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We point out that the recent discussion of nonrelativistic anti-de Sitter space and conformal field theory
correspondence has a direct application in nonequilibrium statistical physics, a fact which has not been em-
phasized in the recent literature on the subject. In particular, we propose a duality between aging in systems far
from equilibrium characterized by the dynamical exponent z=2 and gravity in a specific background. The key
ingredient in our proposal is the recent geometric realization of the Schrödinger group. We also discuss the
relevance of the proposed correspondence for the more general aging phenomena in systems where the value
of the dynamical exponent is different from 2.
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I. INTRODUCTION

The problem of understanding the behavior of systems far
from equilibrium is one of the most challenging questions in
contemporary many-body physics �1�. In this context it turns
out that local scale invariance �2,3� can play a very important
role in understanding dynamical scaling aspects of systems
far from equilibrium �1,4�. In particular, in the discussions of
the phenomenon of aging �5�, in other words the observation
that properties of nonequilibrium systems generically depend
on the time since the system was brought out of equilibrium,
the role of the nonrelativistic conformal group, i.e.,
Schrödinger group, has been found to be crucial in systems
with a dynamical exponent z=2 �1–3,6,7�. In this paper we
propose that aging phenomena with the dynamical exponent
z=2 can be understood from a dual, gravitational point of
view.

In this context it is useful to recall that recently there has
been a lot of activity regarding the possible relevance of the
anti-de Sitter space and conformal field theory �AdS/CFT�
correspondence to other difficult condensed matter problems
such as high temperature superconductivity �8�. The general
concept of duality, on which a lot of recent progress in quan-
tum field theory and string theory is based, has also been
used recently in various condensed matter settings �9�. Most
recently Son �10� and independently Balasubramanian and
McGreevy �11� have proposed a geometrical realization of
the Schrödinger group in what has been called �10� “an AdS/
cold atoms correspondence.”

In this paper we wish to apply this geometric realization
of the Schrödinger group to an aging-gravity correspon-
dence. We consider this as a first step in an approach to
understanding the nonequilibrium dynamics of more general
systems with z�2, and especially of disordered systems
�1,4,12�. On one side we aim to bring the topic of aging in
systems far from equilibrium to the attention of string and
field theorists interested in applications of nonrelativistic
AdS/CFT duality. Thus Sec. II briefly summarizes the impor-

tance of the Schrödinger �nonrelativistic conformal� group in
aging in a self-consistent manner. On the other side, we aim
to bring the tools of nonrelativistic AdS/CFT to the attention
of the physicists working in nonequilibrium statistical phys-
ics, and in particular, in aging phenomena. Sections III and
IV are devoted to them. By putting together the information
from these two areas of physics we propose a duality be-
tween aging phenomena and gravitational physics in specific
backgrounds. The ultimate aim of this duality is to be able to
characterize different universality classes by computing the
critical indexes of relevant correlation functions as explained
in Sec. II, by using the classical physics of certain fields
propagating in gravitationally nontrivial backgrounds as ex-
plained in Secs. III and IV. Ultimately, the full nonperturba-
tive correlation functions should be captured by the string
theory �13� sigma model in these backgrounds, thus bringing
the methods of string theory into nonequilibrium statistical
physics and vice versa.

II. AGING PHENOMENA
AND THE SCHRÖDINGER GROUP

Let us start by briefly reviewing what is known about the
dynamical scaling and scale invariance in dynamical systems
with aging �1,14�. The general setup for the study of aging
behavior is as follows: One considers a coarse-grained order
parameter ��t ,r��, conjugate to a generalized field h�t ,r��,
which is usually assumed to be fully disordered at t=0, i.e.,
���0,r���=0. For a magnetic system, the order parameter is
of course the magnetization whereas the conjugate field is an
external magnetic field. In the following we consider the
case where the order parameter is not conserved by the dy-
namics �model A dynamics�. Typically, one studies the scal-
ing behavior of two-time correlation functions �here and in
the following we assume that spatial translation invariance
holds�

C�t,s� = ���t,r����s,r��� � s−bfC�t/s� �1�

as well as of two-time response functions
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R�t,s� =
����t,r���
�h�s,r��

� s−1−afR�t/s� , �2�

where a and b are nonequilibrium exponents whereas fC and
fR are scaling functions. This scaling behavior is expected in
the aging regime, defined by both t and s as well as t−s
being much larger than the characteristic microscopic time
scale. Note also that this scaling assumes a single character-
istic length scale L which scales with time t as

L�t� � t1/z, �3�

where z is the dynamical exponent. For large values of the
argument one expects

fC�x� � x−�C/z, fR�x� � x−�R/z �4�

with nonequilibrium exponents �C and �R. The aging behav-
ior just summarized is called simple or full aging and has
been observed in many exactly solvable models, in numeri-
cal simulations of more complex models, as well as in actual
experiments.

Given the success of conformal invariance in equilibrium
critical phenomena, it is natural to ask whether scaling func-
tions and the values of nonequilibrium exponents might be
deduced from symmetry principles by invoking generalized
dynamical scaling with a space-time dependent scale factor
b=b�t ,r��. This program has been reviewed in �1� and here
we concentrate on the specific case when L�t�� t1/2, i.e., z
=2. This is a very important case as it encompasses systems
undergoing phase-ordering with nonconserved dynamics
�15�. The generalization for z�2 has been discussed in �1�
and we will briefly comment on this in the concluding re-
marks of this paper.

The theoretical description of aging systems with a dy-
namical exponent z=2 starts from a stochastic Langevin
equation which for a nonconserved order parameter reads

2M�t� = �2� −
�V���

��
+ � , �5�

where V is a Ginzburg-Landau potential and � is a Gaussian
white noise that arises due to the contact with a heat bath
�16�. The theory of local scale invariance then permits one to
show �1,17� that under rather general conditions all averages
�i.e., correlation and response functions� of the noisy theory
�5� can be reduced exactly to averages of the corresponding
deterministic, noiseless theory.

For the z=2 case the relevant symmetry structure is the
Schrödinger group �18�. It is well known that the free diffu-
sion equation

2M�t� = �2� �6�

is invariant under the Schrödinger group �the free diffusion
equation being essentially equivalent to the free Schrödinger
equation�. The Schrödinger group is defined through the
space-time transformations

t → t� =
�t + �

�t + �
, r� → r�� =

Rr� + v�t + a�

�t + �
, �7�

where �, �, �, � and v� , a� are real parameters and ��−��
=1, whereas R denotes a rotation matrix in d spatial dimen-
sions. The algebra of generators of the Schrödinger group
consists of temporal translations H, spatial translations PI,
Galilean transformations KI, rotations MIJ, dilatations D,
and the special conformal transformation C. The algebra of
generators of the Schrödinger group �1,10� reads as follows:

�MIJ,MKL� = i��IKMJL + �JLMIK − �ILMJK − �JKMIL� ,

�8�

�MIJ,P�K�K� = i„�IKP�K�J − �JKP�K�I
… , �9�

where P�K� denotes either the momentum P or the Galilean
boost K generator, and

�D,PI� = − iPI, �D,KI� = iKI, �PI,KI� = − iMIJ,

�10�

and finally

�D,H� = − 2iH, �C,H� = − iD, �D,C� = 2iC , �11�

where D simply rescales t and r� as t→e2�t and r�→e�r� and C
acts as t→ t / �1+�t� and r�→r� / �1+�t�.

In complete analogy with the conformal field theory boot-
strap �19� one of the immediate consequences of Schrödinger
invariance is a restricted form of the two- and three-point
functions for the � fields �1�. The two-point function is es-
sentially given by the heat kernel �i.e., Green’s function� of
the diffusion equation �up to a normalization constant�

��1�t1,r�1��2�t2,r�2�� = �x1,x2
�M1+M2,0�t1,2�−x1 exp�−

M1

2

r�1,2
2

t1,2
	 ,

�12�

where t1,2
 t1− t2 and r�12
r�1−r�2, with the scaling dimen-
sions x1 and x2 and the masses M1 and M2. Similarly the
three-point function is

��1�t1,r�1��2�t2,r�2��3�t3,r�3��

= �M1+M2+M3,0�t1,2�−x12,3/2�t2,3�−x23,1/2�t1,3�−x13,2/2K , �13�

where ti,j 
 ti− tj, r�ij 
r�i−r� j, xij,k
xi+xj −xk, and where K is
given by

K 
 exp�−
M1

2

r�1,3
2

t1,3
	exp�−

M2

2

r�2,3
2

t2,3
	F� �r�1,3t2,3 − r�2,3t1,3�2

t1,2t2,3t1,3
	 .

�14�

Here F denotes an arbitrary differentiable function.
These relations have an immediate application to aging:

the response function is constrained and the exponents fol-
low. The correlation function is likewise constrained. In de-
riving expressions for response and correlation functions one
has to note that in the aging regime time-translation invari-
ance is broken and that only a subgroup of the Schrödinger
group that does not contain time translations has to be taken
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into account �1,17�. It follows that a quasiprimary scaling
operator that transforms covariantly under the aging group is
characterized by the triplet �x ,	 ,M�, where 	 is a “quantum
number” associated with the field � �see �1,17,20� for de-
tails�. In the field-theoretical setting the autoresponse func-
tion R�t ,s� is written as R�t ,s�= ���t����s��, where the order
parameter � and the associated response field �� are charac-
terized by the exponents �x ,	� and �x� ,	��. From this one
obtains the following expression for the autoresponse func-
tion �1�:

R�t,s� = s−�x+x��/2� t

s
		� t

s
− 1	−x−2	


�t − s��x+2	,x�+2	�,

�15�

where 
�x� is the Heaviside step function. Comparing with
the expected scaling behavior Eqs. �2� and �4� yield for the
critical exponents �for z=2�

�R = 2�x + 	�, 1 + a = �x + x��/2. �16�

Similarly, for the spatiotemporal response function one ob-
tains the expression

R�t,s;r�� = R�t,s�exp�−
M

2

r�2

t − s
	 . �17�

Finally, explicit expressions can also be derived for the au-
tocorrelation function �7,21�. These expressions are rather
cumbersome and will not be reproduced here.

It is important to note that all of these predictions have
been tested to yield the exact results in a large variety of
exactly solvable models and to describe faithfully over many
time decades numerical data obtained for more complex sys-
tems �1�.

III. SCHRÖDINGER GROUP AND ITS ASSOCIATED
GEOMETRY

In this section we discuss an embedding of the
Schrödinger group in the conformal group and the natural
geometric realization of the Schrödinger group as recently
discussed by Son �10�. We here follow the presentation by
Son �10� and Balasubramanian and McGreevy �11�, whereas
an alternative derivation is discussed in �1,22�.

Son �10� and Balasubramanian and McGreevy �11� start
from a manifestly conformally invariant massless Klein-
Gordon equation in �d+1�+1- dimensional Minkowski space
time,

− �t
2� + �i

2� = 0, �18�

where the summation of the repeated indices is assumed.
Using the light-cone coordinates

x� 

1
�2

�x0 � xd+1� �19�

�a similar definition also holds for other quantities used be-
low�, one can rewrite the massless Klein-Gordon equation as

�− 2�−�+ + �i
2�� = 0. �20�

By identifying �−
 iM the Klein-Gordon equation becomes
the Schrödinger equation with x+ playing the role of time,

i
��

�x+ = −
1

2M
�i

2� . �21�

The algebraic embedding of the generators of the
Schrödinger group into the conformal group follows the em-
bedding of the Schrödinger equation into the massless Klein-
Gordon equation �1,10,11,22�. The conformal algebra is
given by

�mIJ,mKL� = i��IKmJL + �JLmIK − �ILmJK − �JKmIL� ,

�22�

�mIJ,pK� = i��IKpJ − �JKpI� ,

where mIJ denote the rotation and pI the spatial translation
generators as well as

�d̃,pI� = − ipI, �d̃,kI� = ikI, �pI,kJ� = − 2i��IJd̃ + mIJ� ,

�23�

with dilatations d̃ and boosts kI and I ,J ,K ,L=0, . . . ,d+1.
One now identifies the light-cone momentum p+=−i�− with
the nonrelativistic mass M as above,

p+ 

1
�2

�p0 + pd+1� = M . �24�

The operators that commute with p+ then close into the
Schrödinger group

H = p−, PI = pI, MIJ = mIJ, KI = mI+, �25�

D = d̃ + m+−, 2C = k+.

Based on this algebraic embedding of the Schrödinger
group into the conformal group and using the known geo-
metric realization of the conformal group in d+1 dimensions
in terms of the isometries of the anti-de-Sitter AdS�d+1�+1
space

ds2 =
1

u2 �du2 + �IJdxIdxJ� , �26�

Son �10� and Balasubramanian and McGreevy �11� have re-
cently proposed the following metric which is invariant un-

der D= d̃+m+− but not under the separate actions of d̃ or m+−

as the natural geometric realization of the Schrödinger group
�23�:

ds2 = − 2
�dx+�2

u2z +
− 2dx+dx− + dxidxi + du2

u2 . �27�

Note that this metric is not restricted to the case z=2 �the
value of the dynamical exponent encountered in pure sys-
tems undergoing phase ordering�, but encompasses also
cases that are Galilean invariant and for which z�2.
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IV. AGING-GRAVITY DUALITY

In this section we put the two previous sections together
to propose an aging-gravity duality. By the aging-gravity du-
ality we mean a precise mathematical correspondence be-
tween aging phenomena and gravitational physics in specific
backgrounds which capture the geometry of the nonrelativ-
istic conformal group and its subgroups, such as the aging
group in its simplest version. The ultimate aim of this corre-
spondence, as already emphasized in the Introduction, is to
be able to compute the critical indexes of relevant correlation
functions by using the classical physics of certain fields
propagating in the gravitationally nontrivial background
from Sec. III. Ultimately, the full nonperturbative correlation
functions as well as characterization of different universality
classes should be captured by the string theory in this back-
ground.

The dictionary we propose states that the generating func-
tional of one particle irreducible �1PI� correlation functions
of certain operators O relevant for the physics of aging phe-
nomena �in the nonrelativistic CFT �NRCFT�� is equal to the
exponent of the action for certain fields � propagating in a
geometric background, evaluated for the boundary values of
these fields ��b� equal to the sources J for the operators O,

ZNRCFT�J� = e−S���, �b = J . �28�

For example, the relevant action for a scalar field � in the
background discussed in Sec. III is �10,11�

S =
1

2
� dd+3x�g��I��J�gIJ − m2�2� , �29�

where dd+3x
ddr�dtdudx− �x+ being the t coordinate�. The
equation of motion for � is

1
�g

�I��ggIJ�J�� + m2� = 0. �30�

The solution ansatz is dictated by symmetries

� = f�u�ei
t+ik�·r�+iMx−
, �31�

and the radial differential equation for f�u� is �10,11�


− rd+3 �

�u
�r−d−1 �

�u
	 + �2l
 + k�2�r2 + l2r4−2z + m2� f�u� = 0,

�32�

where close to the boundary f�u��u�� with �10,11�

�� = 1 +
d

2
� ��1 + d/2�2 + m2 + �z,2l2. �33�

Again, we give here the expression valid for general values
of z. Note that for z=2 and in d=3, which is relevant for the
problem of aging in systems undergoing phase-ordering �25�,

f�u� � u5/2K��ku� , �34�

where K� is the modified Bessel function and

� = ��5/2�2 + M2 + m2, k2 
 2M
 + k�2. �35�

By using the usual AdS/CFT dictionary �26� one evaluates
the on-shell action �10,11� to obtain �after introducing a cut-
off near the boundary parametrized by xb
r� , t ,x− at u=��

S0 =
1

2
� dd+2xb��xb��u��xb� �36�

which in momentum space gives

1

2
� dp��− p�C�k,����p� , �37�

where

C�k,�� = �gguuf�r��uf ��u��u→� �38�

with f�u��K��ku� so that the two point function of our order
parameter � �whose source in the functional integral is rep-
resented by �� is essentially given by C�k ,��:

��1�
1k�1��2�
2k�2�� = ��k�1 + k�2��−5��k2�2�/4�� �39�

or in the position space

��1�t,r���2�0,0�� = ��1,�2
�t�−�1 exp�−

M

2

r�2

t
	 , �40�

which is precisely what we have found in Sec. II based on
the requirements of the Schrödinger invariance.

Thus the geometric interpretation and an AdS/CFT-like
dictionary obviously capture the main symmetry constraints
and thus also the result for the three-point function follows.
Consequently, the predictions for the scaling behavior in ag-
ing with z=2 follow as well.

V. FUTURE DIRECTIONS

In this paper we have discussed a dictionary between ag-
ing phenomena and gravity based on the geometric realiza-
tion of the Schrödinger group. This discussion was based on
the recent discussion of nonrelativistic AdS/CFT duality
�10,11,27�. Note that this dictionary is natural from the point
of view of the proposed closed relation between quantum
gravity and nonequilibrium statistical physics �28�. This
aging-gravity dictionary in some sense is an example that
extrapolates the Wilsonian dictionary between quantum field
theory and equilibrium statistical physics, to quantum gravity
�i.e., string theory� in certain backgrounds, and certain non-
equilibrium statistical mechanics phenomena.

What is a possible benefit that this geometric approach
might have in the future regarding the more detailed under-
standing of aging in systems far from equilibrium? We note
that the example of phase-ordering kinetics encountered in
the standard Ising model, which is characterized by z=2
�15�, is already very interesting. Nevertheless, the geometric
approach does offer a possibility for treating systems whose
dynamical exponent z is different from 2. It is apparent from
Eqs. �27� and �32� that the geometric background dual to the
Schrödinger group can be discussed for general z. Of course,
the physics of systems with z=2 and z�2 shows some dif-
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ferences �1,4,12�, yet the geometric picture does offer a dif-
ferent point of view on trying to understand the correlation
functions in the z�2 case. Thus this geometrical picture
might prove very useful in order to incorporate into a unify-
ing theoretical framework the recently extensively discussed
superuniversality of space-time quantities in disordered fer-
romagnets �12,29�.

Furthermore, other order parameters can be considered
even in the z=2 case. One could obviously turn on the vector
and tensor modes in the same background and examine their
correlators. Also, the higher order correlation functions,
which can be studied numerically, are amenable to the same
geometric treatment. Perhaps even a classification of differ-
ent dynamical behaviors is possible in this case. We plan to
explore these issues in the future.

What is perhaps most interesting is that the geometric
realization of the Schrödinger group can be extended to the
aging group �1� by considering flows away from the nonrel-
ativistic conformal fixed point. This is a familiar strategy in
the domain of the AdS/CFT correspondence. Note that the
aging group in the simplest version is a subgroup of the

Schrödinger group in which one gets rid of time-translational
invariance, a necessary requirement in order to describe non-
equilibrium systems out of stationarity.

Finally, one should remember that ultimately one should
be dealing with a string theory description in the back-
grounds relevant for the Schrödinger or the aging group. In
that case, as in approaches to understand other strongly cor-
related systems such as gauge theories, one ultimately has to
deal with the dynamics of nontrivial two-dimensional sigma
models in nontrivial backgrounds. Nevertheless, this geomet-
ric viewpoint does open a door in the field of aging phenom-
ena in systems far from equilibrium with many exciting and
unforeseen applications.
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