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We study the critical dynamics of the generalized Smoluchowski-Poisson system �for self-gravitating Lange-
vin particles� or generalized Keller-Segel model �for the chemotaxis of bacterial populations�. These models
�P. H. Chavanis and C. Sire, Phys. Rev. E 69, 016116 �2004�� are based on generalized stochastic processes
leading to the Tsallis statistics. The equilibrium states correspond to polytropic configurations with index n
similar to polytropic stars in astrophysics. At the critical index n3=d / �d−2� �where d�2 is the dimension of
space�, there exists a critical temperature �c �for a given mass� or a critical mass Mc �for a given temperature�.
For ���c or M �Mc the system tends to an incomplete polytrope confined by the box �in a bounded domain�
or evaporates �in an unbounded domain�. For ���c or M �Mc the system collapses and forms, in a finite
time, a Dirac peak containing a finite fraction Mc of the total mass surrounded by a halo. We study these
regimes numerically and, when possible, analytically by looking for self-similar or pseudo-self-similar solu-
tions. This study extends the critical dynamics of the ordinary Smoluchowski-Poisson system and Keller-Segel
model in d=2 corresponding to isothermal configurations with n3→ +�. We also stress the analogy between
the limiting mass of white dwarf stars �Chandrasekhar’s limit� and the critical mass of bacterial populations in
the generalized Keller-Segel model of chemotaxis.
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I. INTRODUCTION

For a long time, statistical mechanics was restricted to
systems interacting via short-range forces. For example, the
case of self-gravitating systems is almost never considered in
standard textbooks of statistical mechanics and these systems
have been studied exclusively in the context of astrophysics.
In the sixties, Antonov �1�, Lynden-Bell �2�, and Thirring �3�
realized that self-gravitating systems have a very special
thermodynamics marked by the nonequivalence of statistical
ensembles �microcanonical, canonical, grand canonical,…�.
This is related to the nonadditivity of the energy and to the
presence of negative specific heats in the microcanonical en-
semble. Furthermore, these systems experience a rich diver-
sity of phase transitions �microcanonical and canonical first-
order phase transitions, zero-order phase transitions,…�
associated with their natural tendency to undergo gravita-
tional collapse �4,5�. Recently, several researchers have
started to consider the dynamics and thermodynamics of sys-
tems with long-range interactions at a more general level
�see the books �6,7� and references therein� and to discuss
the numerous analogies �and differences� between these sys-
tems: self-gravitating systems, two-dimensional vortices,
neutral and non-neutral plasmas, the Hamiltonian mean field
�HMF� model, free electron lasers, Bose-Einstein conden-
sates, atomic clusters, chemotaxis of bacterial populations,
etc. These analogies have also suggested interesting experi-
ments. For example, in the physics of ultracold gases, some
authors �8� have proposed to generate an attractive 1 /r inter-
action between atoms by using a clever configuration of laser
beams. This leads to the fascinating possibility of reproduc-
ing, in the laboratory, the isothermal collapse �in the canoni-
cal ensemble� of a self-gravitating Fermi gas �9,10� leading
to a “white dwarf star.” These examples illustrate the impor-
tance of studying the statistical mechanics of systems with
long-range interactions at a general level and to develop the

analogies between different systems that may seem a priori
of a very different nature.

In a series of papers �11–17�, we have investigated the
dynamics and thermodynamics of a system of self-
gravitating random walkers. The basic idea is to couple the
usual Brownian motion �as introduced by Einstein and
Smoluchowski� to the gravitational interaction. In our gen-
eral model �17�, the microscopic dynamics of the particles is
described by N coupled stochastic equations including a fric-
tion force and a stochastic force in addition to the gravita-
tional interaction. The friction force and the stochastic force
model the interaction of the system with a thermal bath of
nongravitational origin. Then, the proper statistical descrip-
tion of this dissipative system is the canonical ensemble. In
order to simplify the problem, we have considered a strong
friction limit in which the motion of the particles is over-
damped. We have also considered a mean field approxima-
tion which becomes exact in a proper thermodynamic limit
N→ +� in such a way that the volume V�1 is of order
unity and the coupling constant G�1 /N goes to zero �alter-
natively, we can consider that the mass of the individual
particles scales like m�1 /N so that the total mass M �Nm
and the gravity constant G remain of order unity�. These
approximations lead to the Smoluchowski-Poisson �SP� sys-
tem. The steady states correspond to isothermal distributions
associated with the Boltzmann statistics. When coupled to
the Poisson equation, we obtain density profiles similar to
isothermal stars in astrophysics �18,19�. In the course of our
study, we realized that the SP system is isomorphic to the
standard Keller-Segel �KS� model �20,21� introduced in
mathematical biology to describe the chemo-
taxis of bacterial populations �22�. The SP system and the KS
model have now been extensively studied by physicists
�11–17,23� and applied mathematicians �24–47� with differ-
ent methods and motivations.

We have also studied a generalized Smoluchowski-
Poisson �GSP� system �see Eqs. �13� and �14� of this paper�
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including an arbitrary barotropic equation of state P���. This
model has been introduced by Chavanis in �48�. The GSP
system can be viewed as a generalized mean field Fokker-
Planck equation �for a review of nonlinear Fokker-Planck
equations, see �49,50��. It can be obtained from generalized
stochastic processes and it is associated with a notion of
effective generalized thermodynamics �EGT�. These equa-
tions can also provide a generalized Keller-Segel �GKS�
model of chemotaxis with a density dependent diffusion co-
efficient �50�. For an isothermal equation of state P
=�kBT /m, we recover the standard SP system and KS model
�with appropriate notations�. Apart from the isothermal equa-
tion of state, the GSP system and GKS model have been
studied for �i� a polytropic equation of state P=K�	 �51�, �ii�
a logotropic equation of state P=A ln � �52�, �iii� a Fermi-
Dirac equation of state P= PF.D.��� �53,54�, and �iv� an equa-
tion of state P=−T�max ln�1−� /�max� taking into account ex-
cluded volume effects �55�. These are standard equations of
state introduced in astrophysics and statistical mechanics so
that it is natural to consider these equations of state in con-
nection to the GSP system and GKS model.

Specializing on the polytropic equation of state P=K�	

with 	=1+1 /n �51�, the steady states of the GSP system
correspond to polytropic distributions associated with the
Tsallis statistics �56�. When coupled to the Poisson equation,
we obtain density profiles similar to polytropic stars in as-
trophysics �18,19�. For d�2, there exists a critical index
	4/3=2�d−1� /d, i.e., n3=d / �d−2� �51�. For 0�n�n3, the
GSP system relaxes towards a stable steady state with a com-
pact support, similar to a classical white dwarf star �classical
white dwarf stars are equivalent to polytropes with index n
=3 /2 in d=3 �57��. For n�n3, there is no stable equilibrium
in an unbounded domain so that the system can either col-
lapse or evaporate �see Fig. 13 for an illustration�. These
different regimes have been studied in �51�. For n=n3, the
dynamics is critical. At this index, there exists a critical mass
Mc�d� �for a given polytropic constant K� �51� which is con-
nected to the Chandrasekhar mass of relativistic white dwarf
stars �ultrarelativistic white dwarf stars are equivalent to
polytropes with index n=3 in d=3 �58��. The object of the
present paper is to study numerically and, when possible,
analytically this critical dynamics. For M �Mc, we find that
the system evaporates and we construct a self-similar solu-
tion. For M �Mc, we find that the system collapses. In a
finite time tcoll, it forms a Dirac peak with mass Mc sur-
rounded by a halo that has a pseudo-self-similar evolution.
For d=2, the critical index n3→ +� so that we recover the
case of isothermal spheres whose dynamics is known to be
critical in d=2 �12�.

When we apply this model in the context of chemotaxis
�59�, we find the existence of a critical mass Mc�d� at the
critical index n3=d / �d−2�. For d=2, we recover the well-
known result Mc�d=2�=8
 obtained within the standard
Keller-Segel model �see �60� and references therein� and for
d=3, the critical mass associated with the GKS model is
Mc�d=3�=202.8956. . . �in usual dimensionless variables�.
This is similar to the Chandrasekhar limiting mass of white
dwarf stars. The existence of a limiting mass for bacterial
populations at the critical index n3 and its connection to the
Chandrasekhar mass was pointed out in �59,61� �and implic-

itly in �51��. This is another illustration of the numerous
analogies that exist between self-gravitating systems and
bacterial populations �53�.

The paper is organized as follows. In Sec. II, we briefly
recall the connection between white dwarf stars and gaseous
polytropes. In Sec. III, we recall the basic properties of the
SP and GSP systems and describe the behavior of the solu-
tions depending on the index n and the dimension of space d.
As the problem is very rich, involving many different cases
��30�, a summary of previously obtained results, completed
by new results and discussion, is required to understand the
place of the present study in the general problem �see also
Tables I and II for an overview�. Then, we consider more
specifically the particular index n=n3 which presents a criti-
cal dynamics that was mentioned, but not studied, in our
previous paper �51�. In Sec. IV, we show that this critical
value can be understood from a simple dimensional analysis.
In Sec. V, we study the critical collapse dynamics and extend
the results obtained in d=2 for isothermal �n= +�� systems
�12� to the case of critical polytropes �n=n3� in d�2. In Sec.
VI, we study the evaporation dynamics in unbounded space.
We show that for n�n3, self-gravity becomes negligible for
large times so that the evaporation is eventually controlled
by the pure �anomalous� diffusion. For n=n3, gravity re-
mains relevant at any time so that there exists a self-similar
solution for which all the terms of the GSP system scale the
same way. Finally, in Sec. VII, we transpose our main results
to the context of chemotaxis using notations and parameters
adapted to this problem �this is to facilitate the comparison
with the results obtained in mathematical biology�.

Our numerical and analytical study was conducted in par-
allel to a mathematical work by Blanchet et al. �62� who
obtained rigorous results for the critical dynamics of the GSP
system and GKS model introduced in our paper �51�. These
two independent studies have different motivations and use
very different methods so they are complementary to each
other.

II. WHITE DWARF STARS AND POLYTROPES

In this section, we briefly recall the connection between
the maximum mass of white dwarf stars �Chandrasekhar’s
mass �58�� and the theory of self-gravitating polytropic
spheres �18,19�.

In simplest models of stellar structure, a white dwarf star
can be viewed as a degenerate gas sphere in hydrostatic equi-
librium. The pressure is entirely due to the quantum pressure
of the electrons �resulting from Pauli’s exclusion principle
for fermions� while the density of the star is dominated by
the mass of the protons. The condition of hydrostatic equi-
librium coupled to the Poisson equation reads

�P = − � � �, �� = 4
G� , �1�

and the equation of state of a degenerate gas of relativistic
fermions at T=0 can be written parametrically as follows
�63�:

P = A2f�x�, � = Bx3, �2�

where
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TABLE I. Summary of the different regimes of the GSP system in d�2 with references to the physical literature ��P�: present paper; �N�:
not done�. The case of negative indices is considered in �52�. The links to the mathematical literature are indicated in the main text. Note:
for �n=� ,T�Tc� and for �n3�n�� ,���c� in a bounded domain, the system can either reach a metastable equilibrium state or collapse
depending on a notion of basin of attraction �see �11� for more details�.

Index Temperature Bounded domain Unbounded domain

n=� T�Tc Metastable equilibrium state
�local minimum of free energy�:

box-confined isothermal sphere �11,12,35�

Evaporation �16�:
asymptotically free normal

diffusion �gravity negligible�
T�Tc Self-similar collapse with 
=2 �11,12,35�

followed by a self-similar post-collapse leading
to the formation of a Dirac peak of mass M �13�

Collapse:
precollapse and postcollapse as
in a bounded domain �11,12,35�

0�n�n3 ���c Equilibrium state:
box-confined �incomplete� polytrope �51�

Equilibrium state:
complete polytrope

�compact support� �51����c Equilibrium state:
complete polytrope �compact support� �51�

n3�n�� ���c Metastable equilibrium state
�local minimum of free energy�:

box-confined polytropic sphere �51�

Evaporation �P�:
asymptotically free anomalous
diffusion �gravity negligible�

���c Self-similar collapse with 
=2n / �n−1� �51�
followed by a postcollapse leading to the
formation of a Dirac peak of mass M �N�

Collapse:
precollapse and postcollapse
as in a bounded domain �51�

n=n3 ���c Equilibrium state:
box-confined �incomplete� polytrope �51�

Self-similar evaporation
modified by self-gravity �P�

���c Pseudo-self-similar collapse
leading to a Dirac peak of

mass �� /�c�d/2M +halo �P�.
This is followed by a postcollapse

leading to a Dirac peak of mass M �N�

Collapse �N�

�=�c Infinite family of steady states �P� Infinite family of steady states �P�

TABLE II. Summary of the different regimes of the GSP system in d=2. In d=1, the GSP system always relaxes towards a statistical
equilibrium state so that there is no evaporation or collapse �12,23,60�.

Index Temperature Bounded domain Unbounded domain

n=� T�Tc Equilibrium state:
analytical solution �12�

Self-similar evaporation
modified by self-gravity �16�

T�Tc Pseudo-self-similar collapse
leading to a Dirac peak of

mass �T /Tc�M +halo �12,30�.
This is followed by a postcollapse

leading to a Dirac peak of mass M �N�

Collapse �N�

T=Tc Self-similar collapse leading to
a Dirac peak of mass M with

exponential growth of ��0, t� �12,47�

Self-similar collapse leading to
a Dirac peak of mass M with

logarithmic growth of ��0, t� �16�
0�n�� T�Tc Equilibrium state:

box-confined �incomplete� polytrope �51�
Equilibrium state:

complete polytrope �compact support� �51�
T�Tc Equilibrium state:

complete polytrope �compact support� �51�
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A2 =

m4c5

3h3 , B =
8
m3c3�H

3h3 , �3�

f�x� = x�2x2 − 3��1 + x2�1/2 + 3 sinh−1 x , �4�

where m is the mass of the electrons, H is the mass of the
protons, and � is the molecular weight. The function f�x� has
the asymptotic behaviors f�x���8 /5�x5 for x�1 and f�x�
�2x4 for x�1. The classical limit corresponds to x�1 and
the ultrarelativistic limit to x�1. In these limits, the white
dwarf star is equivalent to a polytropic gas sphere with an
equation of state P=K�	. The index n of the polytrope is
defined by 	=1+1 /n. In d=3 dimensions, polytropes are
self-confined for n�5 and they are stable �with respect to
the Euler-Poisson system� for n�3 �for n=3 they are mar-
ginally stable�. The mass-radius relation is given by �19�

M�n−1�/nR�3−n�/n =
K�1 + n�
G�4
�1/n�n

�n−1�/n, �5�

where �n is a constant �depending only on the index n of the
polytrope� that can be expressed in terms of the solution of
the Lane-Emden equation �18�.

In the classical case x�1, the equation of state takes the
form

P = K1�5/3, �6�

with

K1 =
1

5
� 3

8

�2/3 h2

m��H�5/3 . �7�

Therefore a classical white dwarf star is equivalent to a poly-
trope of index n=3 /2. The mass-radius relation is given by

M1/3R =
1

2
� 3

32
2�2/3 h2

mG��H�5/3�3/2
1/3, �8�

with �3/2=132.3843. . . . It exhibits the familiar MR3�1
scaling.

In the ultrarelativistic limit x�1, the equation of state
takes the form

P = K2�4/3, �9�

with

K2 =
1

4
� 3

8

�1/3 hc

��H�4/3 . �10�

Therefore, an ultrarelativistic white dwarf star is equivalent
to a polytrope of index n=3. For this index, the relation �5�
leads to a unique value of the mass

Mc = � 3

32
2�1/2
�3�hc

G
�3/2 1

��H�2 , �11�

with �3=2.01824. . . . This is the Chandrasekhar mass

Mc = 0.196701 . . . �hc

G
�3/2 1

��H�2 � 5.76M�/�2. �12�

Considering the general mass-radius relation of partially
relativistic white dwarf stars �see Fig. 1�, we note that, for
this limiting value, the radius R of the configuration tends to
zero. This leads to a Dirac peak with mass Mc. Thus, the
Chandrasekhar mass represents the maximum mass of white
dwarf stars �see Fig. 2�. There is no hydrostatic equilibrium
configuration for M �Mc.

If we extend Chandrasekhar’s theory to a d-dimensional
universe �61�, we find that white dwarf stars become unstable
in a universe with d�4 dimensions �in d=4, classical white
dwarf stars exist for a unique value of the mass M =Mc
=0.014 395 8. . .h4 / �m2G2�3H3� and they are marginally
stable�. Therefore, the dimension d=3 of our universe is very
special regarding the laws of gravity. This is the largest di-
mension of space at which all the series of equilibria of white
dwarf stars �from classical to ultrarelativistic� are stable. This
may have implications regarding the anthropic principle.

III. SELF-GRAVITATING LANGEVIN PARTICLES

A. The generalized Smoluchowski-Poisson system

In this paper, we shall study a dynamical model of self-
gravitating systems whose steady states reproduce the condi-
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(C) D=3

FIG. 1. Mass-radius relation for relativistic white dwarf stars at
T=0 �58�. The radius vanishes for a limiting mass MChandra corre-
sponding to the ultrarelativistic limit �R�. The dashed line corre-
sponds to the classical limit �C�.
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FIG. 2. Mass versus central density for relativistic white dwarf
stars at T=0. Equilibrium states only exist for M �MChandra. For
M =MChandra, the density profile is a Dirac peak. For M
�MChandra, the system is expected to collapse and form a neutron
star or a black hole. The corresponding density profiles are repre-
sented in Fig. 4 of �63�.
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tion of hydrostatic equilibrium, Eq. �1�. Specifically, we con-
sider the generalized Smoluchowski-Poisson system �48�

��

�t
= � · 	1

�
��P + � � ��
 , �13�

�� = SdG� , �14�

where P��� is a barotropic equation of state, i.e., the pressure
P�r , t� depends only on the density of particles ��r , t�. This
model describes a dissipative gas of self-gravitating Lange-
vin particles in an overdamped limit �→ +� �where inertial
effects are neglected� and in the thermodynamic limit
N→ +� �where the mean field approximation becomes ex-
act� �17,64�. The GSP system is a particular example of gen-
eralized mean field Fokker-Planck equation �50�. It is asso-
ciated to a stochastic process of the form

dr

dt
= −

1

�
� � +�2P���

��
R�t� , �15�

where R�t� is a white noise with �R�t�
=0 and �Ri�t�Rj�t��

=�ij��t− t��. This stochastic process describes the evolution
of each of the N Langevin particles interacting through the
mean field potential ��r , t�. For the sake of generality, we
have allowed the strength of the noise term in Eq. �15� to
depend on the local distribution of particles. This gives rise
to anomalous diffusion and generalized pressure laws as dis-
cussed in �49,50�.

The Lyapunov functional �or generalized free energy� as-
sociated with the GSP system is

F =� ��� P����
��2 d��dr +

1

2
� ��dr . �16�

Easy calculations lead to

Ḟ = −� �

�
��P + � � ��2dr � 0. �17�

The GSP system has the following properties: �i� the total

mass is conserved. �ii� Ḟ�0. �iii� Ḟ=0⇔�P+���=0 �hy-
drostatic equilibrium� ⇔�t�=0. �iv� �eq�r� is a steady state
of the GSP system iff it is a critical point of F��� at fixed
mass. �v� A steady state of the GSP system is linearly dy-
namically stable iff it is a �local� minimum of F��� at fixed
mass �65�. By Lyapunov’s direct method �49�, we know that
if F��� is bounded from below, the GSP system will relax
towards a �local� minimum of F��� at fixed mass for
t→ +�. If F��� has several minima, the choice of the se-
lected minimum will depend on a notion of basin of attrac-
tion: if the initial condition is sufficiently “close” to the mini-
mum �eq�r�, the distribution ��r , t� will converge towards
�eq�r� for t→ +�. Finally, if F��� has no global minimum �as
can be the case for self-gravitating systems�, the system can
either tend to a local minimum �metastable� if it exists, or
undergo collapse or evaporation.

We are not claiming that this simple model accurately
describes the dynamics of white dwarf stars or other astro-
physical systems. However, we have undertaken a systematic
study of the GSP system for different equations of state that

have been considered in astrophysics. The main interest of
this model is its simplicity �while being still very rich� which
enables an accurate numerical and analytical treatment. This
can be viewed as a first step before considering other, more
realistic, dynamical models of self-gravitating systems. On
the other hand, in a completely different context, this model
is isomorphic to the standard Keller-Segel model describing
the chemotaxis of bacterial populations �see Sec. VII�. This
is a further motivation to study this type of equations at a
general level �67�.

B. Isothermal spheres

For an isothermal equation of state P=�kBT /m, we re-
cover the standard Smoluchowski-Poisson system �11�,

��

�t
= � · 	1

�
� kBT

m
� � + � � ��
 , �18�

�� = SdG� . �19�

Equation �18� is an ordinary mean field Fokker-Planck equa-
tion associated with a Langevin dynamics of the form

dr

dt
= −

1

�
� � +�2kBT

�m
R�t� , �20�

where the strength of the noise is constant. The Lyapunov
functional of the SP system can be written

F = kBT� �

m
ln

�

m
dr +

1

2
� ��dr . �21�

This is the Boltzmann free energy FB=E−TSB, where E
= �1 /2����dr is the energy and SB=−kB��� /m�ln�� /m�dr is
the Boltzmann entropy. The stationary solutions of the SP
system are given by the Boltzmann distribution

� = Ae−�m�, �22�

where A is a constant determined by the mass M. These
steady states can also be obtained by extremizing F at fixed
mass, writing �F−
�M =0, where 
 is a Lagrange multi-
plier. The equilibrium distribution is obtained by substituting
Eq. �22� into Eq. �19� leading to the Boltzmann-Poisson
equation. Specializing on spherically symmetric distributions
and defining

� = �0e−����, � = r/r0 = �Sd�Gm�0�1/2r , �23�

where �0 is the central density, we find after simple algebra
that � is solution of the Emden equation

1

�d−1

d

d�
��d−1d�

d�
� = e−�, �24�

with �=0 and ��=0 at �=0. The Emden equation can also
be obtained from the fundamental equation of hydrostatic
equilibrium for an isothermal equation of state �12,18,19�.
Note that the isothermal spheres have a self-similar structure
��r� /�0=e−��r/r0�: if we rescale the central density and the
radius appropriately, they have the same profile e−����. This
property is called homology �19�.
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For d=1, the SP system is equivalent to the Burgers equa-
tion �23,60� and it relaxes towards the Camm distribution
�68� which is a global minimum of free energy for any tem-
perature. For d�2, there is no steady state with finite mass
in an unbounded domain because the density of an isother-
mal self-gravitating system decreases as ��r−2 for r→ +�
�19�. We shall thus enclose the system within a box of radius
R �69�. For box-confined systems, we must integrate the Em-
den equation �24� until the normalized box radius �=
 with


 = �Sd�Gm�0�1/2R . �25�

It is useful to define a dimensionless control parameter

� =
�GMm

Rd−2 . �26�

Using the conservation of mass or the Gauss theorem, we
obtain �12�

� = 
���
� . �27�

This equation relates the central density to the mass and the
temperature. More precisely, the relation ��
� gives the mass
M as a function of the central density �for a fixed tempera-
ture T� or the temperature T as a function of the density
contrast R���0� /��R�=e��
� �for a fixed mass M�. The
curve ��
� is plotted in Fig. 3 of �12�. For 2�d�10, the
series of equilibria ��
� oscillates and presents a first turning
point at �c=��
1� �for d�10, the series of equilibria does
not display any oscillation�. According to Poincaré’s turning
point argument �5,70�, configurations with 
�
1 are un-
stable �saddle points of free energy at fixed mass�. This con-
cerns in particular the singular isothermal sphere correspond-
ing to 
→ +�. Configurations with 
�
1 are metastable
�local minima of free energy at fixed mass� and they exist
only for ���c. There is no global minimum of free energy
for self-gravitating isothermal spheres. For ���c, depend-
ing on the form of the initial density profile, the SP system
can either relax towards a box-confined isothermal sphere
�metastable� or collapse. This behavior has been illustrated
numerically in Fig. 16 of �11�. For ���c the SP system
undergoes gravitational collapse. This self-similar collapse,
followed by the formation of a Dirac peak, has been studied
in detail in �12,13�. If we remove the box, the SP system can
either collapse or evaporate depending on the initial condi-
tion �this behavior will be illustrated numerically in Sec.
VI A�.

The dimension d=2 is critical and has been studied in
detail in �12,16�. The solution of the Emden equation is
known analytically �71�,

e−� =
1

�1 +
1

8
�2�2 . �28�

In an unbounded domain, the density profile extends to in-
finity but the total mass is finite because the density de-
creases as r−4 for r→ +�. The total mass M =�0

+��2
rdr is
given by

M =
1

�Gm
�

0

+�

e−��d� =
1

�Gm
lim

�→+�
������ , �29�

where we have used the Emden equation �24� to obtain the
last equality. Using Eq. �28�, we find that ���→4 for
�→ +�. This yields a unique value of the mass �for a fixed
temperature�, or equivalently a unique value of the tempera-
ture �for a fixed mass� given by

Mc =
4kBT

Gm
, kBTc =

GMm

4
. �30�

For T=Tc or M =Mc, we have an infinite family of steady
states

��r� =
�0

�1 +
1

8
�r/r0�2�2 , �0r0

2 =
kBT

2
Gm
, �31�

parametrized by the central density �0. For �0→ +�, we ob-
tain a Dirac peak with mass Mc. The steady states �31� have
the same value of the free energy, independently on the cen-
tral density �0 �see Appendix A� and they are marginally
stable ��2F=0�. For T�Tc or M �Mc, there is no steady
state in an infinite domain. For T�Tc or M �Mc, the solu-
tion of the SP system evaporates and for T�Tc or M �Mc,
the solution of the SP system collapses. These different re-
gimes have been discussed in detail in �12,16�.

If we consider box confined configurations in d=2, we
observe that the control parameter �26� is independent on the
box radius and can be written

� = �GMm = 4
M

Mc
= 4

Tc

T
. �32�

Using Eqs. �27� and �28�, we obtain the relation ��
�
= �
2 /2� / �1+
2 /8� between the central density, the mass,
and the temperature. The density profiles are given by Eq.
�31� with 8�r0 /R�2= �T /Tc−1�= �Mc /M −1� so the central
density is now determined by the mass M or the temperature
T. Equilibrium states exist only for ���c=4, i.e., M �Mc or
T�Tc and, since the series of equilibria is monotonic, they
are fully stable �global minima of free energy at fixed mass�.
In that case, the SP system tends to a box-confined isother-
mal sphere. For �=�c=4, i.e., M =Mc or T=Tc, the steady
state is a Dirac peak containing all the mass. For ���c=4
the SP system undergoes gravitational collapse �see Sec. V�.

The mass-central density �for a fixed temperature� of two-
dimensional isothermal spheres is plotted in Fig. 3. We note
the striking analogy with the mass-central density of white
dwarf stars in Fig. 2. Therefore, the critical mass �30� of
isothermal spheres in two dimensions shares some resem-
blance with the Chandrasekhar mass. We shall show in the
next section that this analogy �which is not obvious a priori�
bears more significance than is apparent at first sight.

C. Complete polytropes

If we consider a polytropic equation of state P=K�	 with
	=1+1 /n, we obtain the polytropic Smoluchowski-Poisson
system �51�
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��

�t
= � · 	1

�
�K � �	 + � � ��
 , �33�

�� = SdG� . �34�

Equation �33� is a generalized mean field Fokker-Planck
equation associated with the stochastic process

dr

dt
= −

1

�
� � +�2K

�
��	−1�/2R�t� , �35�

where the strength of the noise depends on the local density
as a power law �72�. The Lyapunov functional of the poly-
tropic SP system can be written

F =
K

	 − 1
� ��	 − ��dr +

1

2
� ��dr . �36�

It can be interpreted as a generalized free energy of the form
F=E−Tef fS where E= �1 /2����dr is the energy, Tef f =K
is an effective temperature �polytropic temperature�, and
S=−1 / �	−1����	−��dr is the Tsallis entropy �the polytropic
index 	 plays the role of the Tsallis q parameter�. For 	=1,
i.e., n→ +�, the polytropic equation of state P=K�	 reduces
to P=K�. It coincides with an isothermal equation of state
P=�kBT /m with temperature K=kBT /m leading to the stan-
dard Smoluchowski-Poisson system, Eqs. �18� and �19�.

The stationary solutions of the GSP system �33� are given
by the Tsallis distributions

� = 	� −
	 − 1

K	
�


+

1/�	−1�

, �37�

where � is a constant determined by the mass M �by defini-
tion �x�+=x if x�0 and �x�+=0 if x�0�. These steady states
can also be obtained by extremizing F at fixed mass, writing
�F−
�M =0, where 
 is a Lagrange multiplier. The equilib-

rium distribution is obtained by substituting Eq. �37� into Eq.
�34� leading to the Tsallis-Poisson equation. Specializing on
spherically symmetric solutions and defining

� = �0�n���, � = r/r0, r0 = 	 K�1 + n�
SdG�0

1−1/n
1/2

, �38�

where �0 is the central density, we find after simple algebra
that � is solution of the Lane-Emden equation

1

�d−1

d

d�
��d−1d�

d�
� = − �n, �39�

with �=1 and ��=0 at �=0. The Lane-Emden equation can
equivalently be derived from the fundamental equation of
hydrostatic equilibrium with a polytropic equation of state
�18,19,51�. Note that the polytropic spheres have a self-
similar structure ��r� /�0=�n�r /r0�: if we rescale the central
density and the radius appropriately, they have the same pro-
file �n���. This property is called homology �19�.

In this paper, we restrict ourselves to n�0. Let us first
discuss the case d�2. For n�n5= �d+2� / �d−2�, unbounded
self-gravitating polytropes have infinite mass because their
density profile decreases like r−
 for r→ +�, with 

=2n / �n−1�. For n�n5= �d+2� / �d−2�, they are self-
confined. In that case, the function � vanishes at �=�1 and
the density vanishes at R*=r0�1 which defines the radius of
the polytrope. The relation between the radius and the central
density is

R* = 	 K�1 + n�
SdG�0

1−1/n
1/2

�1. �40�

The total mass M =�
0
R

*�Sdrd−1dr can be written as

M = Sd�0r0
d�

0

�1

�n�d−1d� = − Sd�0r0
d�1

d−1�1�, �41�

where we have used the Lane-Emden equation �39� to obtain
the last equality. Therefore, the relation between the mass
and the central density is

M = − Sd�0	 K�1 + n�
SdG�0

1−1/n
d/2

�1
d−1�1�. �42�

Eliminating the central density between Eqs. �40� and �42�
and introducing the index

n3 =
d

d − 2
, �43�

we obtain the mass-radius relation

M�n−1�/nR*
��d−2��n3−n��/n =

K�1 + n�
GSd

1/n �n
�n−1�/n, �44�

where

�n = − �1
�n+1�/�n−1��1�. �45�

Let us introduce the polytropic temperature

-5 0 5 10 15 20

ln(ρ0πR
2
/Mc)

0

0.2

0.4

0.6

0.8

1
M

/M
c

D=2

FIG. 3. Mass as a function of the central density for two-
dimensional box-confined self-gravitating isothermal spheres with
fixed temperature. Equilibrium states exist only for M �Mc. For
M =Mc, the density profile is a Dirac peak and for M �Mc the
system undergoes gravitational collapse. More precisely, this curve
represents ��
� /4 so it also gives the inverse temperature Tc /T as a
function of the density contrast R=�0 /��R�=R�
� for a fixed
mass. The corresponding density profiles are represented in Fig. 1
of �60�.
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� =
K�1 + n�

nSd
1/n . �46�

For 0�n�n3 there is one, and only one, steady state for
each mass M and temperature � and it is fully stable �global
minimum of F at fixed mass�. The GSP system will relax
towards this complete polytrope �note that for n=1 the radius
R* of the polytrope is independent on the mass�. For n3�n
�n5 there is one, and only one, steady state for each mass M
and temperature � but it is unstable �saddle point of F at
fixed mass�. In that case, the system will either collapse or
evaporate. The index n3 is critical. For n=n3, there exists
steady solutions for a unique value of the mass �at fixed
temperature ��,

Mc = �n3�

G
�n3/�n3−1�

�n3
, �47�

or for a unique temperature �at fixed mass M�,

�c =
G

n3
� M

�n3

��n3−1�/n3

. �48�

For d=3, we have Mc= �3� /G�3/2�3=10.487. . . �� /G�3/2

and �c= �G /3��M /�3�2/3=0.208 72. . . �G /M�2/3. As we have
seen in Sec. II, the Chandrasekhar limiting mass of relativ-
istic white dwarf stars is connected to the limiting mass �47�
of critical polytropes. For a polytropic equation of state with
critical index n=n3, and for M =Mc, we obtain an infinite
family of steady solutions

��r� = �0�n3�r/r0�, �0r0
d =

1

Sd
��n3

G
�d/2

, �49�

parametrized by the central density �0. For �0→ +�, the
density profile tends to a Dirac peak with mass Mc. These
solutions have the same equilibrium free energy F��eq�
=−dKM / �d−2� independently on the central density �0 �see
Appendix A� and they are marginally stable ��2F=0�. For
M �Mc �at fixed temperature� or ���c �at fixed mass�, the
solutions of the GSP system evaporate and for M �Mc �at
fixed temperature� or ���c �at fixed mass�, they collapse.
These different regimes will be studied in detail in Secs. V
and VI.

For d=2, we find that n3→ +�, so we realize that isother-
mal systems �n= +�� in two dimensions are similar to criti-
cal polytropes �n=n3� in higher dimensions d�2. This is
why the critical mass of isothermal spheres in d=2 shares
some analogies with the Chandrasekhar mass in d=3 since
they both correspond to critical polytropes with index n=n3
�61�. Comparing Eq. �29� with Eq. �41� we find that for d
→2 and n=n3→ +�, we have the limit

lim
n3→+�

n3�n3
= 4. �50�

This limit can also be obtained from Eq. �79� of �51�. With
this relation, we find that the critical mass and the critical
temperature in d=2 given by Eq. �30� are particular cases of
Eqs. �47� and �48�.

Finally, for d=1 with n�0 �and for d=2 with 0�n
� +��, the GSP system always relaxes towards a complete

polytrope which is a global minimum of free energy. Thus
there is no critical dynamics for d�2 �and for d=2 with
n� +��.

D. Box confined polytropes

For systems confined within a box of radius R, we need to
integrate the Lane-Emden equation �39� until the normalized
box radius �=
 with


 = R/r0 = 	SdG�0
1−1/n

K�n + 1� 
1/2

R . �51�

It is useful to define a dimensionless control parameter �the
definition of this parameter has been slightly changed with
respect to our previous paper �51��,

� = M	 nSd
1/nG

K�1 + n�
n/�n−1� 1

R�d−2��n−n3�/�n−1� . �52�

In terms of the polytropic temperature �46�, it can be rewrit-
ten

� =
Gn/�n−1�M

�n/�n−1�R�d−2��n−n3�/�n−1� . �53�

Note that for n→ +�, we have �=K=kBT /m and the defi-
nitions �26� and �53� coincide. Using the conservation of
mass or the Gauss theorem, we obtain �51�

� = − nn/�n−1�
�n+1�/�n−1����
�, 
 � �1. �54�

This equation relates the central density to the mass �at fixed
temperature and box radius�. In fact, this relation is valid
only for incomplete polytropes whose density profile is ar-
rested by the box �i.e., ��R��0�. For n�n5, this is always
the case. For 0�n�n5, using the identity




�1
=

R

R*
, �55�

the polytrope is confined by the box if R*�R, i.e., 
��1.
For R*�R, i.e., 
��1, we have complete polytropes whose
density profile vanishes before the wall. In that case, we need
to integrate the Lane-Emden equation until the natural poly-
tropic radius �=�1. For 
��1, the relation �54� is replaced
by

� = nn/�n−1��n�R*

R
��d−2��n−n3�/�n−1�

�
 � �1� , �56�

which is equivalent to the mass-radius relation �44�. Using
Eq. �55�, it can be expressed in terms of 
, giving the rela-
tion between the mass and the central density �at fixed tem-
perature� for complete polytropes. Finally, the intermediate
case is R*=R, i.e., 
=�1, at which the density profile van-
ishes precisely at the box radius. In that case, we have

� = nn/�n−1��n �
 = �1� . �57�

The relation ��
� defines the series of equilibria con-
taining incomplete �for 
��1� and complete �for 
��1�
polytropes. It gives the mass M as a function of the central
density �for a fixed temperature � and box radius R� or
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the temperature � as a function of the density contrast
R��0 /��R�=�−n�
� �for a fixed mass M and radius R�. Dif-
ferent examples of curves ��
� are represented in Fig. 4 for
various indices in d=3.

�i� For n�n3, the series of equilibria ��
� is monotonic.
Since polytropic spheres are stable in absence of gravity
�corresponding to 
→0� and since there is no turning point,
the Poincaré argument implies that all the polytropes are
stable. It can be shown furthermore that they are fully stable
�global minima of free energy at fixed mass� so that the GSP
system will tend to a steady state for t→ +�. For ���1
=���1�=nn/�n−1��n, the GSP system tends to an incomplete
polytrope confined by the box. For ���1, the GSP tends to
a complete polytrope with radius R*�R. This has been il-
lustrated numerically in Fig. 21 of �51� for n=3 /2 in d=3.
This index corresponds to a classical white dwarf star in
astrophysics. If we remove the box, the GSP system always
tends to the complete polytrope.

�ii� For n�n3, the series of equilibria ��
� presents a
turning point at �c=��
1�. According to the Poincaré turning
point argument, configurations with 
�
1 are unstable
�saddle points of free energy at fixed mass�. This concerns in
particular the case of complete polytropes for n3�n�n5
�corresponding to 
=�1�, the Schuster polytrope n=n5 and
the singular polytropic spheres for n�n5 �corresponding to

= +��. Configurations with 
�
1 are metastable �local
minima of free energy at fixed mass� and they exist only for
���c. There is no global minimum of free energy for n
�n3. For ���c, depending on the form of the initial density
profile, the GSP system can either relax towards an incom-
plete polytrope confined by the box �metastable� or collapse.
For ���c, the GSP system undergoes gravitational collapse.
This self-similar collapse has been studied in detail in �51�. It
is very similar to the self-similar collapse of isothermal sys-
tems in d�2 corresponding to n→ +�. If we remove the
box, the GSP system can either collapse or evaporate de-
pending on the initial condition �this will be illustrated nu-
merically in Sec. VI�.

�iii� The case n=n3 is critical and will be studied in detail
in this paper. For the critical index n=n3, the control param-
eter is independent on the box radius and can be written

� = M�G

�
�n3/�n3−1�

. �58�

In terms of the critical mass �47� or critical temperature �48�,
we have

� = n3
n3/�n3−1��n3

M

Mc
= n3

n3/�n3−1��n3
��c

�
�n3/�n3−1�

. �59�

For incomplete polytropes with 
��1, the relation ��
�
between the central density, the mass, and the temperature
is given by Eq. �54�. Their density profile is given by
Eq. �49� where r0 is determined by ��c /��d/2=M /Mc
=−�1 /�n3

��R /r0�d−1���R /r0�, equivalent to relation �54�, so
the central density is now determined by the mass M or the
temperature �. Complete polytropes with 
��1 exist for a
unique value of the control parameter

�c = n3
n3/�n3−1��n3

. �60�

This corresponds to the critical mass M =Mc or critical tem-
perature �=�c. Equilibrium states exist only for ���c, i.e.,
M �Mc or ���c. For ���c, they are fully stable �global
minima of free energy at fixed mass�. In that case, the GSP
system relaxes towards an incomplete polytrope confined by
the box. For �=�c, i.e., M =Mc or �=�c, we have an infi-
nite family of steady states parametrized by their central den-
sity 
��1 or equivalently by their radius R*�R. They are
marginally stable ��2F=0�. For ���c, i.e., M �Mc or �
��c, the GSP system undergoes gravitational collapse. The
collapse dynamics is expected to be similar to the critical
collapse of isothermal systems with n→ +� in d=2 �see
below�. If we remove the box, the solution of the GSP sys-
tem evaporates for ���c, i.e., M �Mc or ���c and col-
lapses for ���c, i.e., for M �Mc or ���c. These different
regimes will be studied in detail in Secs. V and VI.
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FIG. 4. Series of equilibria for box-confined polytropes with
different index �the figure is done for d=3�. The full lines �

��1� correspond to incomplete polytropes whose profile is arrested
by the box and the dashed lines �
��1� correspond to complete
polytropes that are self-confined.
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FIG. 5. Mass as a function of the central density for box-
confined self-gravitating polytropic spheres with critical index n
=n3=3 in d=3. Incomplete polytropes with ��R��0 are repre-
sented by a solid line and complete polytropes with R*�R are
represented by a dashed line. For �0→ +�, the density profile tends
to a Dirac peak. Equilibrium states exist only for M �Mc. For M
�Mc the system undergoes gravitational collapse. The curve repre-
sents ��
� / �n3
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� so it also gives the inverse temperature

��c /��n3/�n3−1� as a function of the density contrast R�
� for a fixed
mass.
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The mass-central density relation �for a fixed temperature�
of box-confined self-gravitating polytropic spheres with criti-
cal index n=n3 is plotted in Fig. 5 and the corresponding
density profiles �illustrating the notion of complete and in-
complete polytropes� are plotted in Fig. 6. We note the strik-
ing analogy with the mass-central density relation of white
dwarf stars in Fig. 2. Indeed, ultrarelativistic white dwarf
stars are equivalent to polytropes with critical index n=n3
=3 in d=3. In this context, the critical mass Mc corresponds
to the Chandrasekhar limit. We emphasize, however, that we
are considering here pure critical polytropes enclosed within
a box while in Sec. II we considered self-confined partially
relativistic white dwarf stars for which a box is not needed. It
is only when M→MChandra �ultrarelativistic limit� that they
become equivalent to pure polytropes. Furthermore, at M
=MChandra for white dwarf stars, the only steady state is a
Dirac peak while at M =Mc for pure critical polytropes, we
have an infinite family of steady states with different central
densities �the same difference holds between critical poly-
tropes n=n3 in d�2 and isothermal spheres n=n3= +� in
d=2; compare Figs. 5 and 3�. Finally, in Fig. 7, we plot the
mass as a function of the central density for different dimen-

sions of space d. This figure illustrates in particular the con-
nection between the critical mass in d=3 reached for a finite
value of the central density and the critical mass in d=2
reached for an infinite value of the central density.

IV. THE CRITICAL INDEX FROM
DIMENSIONAL ANALYSIS

It is instructive to understand the origin of the critical
index 	4/3=2�d−1� /2 or n3=d / �d−2� from simple dimen-
sional analysis. Here we consider unconfined systems in d
dimensions with arbitrary value of 	. The polytropic
Smoluchowski-Poisson system can be written

��

�t
= � · 	1

�
�K	�	−1 � � + � � ��
 � − � · J , �61�

�� = SdG� . �62�

The current J=Jd+Jg appearing in the Smoluchowski equa-
tion is the sum of two terms: a diffusion current Jd
=−K	�	−1�� and a gravitational drift Jg=−���. Based on
dimensional analysis, the diffusion current can be estimated
by

Jd � + K	�M/Ld�	−1��/L� � + �1/L�d�	−1�+1, �63�

and the drift term by

Jg = − �GM/Ld−1 � − �1/L�d−1, �64�

where M is the mass �constant� of the system and L is the
characteristic size of the system.

The system will collapse to a point if gravity overcomes
�anomalous� diffusion, i.e., �Jg�� �Jd�, when L→0. This will
be the case if d−1�d�	−1�+1, i.e., 	�	4/3. Conversely, if
	�	4/3, the diffusion term can stabilize the system against
gravitational collapse so that the system can be in stable
equilibrium. The system will evaporate to infinity if �anoma-
lous� diffusion overcomes gravity, i.e., �Jd�� �Jg�, when L
→ +�. This will be the case if d�	−1�+1�d−1, i.e., if 	
�	4/3. Conversely, if 	�	4/3, the gravitational attraction
can prevent evaporation so that the system can be in stable
equilibrium. In conclusion, we find that the system can be in
a stable equilibrium state iff 	�	4/3, i.e., 1 /n�1 /n3. In the
opposite case, the system can either collapse to a point or
evaporate to infinity. By this very simple argument, we re-
cover the stability criterion of self-gravitating polytropic
spheres obtained by other methods �see Appendix B of �61��.

The critical case is obtained when Jd�Jg, implying d�	
−1�+1=d−1, i.e., 	=	4/3 or, equivalently, n=n3. In that
case, the stability of the system will depend on its mass. The
system will collapse to a point if gravity overcomes diffu-
sion, i.e., �Jg�� �Jd�, when L→0. This will be the case if M
�Mc, where Mc��K /G�d/2 is a critical mass. The system
will evaporate to infinity �in an unbounded domain� if
�anomalous� diffusion overcomes gravity, i.e., �Jd�� �Jg�,
when L→ +�. This will be the case if M �Mc. Therefore, at
the critical index 	=	4/3, i.e., n=n3, the system collapses if
M �Mc and evaporates if M �Mc. Again, this is fully con-
sistent with the results obtained in Appendix B of �61�.
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V. COLLAPSE DYNAMICS

For 0�n�n3 in a space with d�2 dimensions, the GSP
system tends to an equilibrium state. For n�n3, it can un-
dergo gravitational collapse. For n�n3 with d�2, the col-
lapse is self-similar as studied in �51� �the case of negative
indices n�0 is studied in �52��. In the present section, we
consider the collapse dynamics of self-gravitating Langevin
particles associated with the critical index n3=d / �d−2� in
d�2 dimensions which presents nontrivial features.

A. Generalities: Self-similar analysis

From now on, we adopt normalized variables such that
G=M =R=�=1. The unique control parameter is the tem-
perature �. For spherically symmetric solutions, using the
Gauss theorem, the GSP system can be written in the form of
an integrodifferential equation

��

�t
=

1

rd−1

�

�r�rd−1	�Sd��1/n�
��

�r

+
�

rd−1�
0

r

��r��Sdr�d−1dr�
� . �65�

Introducing the mass within a sphere of radius r,

M�r,t� = �
0

r

��r��Sdr�d−1dr�, �66�

the GSP system can be formulated through a unique nonlin-
ear dynamical equation for M�r , t�,

�M

�t
= �� 1

rd−1

�M

�r
�1/n	 �2M

�r2 −
d − 1

r

�M

�r

 +

M

rd−1

�M

�r
.

�67�

If the system of total mass M =1 is confined within a box of
radius R=1, the appropriate boundary conditions are

M�0,t� = 0, M�1,t� = 1. �68�

If the system is not confined, the second condition should be
replaced by

M��,t� = 1. �69�

It is also convenient to introduce the function s�r , t�
=M�r , t� /rd which has the same dimension as the density and
which satisfies

�s

�t
= ��r

�s

�r
+ ds�1/n� �2s

�r2 +
d + 1

r

�s

�r
� + �r

�s

�r
+ ds�s .

�70�

For n→ +�, these equations reduce to those studied in Refs.
�11,12� in the isothermal case.

When the system collapses, it is natural to look for self-
similar solutions of the form

��r,t� = �0�t�f� r

r0�t�
�, r0 = � �

�0
1−1/n�1/2

. �71�

The relation between the core radius r0 and �0 �proportional
to the central density �73�� is obtained by requiring that the

diffusive term and the drift term in Eq. �65� scale in the same
way. This relation can be rewritten �0r0


�1 with


 =
2n

n − 1
. �72�

In terms of the mass profile, we have

M�r,t� = M0�t�g� r

r0�t�
�, with M0�t� = �0r0

d, �73�

and

g�x� = �
0

x

f�x��Sdx�d−1dx�. �74�

In terms of the function s, we have

s�r,t� = �0�t�S� r

r0�t�
�, with S�x� =

g�x�
xd . �75�

Inserting the ansatz �75� in Eq. �70� and using Eq. �71�, we
obtain

1

�0
2

d�0

dt
= 
 , �76�

and


S + xS� = �xS� + dS�1/n�S� +
d + 1

x
S�� + �xS� + dS�S .

�77�

Assuming that Eq. �77� has a solution so that the self-similar
solution exists, Eq. �76� is readily integrated in

�0�t� =
1



�tcoll − t�−1, �78�

implying a finite time singularity. On the other hand, the
invariant profile has the asymptotic behavior f�x��x−
 for
x→ +�.

B. The two-dimensional isothermal case

In d=2 dimensions, the critical index is n3= +� corre-
sponding to the isothermal case studied in �12� �in that case
�=T�. Since the study of the critical dynamics is rather com-
plicated, it can be useful to summarize our results, with some
complements and amplifications, before treating the case d
�2.

In d=2, there exists a critical temperature Tc=1 /4. If the
system is enclosed within a box and T�Tc, it relaxes to an
equilibrium distribution confined by the box. If the system is
not confined and T�Tc, an evaporation process develops
which has been studied in �16�. For T=Tc, the system under-
goes gravitational collapse. The evolution is self-similar and
leads to a Dirac peak containing the whole mass M =1 for
t→ +�. In a bounded domain, the central density grows ex-
ponentially �12� rapidly with time and in an unbounded do-
main, the central density increases logarithmically �16� with
time �and a tiny fraction of mass is ejected at large distances
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to satisfy the moment of inertia constraint at T=Tc�. Note
that the Dirac peak is also the stationary solution of the SP
system at T=Tc.

For T�Tc, and irrespective of the presence of a confining
box, there is no steady state and the system collapses. Look-
ing for an exact self-similar solution of the form �71� we
obtain �0r0

2=T, 
=2=d, and a scaling equation

�S� +
3

x
S�� + �xS� + 2S��S − 1� = 0. �79�

However, this equation does not have any physical solution
for large x. In fact, this could have been anticipated from the
fact that the scaling functions s�x� and f�x� should decay as
x−2=x−d for large x. Then, the total mass in the profile is of
order �0r0

2�1/r0x−2xdx� ln�1 /r0�, which unphysically diverges
when r0 goes to zero. Said differently, the scaling profile at
t= tcoll is ��r−2 so that the mass M =���r�2
rdr diverges
logarithmically for r→0. This logarithmic divergence is
symptomatic of the formation of a Dirac peak resulting from
a pseudo-self-similar collapse. In the case d=2, this situation
can be analyzed analytically in great detail.

To that purpose, we note that the profile which cancels out
the right-hand side of the SP system is exactly given by

M1�r,t� = 4T
�r/r0�t��2

1 + �r/r0�t��2 , �80�

�1�r,t� =
4�0�t�




1

�1 + �r/r0�t��2�2 , �81�

with

�0�t�r0�t�2 = T . �82�

If we consider time independent solutions ��� /�t=0� and
impose the conservation of mass, we recover the steady so-
lutions which exist for T�Tc in a bounded domain �in that
case r0= �T /Tc−1�1/2� and only for T=Tc in an infinite do-
main �in that case we obtain a family of distributions param-
etrized by r0�. However, in the present case, we consider the
case T�Tc and seek the temporal evolution of �0�t� and
r0�t�. We argue that the solution �81� gives the leading con-
tribution of the density profile in the core. This profile con-
tains a mass T /Tc. We expect that the collapse will lead to
�0�t�→ +� and r0�t�→0 for t→ tcoll �finite time singularity�.
Then, we see that the profile �81� leads to a Dirac peak with
mass T /Tc, i.e.,

�1�r,t� →
T

Tc
��r� . �83�

The excess of mass will be contained in the profile extending
in the halo. Therefore, we look for solutions of the form

��r,t� = �1�r,t� + �2�r,t�

= �0�t�f1�r/r0�t�� + �0�t�
�t�/2f2�r/r0�t�� . �84�

The first component has a scaling behavior and dominates in
the center of the collapse region. It leads to a Dirac peak
containing a fraction Mc=T /Tc of the total mass M =1 at t
= tcoll. The second component obeys a pseudoscaling and

f2�x��x−
�t� for large x, with an effective scaling exponent

�t� which very slowly approaches the value 2 �expected
from the naive self-similar analysis� when t→ tcoll. Thus, at
t= tcoll, we obtain

��r,t� → Mc��r� + ��r,t� , �85�

where ��r� is singular at r=0 behaving roughly as r−2. In
Fig. 8, we illustrate this decomposition of the density profile
into two components. It is shown in �12� that the central
density satisfies an equation of the form

1

�0

d�0

dt
� �0


�t�/2, �86�

instead of Eq. �76�, and that the effective scaling exponent

�t� depends on the central density as

��t� � 1 −

�t�

2
�� ln ln �0�t�

2 ln �0�t�
. �87�

This yields �0��tcoll− t�−1+��t� or equivalently

ln��0�� � − 2 ln�r0/��� ���ln ��ln�ln ��
2

, �88�

where we have noted �= tcoll− t.
Prior to our work �12�, and unknown to us at that time,

Herrero and Velazquez �30� had investigated the same prob-
lem in the context of chemotaxis using a different method
based on match asymptotics. For T�Tc �as far as we know,
they did not consider the case T=Tc treated in �12��, they
showed that the system forms a Dirac peak of mass Mc
=T /Tc �within our notations� surrounded by a halo contain-
ing the excess of mass. On a qualitative point of view, the
two scenarios are consistent. On a quantitative point of view,
however, the scaling laws
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FIG. 8. For d=2, n=n3= +�, and deep into the collapse regime
for T=Tc /2=1 /8, we plot the density profile �full line�, emphasiz-
ing its two components: the core is dominated by the invariant
scaling profile �dotted line� given analytically by Eq. �81� contain-
ing a mass Mc=T /Tc, and the halo obeys pseudoscaling �dashed
line� with an exponent 
�t� tending slowly to d=2 as �0→ +�.
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ln��0�� � − 2 ln�r0/��� � �2�ln �� +
1

2�1 −
1

��ln ��
�ln�ln ��

�89�

obtained by Herrero and Velazquez �HV� are slightly differ-
ent from ours �SC�. They lead to an effective exponent given
by

1 −

�t�

2
�� 2

ln �0
+

1

2�1 −
1

�ln �0
� ln ln �0

ln �0
, �90�

instead of Eq. �87�. For the densities accessible numerically,
one obtains 
SC��0=103�=1.252. . ., while 
HV��0=103�
=0.751. . . and 
SC��0=105�=1.348. . ., while 
HV��0=105�
=1.017. . . . Numerical simulations performed in �12� show a
good agreement with the predicted values of 
SC for the
accessible densities. However, in view of the complexity of
the problem, and of the logarithmic �and sublogarithmic�
corrections, it is difficult to understand the origin of the
�slight� discrepancy between the two approaches. In any
case, they both show that the collapse is not exactly self-
similar but that the apparent scaling exponent 
�t� is a very
slowly varying function of the central density.

C. The critical polytropic case with d�2

We now consider the critical index n=n3=d / �d−2�
with d�2. There exists a critical temperature �c

=1 / �n3�n3

�n3−1�/n3� �in d=3, we have �c=0.208 72. . .�. If the
system is confined within a box and ���c, it relaxes to an
incomplete polytrope. This is illustrated in Fig. 9. If the sys-
tem is not confined and ���c, an evaporation process de-
velops which will be studied in the next section. In the con-
fined case, when the generalized temperature � reaches the
value �c, the equilibrium density profile vanishes exactly at
R=1. For ���c, and irrespective of the presence of a con-
fining box, the system collapses.

We can naively look for self-similar solutions of the form
described in Sec. V A. For n=n3, we find 
=d, �0r0

d=�d/2,
and the scaling equation

S� +
d + 1

x
S� + �xS� + dS�2/d�S − 1� = 0. �91�

It happens that as in the case �d=2, n3=��, this equation
does not have any physical solution for large x. Again, this
could have been anticipated from the fact that the scaling
functions s�x� and f�x� should decay as x−2n3/�n3−1�=x−d, for
large x. Then, the total mass in the profile is of order

�0r0
d�1/r0

x−dxd−1dx � ln�1/r0� , �92�

which unphysically diverges when r0 goes to zero. Said dif-
ferently, the scaling profile at t= tcoll is ��r−d so that the
mass M =���r�Sdrd−1dr diverges logarithmically for r→0
�74�.

Hence, for n=n3 in d�2, we expect a situation similar to
what was obtained for �d=2, n3=��. However, the situation
is more difficult to analyze because the stationary profile is
not known analytically in the present case �this analytical
profile was at the basis of our analysis in �12��. Using the
results of Sec. III C, the profile which cancels out the right-
hand side of the GSP system is given by

�1�r,t� =
n3

d/2

Sd
�0�t��3

n3�r/r0�t�� , �93�

with

�0�t�r0�t�d = �d/2. �94�

If we consider time independent solutions ��� /�t=0� and
impose the conservation of mass, we recover the steady so-
lutions that exist for ���c in a bounded domain �in that
case, we have ��c /��d/2=−�1 /�n3

��R /r0�d−1���R /r0�� and
only for �=�c in an infinite domain �in that case we obtain
a family of distributions parametrized by r0�. However, in the
present case, we consider the case ���c and seek the tem-
poral evolution of �0�t� and r0�t�. We argue that the solution
�93� gives the leading contribution of the density profile in
the core. This profile vanishes at R*�r�=�1r0�t�, has a central
density �n3

d/2 /Sd��0�t�, and contains a mass �see Sec. III C�

Mc = � �

�c
�d/2

. �95�

We expect that the collapse will lead to �0�t�→ +� and
r0�t�→0. Then, we see that the profile �93� tends to a Dirac
peak with mass Mc, i.e.,

�1�r,t� → � �

�c
�d/2

��r� . �96�

The excess of mass will be contained in the profile extending
in the halo. Therefore, we look for solutions of the form

��r,t� = �1�r,t� + �2�r,t�

= �0�t�f1�r/r0�t�� + �0�t�
�t�/df2�r/r0�t�� . �97�

The first component �75� has a scaling behavior and domi-
nates in the center of the collapse region. It leads to a Dirac
peak containing a fraction Mc= �� /�c�d/2 of the total mass at
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FIG. 9. In d=3 and for n3=3 and �=0.25��c in a finite box
�R=1�, we show the density at successive times, illustrating the
convergence to the equilibrium density profile �dashed line�. The
inset illustrates the exponentially fast saturation of the central den-
sity for ���c, whereas a slower algebraic saturation is expected
right at �=�c.
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t= tcoll. The second component obeys a pseudoscaling and
f2�x��x−
�t� for large x, with an effective scaling exponent

�t� which very slowly approaches the value d �expected
from the naive self-similar analysis� when t→ tcoll. At t
= tcoll, the first component �1�r , t� tends to a Dirac peak at the
origin containing the mass Mc, whereas the second compo-
nent develops a singularity at r=0. Thus, we have

��r,t� → Mc��r� + ��r,t� , �98�

with ��r� behaving roughly as r−d. In Fig. 10, we illustrate
this decomposition of the density profile into two compo-
nents.

In Fig. 11, we show that perfect scaling which would
imply �0

−1�t�
d�0

dt ��0 is not obeyed. Instead, in the accessible
density range, �0

−1�t�
d�0

dt decays with an apparent power law
of �0 which increases very slowly with time, but remains less
than unity. We expect to have a relation of the form

1

�0

d�0

dt
� �0


�t�/d, �99�

which is indeed confirmed by the numerics. In Fig. 11, we
also plot the central density in the pseudoscaling component

�̂0�t� = �0

�t�/d�t� , �100�

which shows that the effective exponent 
�t� slowly con-
verges to 
=d.

Finally in Fig. 12, we display the apparent scaling behav-
ior of �2�r , t�=�0�t�
�t�/df2�r /r0�t��, associated to a value of

�2.8, fully compatible with the value obtained in Fig. 11
�in d=3�.

VI. EVAPORATION DYNAMICS IN UNBOUNDED SPACE

A. The case n�n3

When the system is not confined to a finite box, the nature
of the dynamics crucially depends on the value of the poly-
tropic index n with respect to n3. As before, we consider d
�2 and n�0. If n�n3, there exists equilibrium solutions
�fully stable complete polytropes� which are reached for any
initial density profile. If n�n3, depending on the initial den-
sity profile and on the temperature, the system can collapse
or evaporate. If R0 is the typical extension of the initial den-
sity profile containing a mass M, one can form a quantity
with the dimension of �:

�* =
GM�n−1�/n

R0
�d−2��n−n3�/n , �101�

which plays the role of an effective critical temperature. If
���*, the system should collapse as it would do if con-
fined in a box of typical radius R0 �51�. If ���*, the sys-
tem should evaporate in the absence of an actual confining
box. Hence, for a given initial profile, there exists a nonuni-
versal �* separating these two regimes. We present numeri-
cal simulations for the case n�n3. In Fig. 13, and for a
particular initial process, we illustrate the fact that depending
on the value of � with respect to a nonuniversal �*, the
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FIG. 10. For d=3, n=n3=3, and deep into the collapse regime
for �=0.75�c, we plot the density profile �full line�, emphasizing
its two components: the core is dominated by the bounded invariant
scaling profile �complete polytrope of index n3� containing a mass
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system can collapse or evaporate. In the evaporation regime
and for n�n3, a scaling analysis shows that gravity becomes
gradually irrelevant and that this process becomes exclu-
sively controlled by free �anomalous� diffusion. This fact is
illustrated in Fig. 14. Indeed, when the evaporation length
r0�t�→ +�, we see from Eq. �67� that the gravitational term
becomes negligible in front of the diffusion term,

M

rd−1

�M

�r
� �� 1

rd−1

�M

�r
�1/n�2M

�r2 , �102�

if d�d /n+2, i.e., n�n3. Therefore, for t�1, the GSP sys-
tem reduces to the pure anomalous diffusion equation

��

�t
�

K

rd−1

�

�r
�rd−1��	

�r
� , �103�

with K=Sd
	−1� /	. This equation has self-similar solutions

that were discovered by Barenblatt �76� in the context of
porous media. These solutions are closely related to the form
of generalized thermodynamics introduced by Tsallis �56�.

Using the original idea of Plastino and Plastino �77�, we
look for solution of Eq. �103� in the form of a Tsallis distri-
bution with index 	 and time-dependent coefficients

��r,t� =
1

Z
�0�t��1 − �	 − 1��r/r0�t��2�+

1/�	−1�. �104�

For 	�1, i.e., n�0, we have a profile with compact support
where the density vanishes at rmax�t�=r0�t� /�	−1. For 	
�1, i.e., n�0, the density decreases like ��r−2/�1−	� and the
total mass is finite provided that 	�	1/3��d−2� /d, i.e., n
�−d /2. Requiring that the profile �104� contains all the mass
M =1, and imposing

�0�t�r0�t�d = 1, �105�

we find the normalization factor

Z � �
0

+�

�1 − �	 − 1�x2�+
1/�	−1�Sdxd−1dx . �106�

Then, substituting the ansatz �104� with Eq. �105� in Eq.
�103�, we obtain

�̇0 = − 2dSd
	−1�Z1−	�0

	+2/d. �107�

Solving this equation with the initial condition ��r , t=0�
=��r�, we find that

�0�t� =
1

�2d�	 − 	1/3�Sd
	−1�Z1−	t�1/�	−	1/3� . �108�

This is valid for 	�	1/3, i.e., n�0 or n�−d /2. We note the
scaling laws for large times,

�0�t� � t−dn/�d+2n�, r0�t� � tn/�d+2n�. �109�

It is instructive to rederive this solution in a different
manner, without presupposing the form of the solution. We
look for general self-similar solutions of the form

��r,t� = �0�t�f�r/r0�t�� . �110�

We require that all the mass is in the profile �110� and impose
the relation �105�, implying that

�
0

+�

f�x�Sdxd−1dx = 1. �111�

Substituting the ansatz �110� with Eq. �105� in Eq. �103�, and
imposing the condition �107� where Z is for the moment an
arbitrary constant, we obtain the differential equation

1

xd−1

d

dx
�xd−1f	−1 df

dx
� = − 2Z1−	�xf� + df� . �112�

Noting the identity xd−1�xf�+df�= �xdf��, this equation can
be integrated into

f	−2 df

dx
+ 2Z1−	x = 0. �113�

This first-order differential equation can again be readily in-
tegrated. We can choose the constant of integration so as to
obtain a solution of the form
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FIG. 13. In d=3 and n=5�n3, and for a given initial density
profile �M�r�=r3 / �e−r2

+r2�3/2; thick line�, we show the collapse dy-
namics observed at �=0.15 �full lines for different times before
tcoll� and the evaporation dynamics observed at �=1 �dashed lines
for different times�. For this particular initial condition, we find
�*�0.206.
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FIG. 14. In d=3 and n=5�n3, we present the evaporation den-
sity data collapse at �=1. As time proceeds, the effect of gravity
becomes negligible, and the scaling profiles converge to the one
corresponding to free diffusive evaporation �full line�. This is the
Barenblatt solution whose invariant profile is a Tsallis distribution
of Eq. �114� with index 	.
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f�x� =
1

Z
�1 − �	 − 1�x2�+

1/�	−1�. �114�

Finally, the normalization condition �111� implies that Z is
given by Eq. �106�. It is interesting to realize that the
q-exponential function eq�x�= �1+ �q−1�x�+

1/�q−1� introduced
in the context of Tsallis generalized thermodynamics stems
from the simple differential equation �113� related to the
anomalous diffusion equation �103�. Indeed, the scaling so-
lution of this equation can be written

f�x� =
1

Z
e	�− x2� , �115�

which generalizes the Gaussian distribution obtained for the
ordinary diffusion equation recovered for 	=1. The moments
�rk
 of the distribution �110� are given by

�rk
�t� = r0�t�k�
0

+�

f�x�xk+d−1Sddx . �116�

They exist provided that k�−d for 	�1 and provided that
−d�k�2 / �1−	�−d for 	�1. They scale like �rk
�r0

k

� tnk/�d+2n�.
The Tsallis entropy is finite for 	�	3/5=d / �d+2� and it

scales like

S�t� − nM = − n�0
1/n�

0

+�

f�x�	Sdxd−1dx � t−d/�d+2n�.

�117�

On the other hand, for d�2, the potential energy W
=−1 / �2Sd������2dr scales like

W � �
0

+� 	M�r�
rd−1 
2

rd−1dr �
1

r0
d−2 � t−n�d−2�/�d+2n�.

�118�

Comparing Eqs. �117� and �118�, we see that the potential
energy is always negligible with respect to the entropy for
n�n3. Therefore, the Tsallis free energy behaves like

F�t� + nKM � t−d/�d+2n�, �119�

for t→ +�. Note that for n3�n� +�, the free energy tends
to a finite value −nKM as the system spreads to infinity.
Alternatively, for the isothermal case n= +�, the free energy
is given by Eq. �95� of �16� and it tends to −�.

We can use the identity �B4� to derive the first correction
in the evolution of the moments �rk
 due to self-gravity. To
that purpose, we introduce the zeroth order solution �104� in
the equation

d�rk

dt

= k�k + d − 2� � Prk−2dr − k�
0

+�

rk−dM�r�
�M

�r
dr .

�120�

The first term gives, after integration, the pure anomalous
scaling

�rk
0 � tnk/�d+2n�. �121�

The second term gives, after integration, the first correction
due to gravity. If we write ��rk
= �rk
− �rk
0, we obtain

��rk
 � tn�k−d�/d+2n+1. �122�

Let us consider some particular cases. �i� For n→ +�, we
obtain ��rk
� t�k−d�/2+1. If we furthermore consider the sec-
ond moment k=2 �moment of inertia�, we recover the scaling
��r2
� t2−d/2 of �16�. �ii� For k=d, we find that ��rd

=−�d /2�t� t whatever the index n and the dimension of
space d. �iii� For n=n3, gravitational effects are of the same
order as diffusive effects and �rk
0���rk
� tk/d. This case
will be studied in detail in the next section. �iv� Finally, let us
introduce the number k0�d−d /n−2. For k�k0, ��rk
→0;
for k=k0, ��rk
�1 / t; for k�k0, ��rk
→ +�.

B. The critical case n=n3

Finally, for n=n3, and since a critical �c exists irrespec-
tive of the presence of a confining box, the system collapses
for ���c and evaporates for ���c. In the latter regime,
gravity remains relevant and evaporation is controlled by
both gravity and the diffusion process �see Fig. 15�. Math-
ematically, this arises from the fact that there is an evapora-
tion scaling solution for which all the terms of Eq. �65� scale
in the same way. More specifically, we expect an evaporation
density profile of the form

��r,t� = �0�t�f� r

r0�t�
�, �0�t�r0�t�d = 1. �123�

The relation between the evaporation length r0 and �0 �pro-
portional to the central density� is obtained by requiring that
the diffusive term and the drift term in Eq. �65� scale the
same. In terms of the mass profile, we have

M�r,t� = g� r

r0�t�
� with g�x� = �

0

x

f�x��Sdx�d−1dx�,

�124�

and in terms of the function s, we have
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FIG. 15. In d=3 and for n=n3=3, we compare the evaporation
profiles at different times for �=1��c, for self-gravitating par-
ticles �full lines�, to the faster evaporation dynamics when gravity is
switched off �dashed lines�.
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s�r,t� = �0�t�S� r

r0�t�
�, with S�x� =

g�x�
xd . �125�

We require that all the mass is contained in the self-similar
profile �78�, which implies that

g�+ �� = �
0

+�

f�x�Sdxd−1dx = 1. �126�

Inserting the ansatz �125� in Eq. �70�, using Eq. �123�, and
imposing

1

�0
2

d�0

dt
= − d�, i.e., r0

d−1dr0

dt
= � , �127�

we obtain the following scaling equation �note the change of
sign compared to Eq. �77�� �79�:

S� +
d + 1

x
S� + �xS� + dS�2/d� 1

�
S + 1� = 0. �128�

The evaporation radius is given by

r0�t� = �d�t�1/d. �129�

The moments scale like �rk
�r0
k � �d�t�k/d and the free en-

ergy scales like F�t�+n3KM � t−�d−2�/d.
If we consider the large temperature limit ��1 where the

diffusion term dominates on the gravitational drift, the fore-
going differential equation reduces to

S� +
d + 1

x
S� + �xS� + dS�2/d = 0. �130�

In terms of the function f it can be written

f−2/df� +
x

Sd
�d−2�/d = 0, �131�

which is consistent with Eq. �113� up to the changes of no-
tations in Eqs. �107� and �127�. We can either solve this
equation and impose the normalization condition �126� or
make simple transformations in order to directly use the re-
sults of Sec. VI A. Indeed, let us set �0=��* and r0=�r*.

We impose �*r*
d =1 leading to ��d=1. On the other hand,

we choose �=2�Sd /Z��d−2�/d where Z is defined by Eq. �106�
so that �̇*=−2d�Sd /Z��d−2�/d��*

2 . Then, �=�*f*�r /r*� with
f*�x�=�f�x /��. Now, �*, r*, and f* have been defined so as
to coincide with the functions �0, r0, and f of Sec. VI A.
Thus, we obtain f�x�= �1 /��f*��x� where f* is the function
�114�. Therefore, the normalized solution of Eq. �131� with
the present notations can be written

f�x� =
1

�Z
	1 −

d − 2

d
�2x2


+

d/�d−2�

, �132�

with

��d = 1, � = 2�Sd

Z
��d−2�/d

, �133�

and where Z is given by Eq. �106�. Proceeding along the
lines of �16�, we could expand the solutions of Eq. �128� �or

of the equivalent equation for f� in powers of �−1 in the limit
�→ +�.

In Fig. 16, we show the form of the evaporation density
profile f as a function of ���c. As � approaches �c, the
central density diverges, whereas the profile tends to the one
corresponding to free diffusion for large �. In addition, we
present numerical simulations for an intermediate �, show-
ing that dynamical scaling is perfectly obeyed. Moreover,
when �→�c, we find that the scaling function obeys itself a
scaling relation �see inset of Fig. 16�. Defining �= ��
−�c� /�c, we find

f��,x� = �−1F�x/�1/d� , �134�

where F takes the form of a steady polytropic profile of
index n3. This scaling relation implies that close to �c, the
dth moment of r scales as

�rd�t�
 � �� − �c�t , �135�

which is a generalization of our exact result for d=2
�n3= +�, Tc=1 /4� �16�,

�r2�t�
 = 4�T − Tc�t + �r2�0�
 . �136�

VII. ANALOGY BETWEEN THE LIMITING MASS
OF WHITE DWARF STARS AND THE CRITICAL

MASS OF BACTERIAL POPULATIONS

The generalized Smoluchowski-Poisson �GSP� system de-
scribing the dynamics of self-gravitating Langevin particles
shares many analogies with the generalized Keller-Segel
�GKS� model describing the chemotaxis of bacterial popula-
tions. Below, we briefly review the basic equations of
chemotaxis and show the close link with the present work.
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FIG. 16. In d=3 and for n=n3=3, we compare the scaling
profiles for �=0.21 near �c�0.20872, �=1, and �=100 �top to
bottom full lines; for clarity, the �=0.21 profile has been scaled
down by a factor 150�. For ��1, the invariant profile corresponds
to the Barenblatt solution �pure anomalous diffusion� which is a
Tsallis distribution with index 	4/3=1+1 /n3. For �→�c the in-
variant profile tends to the profile of a steady polytrope with index
n3. For an intermediate temperature �=1, we illustrate the perfect
observed data collapse by plotting r0

d�t���r , t� as a function of
r /r0�t�, for t=1.5n�n=0, . . . ,13�. These 14 curves are indistinguish-
able from the theoretical scaling profile. In the inset, we illustrate
the scaling relation of Eq. �134� obtained for different values of
�= ��−�c� /�c→0.
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A. The generalized Keller-Segel model

The original Keller-Segel model has the form �20�

��

�t
= � · �D2��,c� � �� − � · �D1��,c� � c� , �137�

�
�c

�t
= − k�c�c + h�c�� + Dc�c . �138�

The drift-diffusion equation �137� governs the evolution of
the density of bacteria ��r , t� and the reaction-diffusion equa-
tion �138� governs the evolution of the secreted chemical
c�r , t�. The bacteria diffuse with a diffusion coefficient D2
and they also move in a direction of a positive gradient of the
chemical �chemotactic drift�. The coefficient D1 is a measure
of the strength of the influence of the chemical gradient on
the flow of bacteria. On the other hand, the chemical is pro-
duced by the bacteria with a rate h�c� and is degraded with a
rate k�c�. It also diffuses with a diffusion coefficient Dc. In
the primitive Keller-Segel model, D1=D1�� ,c� and D2
=D2�� ,c� can both depend on the concentration of the bac-
teria and of the chemical. This can take into account micro-
scopic constraints, such as close-packing effects �55,80,81�
or anomalous diffusion �51�.

If we assume a constant diffusion coefficient D2=D and a
constant mobility D1 /�=� �we also consider a constant pro-
duction rate � and a constant degradation rate k2 of the
chemical�, we obtain the standard Keller-Segel �KS� model

��

�t
= � · �D � � − �� � c� , �139�

�
�c

�t
= �c − k2c + �� . �140�

If we now assume that the diffusion coefficient and the mo-
bility depend on the concentration of the bacteria, and if we
set D2=Dh��� and D1=�g���, where h and g are positive
functions, we obtain the generalized Keller-Segel �GKS�
model �55,80,81�,

��

�t
= � · �Dh��� � � − �g��� � c� , �141�

�
�c

�t
= �c − k2c + �� . �142�

Equation �141� can be viewed as a nonlinear mean field
Fokker-Planck �NFP� equation �50� associated with a sto-
chastic process of the form

dr

dt
= ���� � c + �2D���R�t� , �143�

with a diffusion coefficient D���= �D /����h����d�� and a
mobility ����=�g��� /�. These equations are associated with
a notion of effective generalized thermodynamics �49,50�.
The Lyapunov functional of the NFP equation Eqs. �141� and
�142�, can be written in the form of a generalized free energy
F=E−Tef fS where

E =
1

2�
� ���c�2 + k2c2�dr −� �cdr �144�

is the energy, Tef f =D /� is an effective temperature given by
an Einstein-like relation and

S = −� C���dr, C���� =
h���
g���

�145�

is a generalized entropy. A straightforward calculation shows
that

Ḟ = −
1

��
� �− �c + k2c − ���2dr

−� 1

�g���
�Dh��� � � − �g��� � c�2dr � 0,

�146�

which is the expression of the H theorem in the canonical
ensemble adapted to dissipative systems. If we consider the
particular case of a constant mobility g���=� and a power-
law diffusion h���=	�	−1, with 	=1+1 /n, we obtain the
polytropic Keller-Segel model �51�,

��

�t
= � · �D � �	 − �� � c� , �147�

�
�c

�t
= �c − k2c + �� . �148�

The standard Keller-Segel model is recovered for 	=1. Fi-
nally, if we neglect the degradation of the chemical �k=0�
and consider a limit of large diffusivity of the chemical �im-
plying �=0�, we obtain for sufficiently large concentrations
�see Appendix C of �81��

��

�t
= � · �D � �	 − �� � c� , �149�

�c = − �� . �150�

These equations are isomorphic to the generalized
Smoluchowski-Poisson �GSP� system Eqs. �33� and �34�,
provided that we set

D = K/�, � = 1/�, c = − �, � = SdG . �151�

Therefore, the results of the present paper apply to the
chemotactic problem provided that the parameters are prop-
erly reinterpreted.

B. Formulation of the results with the biological variables

In the gravitational context, we usually fix the coefficients
�, G, and M and use the temperature � as a control param-
eter. In the biological context, the coefficients D, �, and � are
assumed given and the control parameter is the mass M.
Therefore, it may be useful to briefly reformulate the previ-
ous results in terms of the mass, using notations adapted to
the chemotactic problem.
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For the critical index n=n3=d / �d−2� in d�2, the steady
states �polytropes� of the GKS model Eqs. �149� and �150�
exist, in an unbounded domain, for a unique value of the
mass given by �59�

Mc = Sd	D�1 + n3�
��


n3/�n3−1�

�n3
. �152�

For d=3, we have

Mc = 32
�3� D

��
�3/2

� 202.8956 . . . � D

��
�3/2

. �153�

For d=2, using the identity �50�, we recover the critical mass

Mc =
8
D

��
, �154�

associated with the two-dimensional standard Keller-Segel
�KS� model �see �60� and references therein�. It is conveni-
ent to introduce rescaled variables so that D=�=�=1. With
this system of units the critical mass is Mc�d�=Sd�1
+n3�n3/�n3−1��n3

=Sd�2�d−1� / �d−2��d/2�d/�d−2�. For example,
Mc�d=2�=8
 and Mc�d=3�=32
�3=202.8956. . . . Using
the approximate expression of �n obtained in Eq. �B72� of
�61�, we can derive an approximate expression of the critical
mass in the form

Mc
approx�d� =

Sd

d
�d�d + 2��d/2. �155�

For d=2, it returns the exact result Mc
approx�2�=Mc=8
. On

the other hand, Mc
approx�d=3�=243 and Mc

approx�d=4�=2842.
Using Sd=2
d/2 / �d /2� we find that Mc

approx�d�
�2
d/2dd / �d /2� for d→ +�.

Let us briefly discuss the critical dynamics of the GKS
system with index n=n3=d / �d−2� for d�2, depending on
the total mass of the bacteria. For M �Mc, a box-confined
system tends to an incomplete polytrope confined by the
walls of the box. In an unbounded domain, the system
evaporates in a self-similar way as discussed in Sec. VI B.
For M �Mc, the system undergoes finite time collapse as
discussed in Sec. V. In a finite time t= tcoll, it forms a Dirac
peak containing a mass Mc surrounded by a collapsing halo
evolving quasi-self-similarly with a time-dependent expo-
nent 
�t� tending extremely slowly to 
=d as t→ tcoll. Thus,

��r,t� → Mc��r� + ��r,t� , �156�

where ��r� behaves roughly as r−d for r→0. For M =Mc, the
situation is delicate and depends on the dimension of space.
For d=2, in a bounded domain, the steady state of the KS
model is a Dirac peak ��0= +��. We have constructed in �12�
a self-similar solution tending to this Dirac peak in infinite
time. The central density increases exponentially rapidly. In
an infinite domain, the KS model admits an infinite family of
steady state solutions parameterized by their central density
but the Dirac peak ��0= +�� is selected dynamically �the
other solutions have an infinite moment of inertia and, since
the moment of inertia is conserved when M =Mc, they cannot
be reached from an initial condition with a finite moment of
inertia�. We have constructed in �16� a self-similar solution

tending to this Dirac peak in infinite time �and ejecting a
small amount of mass at large distances so as to satisfy the
moment of inertia constraint�. The central density increases
logarithmically rapidly. For d�2 and M =Mc, in a bounded
domain, the GKS model admits an infinite family of steady
state solutions parametrized by their central density or,
equivalently, by their natural radius R*. We have found nu-
merically that the system tends to the polytrope where the
density reaches zero at the box radius �R*=R�.

Due to the analogy between gravity and chemotaxis �53�,
we find that the critical mass of bacterial populations in the
standard Keller-Segel model in d=2 and in the generalized
Keller-Segel model in d�2 for the critical index n=n3
shares some resemblance with the Chandrasekhar mass of
white dwarf stars. For example, the curves of Figs. 3 and 5
also represent the mass of the bacterial aggregate as a func-
tion of the central density. As we have seen, they are strik-
ingly similar to the mass-central density relation of white
dwarf stars in Fig. 2. Therefore, bacteria and white dwarf
stars share deep analogies despite their very different physi-
cal nature �59�.

VIII. CONCLUSIONS AND PERSPECTIVES:
THE GSP SYSTEM WITH A RELATIVISTIC

EQUATION OF STATE

In this paper, we have studied the critical dynamics, at the
index n=n3, of the GSP system and GKS model describing
self-gravitating Langevin particles and bacterial populations.
This study completes our previous investigation �51� that
was restricted to the cases n�n3 and n�n3. We have seen
that, at the index n=n3, there exists a critical mass Mc �in-
dependent on the size of the system� that is connected to the
Chandrasekhar limiting mass of white dwarf stars �59�. In
order to strengthen this analogy, it would be interesting to
study the GSP system Eqs. �13� and �14�, with the equation
of state �2� corresponding to relativistic white dwarf stars. In
fact, we can already describe qualitatively the behavior of the
solutions by using the results obtained here for polytropes
�see also the stability results obtained in �61� for relativistic
white dwarf stars�.

For d=1 and d=2, there exists an equilibrium state �glo-
bal minimum of free energy� for all values of the mass M.
Therefore, the GSP system relaxes towards that steady state.

For d=3, there exists a critical mass MChandra
=0.196 701. . . �hc /G�3/2 / ��H�2. For M �MChandra, the GSP
system tends to a partially relativistic white dwarf star �glo-
bal minimum of free energy�. For M �MChandra, the density
is small so that the equation of state reduces to that of a
polytrope of index n=3 /2 �classical limit�. Therefore, the
GSP system relaxes towards a classical white dwarf star as
described in Fig. 21 of �51�. For M =MChandra the density
becomes large so that the equation of state reduces to that of
a critical polytrope of index n=3 �ultrarelativistic limit�. We
expect that the GSP system forms a Dirac peak of mass
MChandra in infinite time. For M �MChandra, there is no equi-
librium state and the system collapses. When the density
reaches high values, the system becomes equivalent to a
polytrope of index n=3. Therefore, according to the present
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study, it forms in a finite time a Dirac peak of mass MChandra
surrounded by a halo evolving quasi-self-similarly with an
exponent 
�t� converging very slowly to 
=3.

For d=4, there exists a critical mass Mc
=0.014 395 8. . .h4 / �m2G2�3H3� discovered in �61�. For M
�Mc, the steady states are unstable and the system can either
collapse or evaporate �depending on the form of the initial
density profile and on the basin of attraction of the solution�.
In case of evaporation, when the density reaches low values,
the system becomes equivalent to a polytrope of critical in-
dex n3/2=n3=2 �classical limit�. In that case, it undergoes a
self-similar evaporation similar to that described in Sec.
VI B where diffusion and gravity scale the same way. In the
case of collapse, when the density reaches high values, the
system becomes equivalent to a polytrope of index n3�=4
�n3=2 �ultrarelativistic limit�. In that case, it undergoes a
self-similar collapse similar to that described in �51�. For
M �Mc, there is no steady state and the system collapses in
the way discussed previously �energy considerations devel-
oped in �61� show that there is no evaporation in that case�.

For d�5, there is no steady state and the system can
either collapse or evaporate. In case of evaporation, when the
density reaches low values, the system becomes equivalent
to a polytrope of index n3/2�n3. In that case, it undergoes a
self-similar evaporation similar to that described in Sec.
VI A where gravity becomes asymptotically negligible. In
the case of collapse, when the density reaches high values,
the system becomes equivalent to a polytrope of index n3�
�n3. In that case, it undergoes a self-similar collapse similar
to that described in �51�.

As we have already mentioned, the real dynamics of
white dwarf stars is not described by the GSP system, but is
much more complicated. However, we think that the study of
this simple dynamical model is an interesting first step before
considering more complicated models. At least, it reveals the
great richness of the problem. A next step would be to take
into account inertial effects and study the �generalized�
Kramers-Poisson system and the corresponding hydrody-
namic equations �17�.

APPENDIX A: VIRIAL THEOREM AND FREE ENERGY
OF CRITICAL POLYTROPES

The scalar Virial theorem for the GSP system reads �16�

1

2
�

dI

dt
= 2Ekin + Wii, �A1�

where I=��r2dr is the moment of inertia, Ekin= �d /2�� Pdr
is the kinetic energy of the microscopic motion, and Wii
=−��r ·��dr is the Virial. For d=2, Wii=−GM2 /2 and for
d�2, Wii= �d−2�W where W= �1 /2����dr is the potential
energy. If the system is enclosed within a box, we must add
a term −dPbV on the right-hand side, where Pb is the pres-
sure against the box. In the following, we assume that the
system is unbounded so that Pb=0.

For a polytropic equation of state P=K�	, with 	=1
+1 /n, the free energy �36� can be written

F =
2n

d
Ekin + W − nKM . �A2�

Therefore, the Virial theorem can be expressed in the form

1

2
�

dI

dt
=

dF

n
+ Wii −

dW

n
+ dKM . �A3�

For the critical index n=n3=d / �d−2�, we obtain

1

2
�

dI

dt
= �d − 2�F + Wii − �d − 2�W + dKM . �A4�

For d�2, it reduces to

1

2
�

dI

dt
= �d − 2�F + dKM . �A5�

For a steady state �İ=0�, the Virial theorem implies

Feq = −
d

d − 2
KM . �A6�

We have seen in Sec. III C that spherically symmetric steady
states of the GSP system with n=n3 exist for a unique value
of the mass M =Mc �for fixed K� or a unique value of the
temperature �=�c �for fixed M� and form an infinite family
of solutions parametrized by their central density �0. Accord-
ing to Eq. �A6�, they all have the same free energy, indepen-
dent on the central density �0. Therefore, thermodynamical
arguments do not allow to select a particular solution among
the whole family.

For d=2, the critical index n3→ +� and the equation of
state is isothermal with K=kBT /m. Then, the Virial theorem
�A4� becomes �16�

1

2
�

dI

dt
= 2NkB�T − Tc� , �A7�

with kBTc=GMm /4. For a steady state �İ=0�, the Virial theo-
rem implies T=Tc or M =Mc. It directly yields the result that
unbounded two-dimensional isothermal spheres exist for a
unique value of the mass or temperature. The spherically
symmetric solution is given by Eq. �31� reading

��r� =
�0

�1 + �
�0/M�r2�2 . �A8�

This family of steady solutions is parametrized by the central
density �0. The corresponding mass profile is given by
M�r�=�0

r��r��2
r�dr and the gravitational potential can be
obtained from the Gauss theorem d� /dr=GM�r� /r with the
gauge condition ��r��GM ln r for r→ +�. This yields

M�r� =

�0r2

1 + �
�0/M�r2 , �A9�

��r� =
GM

2
ln� M


�0
+ r2� . �A10�

From these expressions, we find that the potential energy is
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W =
GM2

4
	1 + ln� M


�0
�
 . �A11�

On the other hand, the Boltzmann entropy SB
=−kB��� /m�ln�� /m�dr can be written

SB = 2NkB	1 −
1

2
ln��0

m
�
 . �A12�

Therefore, the Boltzmann free energy FB=W−TSB is given
by

FB = −
GM2

4
	1 + ln�


N
�
 . �A13�

We conclude that the free energy of unbounded isothermal
spheres in two dimensions is independent on the central den-
sity �0.

APPENDIX B: AN EQUATION FOR THE MOMENTS Šrk
‹

Let us introduce the moments of order k:

Ik�t� =� �rkdr . �B1�

For k=2, we recover the moment of inertia. Taking the time
derivative of Eq. �B1�, using the generalized Smoluchowski
equation �13� and integrating by parts, we obtain

1

k
�

dIk

dt
= −� rk−2r · �Pdr −� rk−2�r · ��dr . �B2�

Integrating by parts the first term, we get

1

k
�

dIk

dt
= �k + d − 2� � Prk−2dr −� rk−2�r · ��dr .

�B3�

If we take into account boundary effects, we need to intro-
duce a pressure term −� Prk−2r ·dS on the right-hand side.
For k=2, we recover the Virial theorem �A1�. On the other
hand, for a spherically symmetric system, using the Gauss
theorem, the second integral can be simplified and we obtain

1

k
�

dIk

dt
= �k + d − 2� � Prk−2dr − G�

0

+�

rk−dM�r�
�M

�r
dr .

�B4�

For k=d, the second integral can be calculated explicitly and
we find

1

d
�

dId

dt
= 2�d − 1� � Prd−2dr −

GM2

2
. �B5�

For d=1, the first term on the right-hand side must be re-
placed by 2P�0, t�.
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