainly interested in the probability that the photon
arrives at position j at step n, i.e., P(n,j)=P*(n.j)+P (n.j),
from which we extract the first and second moments after n
steps as the characteristic features of a random walk

= <ZJP<nJ)>,
J

= <2ﬁP<nJ)>. @
J

Here the first bracket represents an ensemble average over all
random transmittances, and the second bracket signifies an
average with respect to the distribution P(n,j).

Assuming a constant forward transmittance ¢ and a back-
ward transmittance ¢’ at each site, translational invariance of
the medium can be invoked to deduce the exact solution of
P(n.,j) in the framework of characteristic functions [2]. Fur-
thermore, the mean square-displacement of photons after n
— o0 steps can be obtained as (j?),—{j)2=2Dn, where the the
diffusion constant D is

B 20-0(1 =)t +1")
- Q2-1-1)

3)

In the limit 7=¢" one obtains D=¢/(2-2¢), a known result in
the realm of the the classical persistent random walk.

The disorder not only may affect the value of diffusion
constant as compared to the ordered system, but also may
lead to the subdiffusive or superdiffusive behavior. In our
model, even a few sites with small transmittances may dras-
tically hinder the photon transport: In the extreme limit
where at two different sites j and j', transmittances ¢,
:tj”]._1 =ty jry :tjf,J,_1=0, photons either do not visit the seg-
ment between j and j', or are caged in this segment. In the
following section, we determine which distributions of trans-

mittances F(z,1") lead to the normal diffusion of photons.

III. EFFECTIVE MEDIUM APPROXIMATION

Many of the approaches to the transport in disordered
media have the disadvantage of being restricted to one-
dimensional problems. Here we adopt the effective medium
approximation (EMA) which is applicable to two- and three-
dimensional media. We generalize a variant of effective me-
dium approximation introduced by Sahimi, Hughes, Scriven,
and Davis [19,36].

First we simplify the set of coupled linear difference Eq.
(1) using the method of the z transform [2,37] explained in
the Appendix:

Paj) Prn=04)
< < -

G PH =) + 1)y Pz - 1),
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P (zj) P (n=04) _ S
- = 1P (g + 1) + 4,4 ;P(zj +1).

J
(4)

We assume the initial conditions P*(n=0,j)=P (n=0,j)
=38,0/2. To facilitate solution of Eq. (4) we introduce prob-
abilities Pf (z.j), and a reference lattice or average medium
with all forward transmittances equal to #,(z) and all back-
ward transmittances equal to 7,(z), so that

Pizj)  P'(n=04)
Z

Z

=t,(DP;(zj - 1) + 1, ()P,(zj - 1),

LD P00 P 1)+ P ).

(5)

Here r,(z)=1-1,(z) and r,(z)=1-1.(z) denote effective re-
flectances.

EMA determines 7,(z) and 7.(z) in a self-consistent man-
ner, in which the role of distribution F(¢,¢’) is manifest. This
is done by taking a cluster of random transmittances from the
original distribution, and embedding it into the effective me-
dium. We then require that average of site occupation prob-
abilities of the decorated medium duplicate P, (z,j) of the
effective medium. We will sketch the method in the follow-
ing.

Subtracting Egs. (4) and (5), we obtain

1 (Q*(Ai) ) . (Z)(Q%a -1 ) L (Z)<Q+(z,i +1) )

z2\Q7(z4) 0 (zj-1) O (zj+1)
RILUETR ST - Pi(zj - 1))
_{( 0 10J> T (Z)]<P‘(1J—l)
0 0 o |(Pj+ 1))
’ |:(rj+1,j tj,+1,j> ! (Z)} (P_(ZJ"" 1))/ ©

where
(Q*(ZJ)) . <P+<zJ) ) ) (P:(zJ) )
0 () \P@h/) \Pizj))

0 0
T*(z) ( o9 ) (7)
z)= L]
rez) 1,(2)
To solve Eq. (6), we introduce the Green function
G, G
Gloj) = ( n G )
Gy Gn

which satisfies the equation
1
ZG(Z‘D -T(2)G(zj-1) - T (2)G(zj + 1) = Gl (8)

Here I is the identity matrix. Multiplying both sides of the
above equation by ¢¥? and then summing over all the sites,
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the Four_ier transform of the Green function, i.e., G(z,0)
=37 .Y %G(z,j), can be obtained as

1
2 ——1l()e™?  rl(z)e?

Az 0 1 ’
@0 rf2e? = —t,(z)e'?
Z

G(z,0) =

)

where A(z, 0)=1-z[t,(z)e'+1. () e+ [t (z) +1.(z) - 1].

For the present, we consider only the simplest approxima-
tion, and embed one random transmittance at site [ of the
effective medium. Then solution of Eq. (6) is

+ . 2 +
(Q (m)) _ f e 0S(e. Bl x (P (z.0) ) a0

0 (z4j) 0 Pzl )27
(10)
where
(1001 — 1,(2)]e'? [1.(z) - f1'1—1]6’10 )
S(z,0) = ’ ’ .o(11
=0 <[re<z>—r,,,+1]e-"’ -l

The self-consistency equation is (Pi(z,l)>=Pf(z,l) or

2 4o -1
<|:I—f0 G(z,0)S(z,0)5Tj| >=I. (12)

The above matrix equation leads to these conditions:
fl f F(t,t")drdt’ X
0 Jo 1-[t-1, U@ -t -,V

J‘ f‘ tF(t,t")dtdt’ )
0 Jo T, - - @U@
f‘ f‘ t' F(t,t")dtdt' e
0 Jo 1= @U@ -7 - @U@
(13)
where
VU + 2= +1(2) - 1]} - 1
V- 21,(2) '
o VU +20() - 1) - 1]} -1
V@)= 2(2) :
V() 1 (14)

T+ 2@ + 1) - 1P - 424,00

It turns out that one of the self-consistency conditions (13)
can be trivially satisfied. Consistency equations determine
t,(z) and 7(z), in which the role of distribution F(z,1') is
manifest. For symmetric transmittances where F(z,t')
=f(t)8(t—t"), our consistency conditions (13) indeed dupli-
cate that of Ref. [16]

The translational invariance of the effective medium can
be invoked to access the z transform of the the first and
second moments of the photon distribution
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Z te(z) - té(Z)
-2 1 =z[t,(z) +1.(z) = 11’

2 (= (
n=0

oo

oy 22 (t,(2) = 1.(2))?
2 0 = T a0+ 10~ 1P

7 1+zt(2) +1,(z) - 1]
+ .
(1-2*1=2[t,(2) +1.(z) - 1]

We are interested in the long time behavior, thus Tauberian
theorems suggest to analyze Egs. (13) and (15) in the limit
z—1.

To find which distributions of transmittances F(r,’) lead
to the normal diffusion of photons, we assume that 7,(z) and
1.(z) have no singularity in the limit z— 1. We find two dis-
tinct classes. (i) If {(t'/t)<1 then

(15)

1
t(z) = w’
L
1,(z)= . (16)

The first class of admissible distribution F(z,t’) is such that
(1/t) is finite and {t'/7) is less than 1. (ii) If {z/¢')<1 then

_ (t/t")
te(Z)_ <1/[,>’
()= —— 17
t,(z) = iy (17)

The second class of admissible distribution F(z,¢") is such
that (1/¢") is finite and (¢/¢') is less than 1. The above effec-
tive transmittances do not depend on z, thus one can directly
use Eq. (3) to access the diffusion constant of photons.

The Cauchy-Schwarz inequality states that for two ran-
dom variables « and B, (aB)*<(a?}(B). With a=\/1" and
B=\t"/t, we find that 1 <{t/t'){t'/1). This clearly shows that
(t/t")y and (' /t) are not simultaneously less than 1, thus two
mentioned classes are quite distinct. EMA does not predict
any result when both (#/¢') and (¢'/t) are greater than 1.

EMA is a simple and conceptually attractive scheme for
exploring transport in a disordered medium. However, no
estimate of the accuracy of this scheme is available. Thus,
only an exact solution will unquestionably clarify whether
the above mentioned constraints on F(¢,¢') lead to the diffu-
sive transport.

IV. NUMERICAL SIMULATIONS

The predictions of EMA can be inspected by numerical
simulations. The computer program produces 50 media,
whose transmittances are distributed according to a given
distribution F{(¢,t"). We deliberately focus on cases where
both (¢t/t') and (t'/t) are not simultaneously greater than 1.
For each medium, the program takes 10* photons at the ini-
tial position j=0 and generates the trajectory of each photon
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FIG. 1. The diffusion constant D as a function of transmittances

t and ¢’ of an ordered medium. Theoretical and Monte Carlo simu-
lation results are denoted, respectively, by lines and points.

following a standard Monte Carlo procedure. The statistics
of the photon cloud is evaluated at times n
e[10 000,12 000, ...,68 000]. ((/2»”—((]))% is computed
for each snapshot at time 7, and then fitted to 2Dn+ O by the
method of linear regression. An offset O takes into account
the initial ballistic regime. We compare our numerical diffu-
sion constant with the analytical one based on Egs. (3), (16),
and (17). Note that to increase the accuracy of numerical
simulation, it is better to use the exact enumeration technique
[38].

First we assume that transmittances of all sites are equal.
For t€[0.3,0.5,0.7] and ¢’ €[0.0,0.1,0.2,...,0.9,1.0], our
numerical and analytical predictions for the diffusion con-
stant are compared in Fig. 1. In the absence of disorder,
translational invariance of the medium has been invoked to
deduce the exact diffusion constant (3). Thus, Fig. 1 is a
partial test for the quality of our numerical simulations.

Next we consider F(r,t")=f*(t)f(t') such that f*(z) is a
uniform distribution for 7, <t<t,, and f~(t')=4&(t'-1}). We
choose #,=0.2, 0.2<1,<0.6, and ¢} € [0.1,0.7,0.9]. Our nu-
merical and analytical predictions are compared in Fig. 2(a).
We also considered the case where f*(¢) is a uniform distri-
bution for 1, <t<t,, and f(¢) is a uniform distribution for
t;<t'<t,. We choose 7,=0.1, 0.2<7,<0.6, #;=0.6 and ¢,
€[0.7,0.9]. Our results are shown in Fig. 2(b).

We also present two other examples. We consider
F(t,t")=f()f(¢t') such that f*(r)=(1-a)r® for 0<r<1,
and f~(¢') is a uniform distribution for 0.7 <¢' <0.9. Figure
3(a) depicts D as a function of «. Our results for the case
ff=(1-a)r® and f(¢')=08(t'-1) are illustrated in Fig.
3(b). Figures 1-3 vividly show that the effective medium
approach to the diffusion constant D is quite successful.

V. DISCUSSION

In the present paper, we address the persistent random
walk of photons on a one-dimensional lattice of random
asymmetric transmittances. Clearly, a photon steps back by
each reflection. Intuitively, one expects the abundance of
large reﬂe,ctances (e.g., two different sites with ¢ j+1=tjf o1
=ljrjre1 =1 J.,_1=O) to drastically decrease excursion of the
photons. As percolation properties [1,6], this feature is in-
duced by the dimensionality of the lattice. We focus on de-
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FIG. 2. (a) The diffusion constant D as a function of #, for
different values of ry. F(r,t")=f*(1)f(¢'), such that f*(¢) is a uni-
form distribution for 0.2<t<\t, and f~(t')=48(t'-1). (b) D as a
function of #, for different values of ;. f*(r) is a uniform distribu-
tion for 0.1<t<t,, and f7(¢') is a uniform distribution for 0.6
<1’ <t}. Theoretical and simulation results are denoted, respec-
tively, by lines and points.

termining distributions of transmittances F(z,¢") which lead
to the normal diffusion of photons. The probability distribu-
tion P*(n.j) as an exact solution of the master equation (1)
is quite hard to obtain. However the relatively simple but
approximate effective medium approach reveals intriguing
aspects of the system. In two cases, the transport of photons

(@08
L4

0.6 - \}

0.4

FIG. 3. The diffusion constant D as a function of a. F(t,t')
=f*(t)f(¢") such that (a) f*(r)=(1-a)r* for 0<r<1, and f(¢') is
a uniform distribution for 0.7<t'<0.9. (b) f*(r)=(1-a)r™® and
()= 8(t" —1]). Theoretical and simulation results are denoted, re-
spectively, by lines and points.
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is diffusive: (i) (1/¢) is finite and (t'/¢) is less than 1. (ii)
(1/t") is finite and {#/¢') is less than 1. Monte Carlo simula-
tions confirm our predictions. EMA does not predict any re-
sult when both (#/¢') and (¢’ /1) are greater than 1.

It would be instructive to compare our problem with the
transport on a one-dimensional lattice with random asym-
metric hopping rates. Independent steps are the base of the
hopping transport, while correlated steps are the essence of
the persistent random walk. Hopping conduction is described
by the master equation

IP(7.j)
or

=wj i P(7g + 1) +wj; P(1j = 1)

= (Wjs1j+ Wi )P(7), (18)

where P(7,j) is the probability for the particle to be on site j
at continuous time 7, and w;;; denotes the probability of
jumping from site j to site j per unit time. In the asymmetric
hopping model w;;,; # wj,, j. First we note that EMA does
not predict any result when both (w;j, /Wy p=(w_/w_)
and (wj,j/wjj,)=(w_/w_) are greater than 1 [23,26].
Making use of a periodization of the medium, Derrida ob-
tained exact expressions for the velocity and diffusion con-
stant [21]. In the case (In(w. /w_,)) <0, he found the follow-
ing. (i) The velocity V vanishes if (w_/w_)=1. (ii) For
w_Iw_)<1<{(w_/w_)? the velocity is finite but the dif-
fusion coefficient is infinite. (iii) For {(w_/w_)?)<1 both V
and D are finite. All these results are easy to transpose when
{In(w_/w_))>0.

As already mentioned in Sec. I, the metamaterial intro-
duced by Fedetov et al. [31] can be used to realize a lattice of
random asymmetric transmittances. Suppose that the twist
vector of this metamaterial is along the right direction of the
lattice. For a normally incident circularly polarized light of
wavelength 630 nm propagating to the right (left) direction,
the intensity transmittance of this metamaterial is 7=0.43
(¢'=0.57). We suggest a simple arrangement where a fraction
e of the lattice sites are randomly occupied by the metama-
terial, and the rest of lattice is occupied by half transparent
dielectric slabs with =¢"=0.5. Then the distribution of trans-
mittances can be written as F(¢,t')=g8(r—0.43)8(¢' —0.57)
+(1-¢)8(t—0.5)8(t' —0.5). We find

_2(1-0.2456¢)
T (2-0.2456¢)%"

One can measure the diffusion constant of photons as a func-
tion of € to test our predictions.

EMA does not predict any result when both (#/¢") and
(t' /1) are greater than 1. It would be interesting to investigate
the anomalous diffusion of photons and self-averaging quan-
tities of the system following Refs. [21-23]. Our studies can
also be extended to higher-dimensional lattices.
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APPENDIX: z-TRANSFORM

The z transform F(z) of a function F(n) of a discrete
variable n=0,1,2,..., is defined by

F(z)= > F(n)7". (A1)
n=0

One then derives the z transform of F(n+1) simply as
F(z)/z—F(n=0)/z. Note the similarities of this rule with the
Laplace transform of the time derivative of a continuous
function [2,37].

Under specified conditions the singular behavior of F(z)
can be used to determine the asymptotic behavior of F(n) for

PHYSICAL REVIEW E 78, 061114 (2008)

large n (Tauberian theorems) [2]. For example, the identity
F(1-a)(1-z)*"'=="_ T(n—a+1)z"/n! shows that

I'l-oa _F(n—a+l)
F(Z)N—(I_Z)I_QHF(n)——n! , (A2)
where I'(@)=[;e~'t*"'dt. Particularly,
F(z) ~ mﬂF(n)ﬂHl,
F(z) ~ . F(n)= l(n2 +3n+2) (A3)
(1-2)° 2 '
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