
Subdiffusive motion in kinetically constrained models

Robert L. Jack
Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom

and Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, USA

Peter Sollich
Department of Mathematics, King’s College London, London WC2R 2LS, United Kingdom

Peter Mayer
Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA

�Received 18 September 2008; published 8 December 2008�

We discuss a kinetically constrained model in which real-valued local densities fluctuate in time, as intro-
duced recently by Bertin, Bouchaud, and Lequeux. We show how the phenomenology of this model can be
reproduced by an effective theory of mobility excitations propagating in a disordered environment. Both
excitations and probe particles have subdiffusive motion, characterized by different exponents and operating on
different time scales. We derive these exponents, showing that they depend continuously on one of the param-
eters of the model.
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I. INTRODUCTION

There has been considerable recent interest in the hypoth-
esis that glassy materials can be described by coarse-grained
models with simple thermodynamic properties and nontrivial
kinetic constraints �1–8�. These models capture the dynami-
cally heterogeneous nature of glass formers �9�: the implicit
assumption is that microscopic details of the glass former are
important only insofar as they set the parameters of the
coarse-grained dynamical theory. Some kinetically con-
strained models describe particles hopping on a lattice
�10,11�; in other cases, binary �Ising� spins are used
�2,12,13�, where the two states of the spin represent “mo-
bile” and “immobile” regions of the liquid.

In a recent paper, Bertin, Bouchaud, and Lequeux �BBL�
�5� discussed a kinetically constrained model in which mo-
lecular degrees of freedom are modeled by a real-valued lo-
cal density, defined on a lattice. Loosely speaking, regions of
high density correspond to immobile sites in the spin de-
scription of �12�, and regions of low density correspond to
mobile sites. However, the continuous range of densities in
the BBL model captures the fact that a glass-forming system
has a variety of local packings, which may not permit a
simple decomposition into mobile and immobile. The con-
tinuous range of densities leads to a continuous range of
mobilities, resulting in a very broad distribution of relaxation
times, characteristic of glassy behavior.

As discussed in Ref. �5�, relaxation in the BBL model
occurs by means of “mobility excitations” that propagate
subdiffusively across the system. Links between broadly dis-
tributed relaxation times and subdiffusive motion of particles
are quite familiar in theories of glass-forming liquids �14�.
Here, we focus initially on the motion of mobility excita-
tions, by coarse-graining the BBL model onto an effective
theory for these excitations. This procedure represents a very
simple example of the coarse-graining of glassy materials
that was proposed by Garrahan and Chandler �2�. The result-

ing effective theory is a disordered generalisation of the one-
spin facilitated Fredrickson-Andersen �FA� model �12�. The
possibility of subdiffusive motion in this model is important
when comparing model results with experiments on super-
cooled liquids: on approaching the experimental glass tran-
sition time scales increase dramatically, while the length
scales associated with dynamical heterogeneity grow more
slowly �9,15,16�. In the dynamical facilitation picture �2�, the
motion of mobility excitations leads to a relation of the form
���z /� where z is a dynamical exponent, � the relaxation
time scale, � the length scale associated with dynamical het-
erogeneity, and � a �possibly temperature-dependent� con-
stant �17�. Subdiffusion of these excitations corresponds to
an exponent z�2, consistent with a time scale that increases
much more quickly with the corresponding length scale than
for ordinary diffusion.

In this paper we focus throughout on the one-dimensional
case, where subdiffusion effects are most pronounced �5�.
Analysis of the disordered FA model leads us to two main
results. First, we are able to explain the scaling exponents
observed in �5�. In particular, while the disorder in both the
BBL and disordered FA models is fluctuating, we explain
why excitations propagate with the scaling laws expected for
a particle moving in a quenched random environment. Sec-
ond, we consider the motion of probe particles in the BBL
and disordered FA models. These particles propagate subdif-
fusively, but with scaling laws that are different from those
of the mobility excitations.

The form of the paper is as follows. In Sec. II, we define
the BBL model and the disordered FA model. In Sec. III, we
use four-point correlation functions �8,18–20� to investigate
the subdiffusive propagation of mobility excitations, and we
discuss the associated scaling exponents. In Sec. IV, we con-
sider the motion of probe particles in the BBL model, and
show that this behavior can also be reproduced in the disor-
dered FA model.
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II. MODELS

A. BBL model

The �one-dimensional� BBL model is defined �5� for a
chain of continuous densities ��i�, constrained to 0��i�2.
Dynamical moves involve rearrangement of the density be-
tween adjacent pairs of sites:

�i,�i+1 → �i�,�i+1� , rate f iP���i�,�i+1� ��i + �i+1� , �1�

where f i=��2−�i−�i+1� is the facilitation function for bond
i, between sites i and i+1. Here, ��x� is the Heaviside step
function, so a density rearragement between two sites can
occur only if the total density on those sites is less than 2.
The distribution of densities after the rearrangement is

P���i,�i+1�R� = A��i�i+1�	−1
�R − �i − �i+1� , �2�

where the 
 function enforces volume conservation. The pa-
rameter 	�0 was motivated in �5� in terms of an interaction
between the particles of the model. If 	�1 then the density
after the rearrangment tends to be distributed equally be-
tween sites i and i+1; if 	�1 then the density is more likely
to accumulate on just one of the sites. The coefficient A
= �R1−2	��2	� /��	�2� is determined by the requirement that

	
0

2

d�i	
0

2

d�i+1P���i,�i+1�R� = 1, �3�

which means that all facilitated bonds rearrange with unit
rate. �Here, ��	� is the usual Gamma function.�

These dynamical rules respect detailed balance with re-
spect to a steady state distribution Pstat,BBL���i�� that factor-
izes between sites. In the grand canonical ensemble we have

Pstat,BBL���i�� = 

i

Ps��i�, Ps��� � �	−1e�, �4�

normalized so that �0
2d� Ps���=1. Our notation differs from

�5� in that we use  for the Lagrange multiplier conjugate to
density, reserving � for the inverse temperature of the FA
model.

It is clear from Eq. �1� that motion is possible only across
bonds with f i=1. We refer to these as facilitated bonds. The
steady state contains a finite fraction of facilitated bonds,
which we denote by

� � f i� . �5�

We also define the mean density,

�̄ � �i� . �6�

Facilitated bonds in the BBL model are the fundamental
mobility excitations in the system. The interesting scaling

limit is the one of maximal mean density �̄→2, where fa-
cilitated bonds are rare ���1�. In this limit,  is large, and
we have

�̄ = 2 − −1 + O�−2� , �7�

� = 2 exp�− 2�
��	�2

��2	�
�1 + O�−1�� , �8�

consistent with �5�. It was further observed in �5� that the
dynamics of these excitations in the BBL model can be rep-
resented schematically by the processes

01 ↔ 11 ↔ 10, �9�

where a 1 represents a facilitated bond �f i=1 or f i+1=1, re-
spectively�, and a 0 an unfacilitated bond �f i=0 or f i+1=0�.
The above two-step process then produces effective diffusion
of excitations. When excitations meet, they can coagulate
via, e.g., 101→111→011→010; running through the steps
in reverse, a single excitation can also branch into two. Ex-
citations can never be created unless there is already an ex-
citation present on a neighbouring bond, and this is the key
motivation for the effective FA models presented below.

When excitations are rare, the rate-limiting step in the
effective diffusion is the creation of a new excitation, 01
→11. To obtain the typical rate for this process, consider a
density rearrangement event across bond i+1:

�i,�i+1,�i+2 → �i,�i+1� ,�i+2� . �10�

The process 01→11 occurs when the second bond is facili-
tated in both initial and final states, while the first bond is
facilitated only in the final state. That is,

�i+1 + �i+2 = �i+1� + �i+2� � 2,

�i + �i+1 � 2,

�i + �i+1� � 2. �11�

To work out the typical rate with which these processes oc-
cur, we should perform a steady-state average over all initial
configurations with the prescribed mobility configuration
�f i=0, f i+1=1�, corresponding to the first two conditions
listed. In addition, however, we condition on �i, which
strongly influences the rate if it is close to 2: the third con-
dition given above can then only be met if �i+1� is very small.
Thus, we consider the average rate for the process ��i=2
−�i , f i=0, f i+1=1�→ ��i=2−�i , f i=1, f i+1=1�, which can
only occur via a density rearrangement across bond i+1 as
written above. The steady-state distribution factorizes be-
tween sites and so we have for this rate, denoted by ri��i�,

ri��i� =

	
�i

2

dR	
�i

R

d�i+1Ps��i+1�Ps�R − �i+1�	
0

�i

d�i+1� 	
0

2

d�i+2� P���i+1� ,�i+2� �R�

	
�i

2

dR	
�i

R

d�i+1Ps��i+1�Ps�R − �i+1�
�12�
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where we have introduced R=�i+1+�i+2. The integral over
�i+2� in the numerator gives A��i+1� �R−�i+1� ��	−1, and the one
over �i+1� then a normalized incomplete Beta function
B�	 ,	 ;�i /R� /B�	 ,	�. The remaining average over R �and
�i+1� becomes concentrated around R=2 for large , so that
in this limit

ri��i� =
B�	,	;�i/2�

B�	,	�
=

	
0

�i/2

dv v	−1�1 − v�	−1

	
0

1

dv v	−1�1 − v�	−1

. �13�

Recalling that the local density is �i=2−�i, we note that
dense sites �those with small �i� lead to small rates ri.

The relaxation of the BBL model on long time scales is
determined by sites with small ri. For this reason, it is con-
venient to deduce the distribution of this rate from that of �i,
or equivalently �i. From Eq. �4� one sees for large  that the
variation of the power law factor �	−1 near �=2 can be ne-
glected, so that Ps��i�= exp�−�i�. The typical values of �i
are therefore small, �i�−1, and we can expand the rate as

ri��i� � a�i
	, a =

��2	�
	2	��	�2 . �14�

Transforming then from the distribution of �i to ri gives

Ps,r�r� = �Ps��i��dri��i�
d�i

�−1�
r=ri��i�

=
1

	�0
�r/�0��1/	�−1e−�r/�0�1/	

, �15�

where

�0 = a−	 � −	 �16�

is a microscopic rate, which acts as an upper cutoff on the
distribution of rates. �The notation u�v means that u and v
are proportional to each other in the relevant limit �large �.�
It is important to note that the small-r scaling of the distri-
bution Ps,r�r��r�1/	�−1, which we derived above in the limit
→�, also applies at finite . This is because the rate for
small �i always scales as in Eq. �14�, and the probability
density Ps��i� of �i approaches a constant for small �i for all
.

The long-time behavior of the BBL model is now con-
trolled by the behavior of Ps,r�r� at small r, and, in particular,
by the exponent 	. The time for a mobility excitation to
diffuse across bond i is of order 1 /ri. The average diffusion
time 1 /r�, with the average taken over the distribution
Ps,r�r�, then shows a change of behavior at 	=1: for 	�1 it
is finite, while for 	�1 it diverges. This motivates why
subdiffusion occurs in the second case: for arbitrarily long
times t there are a significant number of barriers to mobility
diffusion that have transmission rate �1 / t.

B. Effective FA model

We now describe the effective model that captures the
dynamics of the mobile bonds on large length and time

scales. In this model, the bonds of the BBL model are rep-
resented by a chain of binary variables �ni�, where ni=1 if
the bond between sites i and i+1 of the BBL model is mo-
bile, and ni=0 otherwise. The variable ni corresponds to the
BBL variable f i. The process of Eq. �9� is then

�ni = 0,ni+1 = 1� → �ni = 1,ni+1 = 1� . �17�

It occurs with a rate rie
−�, and the reverse process occurs

with rate ri. Here, e−� determines the concentration of sites
with ni=1, while ri is a site-dependent rate whose fluctua-
tions capture the effect of the fluctuating density �i in the
BBL model. In our effective model we use the convention
0�ri�1; taking a maximal rate of unity sets the unit of
time. To mimic the distribution of rates in the BBL model,
we define the disordered FA model so that the ri are distrib-
uted independently in the steady state, with

Pr�ri� = �1/	�ri
�1/	�−1, ri � 1, �18�

in accordance with Eq. �15�.
The rate ri in the disordered FA model reflects the local

density in the BBL model: it is a fluctuating variable. In the
dynamics of the disordered FA model, we account for this
fact by randomizing ri when the process corresponding to
Eq. �10� occurs. Hence, we define our disordered FA model
by the dynamical rules

�ni,ni+1,ri� → �ni,1 − ni+1,ri�� ,

rate nirie
��ni+1−1�Pann�ri�� ,

�ni,ni+1,ri� → �1 − ni,ni+1,ri�� ,

rate ni+1rie
��ni−1�Pann�ri�� ,

where

Pann�r� � rPr�r� �19�

�explicitly, Pann�r�= ��1 /	�+1�r1/	�, and the variables ni
� �0,1� and 0�ri�1 reside on the sites and bonds of the FA
lattice, respectively. We identify this model as a disordered
variant of the FA model �12�, since the case Pr�r�=
�r−1� is
the one-spin facilitated one-dimensional FA model. We refer
to it as the bond-disordered FA model since the rates ri are
associated with the bonds of the FA lattice.

The “annealed” distribution of rates after randomisation,
Pann�ri��, is constructed such that the model obeys detailed
balance with respect to

Pstat,FA��ni�,�ri�� � 

i

Pr�ri�e−�ni. �20�

The stationary density of sites with ni=1 is

c � ni� = �1 + e��−1, �21�

which plays the part of the parameter � defined in Eq. �5�.
The only other parameter in the model is 	, which corre-
sponds directly with 	 in the BBL model.

Several other comments are in order. We chose 0�r�1
above, for convenience. As a result, we do not expect direct
correspondence between time units in the original and effec-
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tive models �comparing Eqs. �15� and �18�, we have effec-
tively set the prefactor �0 to unity�. There is also no exact
correspondence between the steady states: in the FA model,
there are no spatial correlations at all between the ni, whereas
in the original BBL model neighboring excitations �f i , f i+1�
are correlated via the density variable �i+1. Finally, the way
rates ri are linked to the creation and destruction of excita-
tions also does not match exactly. In the original BBL model,
we saw above that the process �f i=0, f i+1=1�→ �f i=1, f i+1
=1� is controlled by the density �i, and is slow when �i is
close to 2. Translating to the dual lattice of the FA model,
this corresponds to the controlling rate for �ni=0,ni+1=1�
→ �ni=1,ni+1=1� being associated with the bond between
ni−1 and ni, not with the bond between ni and ni+1 as we have
posited. Thus, e.g., the transient appearance of an excitation,
01→11→01, randomizes ri in our FA model but does not
change �i in the BBL model so that ri remains unchanged as
well. On the other hand, in an effective diffusion step 01
→11→10 in the BBL model, the second step involves a
rearrangement across bond i and so a randomization of �i
and hence ri. This is correctly captured in the FA model, and
as effective diffusion is the key process in the dynamics we
expect our model to give a qualitatively correct description
of the BBL dynamics.

C. Model variants

1. Grand canonical BBL model

The grand canonical expression �4� motivates us to define
a modified BBL model in which volume is not conserved.
We use the same dynamical rule �1�, but replace
P���i ,�i+1 �R� by

P����i,�i+1� = A���i�i+1�	−1e��i+�i+1���2 − �i − �i+1� ,

�22�

where the final state is now independent of the volume in the
initial state. These dynamical rules preserve the same equi-
librium distribution as that of the original BBL model, as
given in Eq. �4�. The constant of proportionality A� is set by
�0

2d��0
2d��P���� ,���=1 so that bonds rearrange with unit rate,

as in the original model.
We will find that propagation of mobile bonds is similar

in models with and without conserved density, although the
relaxation of density fluctuations will clearly be different.

2. Site-disordered FA models

We also define a site-disordered FA model, in which we
associate random rates ri with the sites of the FA chain, in-
stead of the bonds. The dynamical rules are then

�ni,ni+1,ri,ri+1� → �ni,1 − ni+1,ri,ri+1� � ,

rate niri+1e��ni+1−1�Pann�ri+1� � ,

�ni,ni+1,ri,ri+1� → �1 − ni,ni+1,ri�,ri+1� ,

rate ni+1rie
��ni−1�Pann�ri�� .

As for the bond-disordered FA model, this model also does
not exactly capture how rates are linked to rearrangements in

the BBL model; but it does provide for rates to be random-
ized every time an excitation makes an effective diffusion
step, which is the key property for the physics. Indeed, we
will see below that the excitations behave similarly for bond
and site disorder. However, on introducing probe particles to
these disordered FA models, one finds that the site-
disordered model provides a better match to the BBL model
dynamics. The reasons for this will be explained below.

3. FA models with quenched disorder

Finally, it is convenient to define FA models with
quenched disorder, in which the rates ri do not depend on
time. The distribution of rates is simply Pr�ri� in that case.
Interestingly, we will find that quenching the disorder in this
way has very little effect on dynamical correlations �after
disorder averaging�. We note that the quenched bond-
disordered FA model has a mapping to a disordered model of
appearing and annihilating defects �AA model�, and inherits
from the latter an exact duality mapping, as in the pure case
�21�.

III. MOBILITY EXCITATIONS

We now consider the dynamics of the mobility excitations
in the BBL model, always in the interesting limit where �̄ is
close to 2. First consider the regime where the parameter 	 is
small �much less than unity�. The BBL model in its steady
state then has a bimodal distribution of densities with sharp
peaks near zero and 2. In that case, it describes diffusing
vacancies in a one-dimensional solid �i.e., high-density back-
ground�. The disordered FA models, on the other hand, all
reduce to the pure FA model in the limit of small 	. All
models then exhibit dynamical scaling when the excitation
density is small, with exponents

�z,�� = �2,1�, 	 � 1. �23�

Here z is the dynamical exponent that sets the relative scal-
ing of space and time, while the correlation length scales as
the average distance between excitations, i.e., ���−� for the
BBL model and ��c−� for the FA case.

However, the case of 	�1 is qualitatively different from
that of small 	. For example, the mean time associated with
rearrangements is 1 /r� which diverges for 	�1 as ex-
plained above �recall Eqs. �15� and �18��. We therefore ex-
pect the disorder to have a strong effect: this is clear from
plots of the propensity �22�, which we define in terms of the
persistence function pi�t�. This function takes a value of
unity if the state of site i has not changed between time zero
and time t, and pi�t�=0 otherwise. The �time-dependent� pro-
pensity for a given initial condition of the system is then 1
− pi�t��dyn, where the average is over the stochastic dynam-
ics of the system, but with the initial condition fixed �22�. We
show sample plots in Fig. 1. In the BBL model, sites with
density close to 2 act as barriers to propagation of mobility;
in the FA model the same effect arises from bonds with small
rates.

A more quantitative measure of the effect of the disorder
is its effect on dynamical scaling. It was observed in �5� that
the BBL model has scaling exponents close to
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�z,�� = �1 + 	,1�, 	 � 1. �24�

An effective model of a single excitation propagating in a
quenched environment of random energy barriers gives this
scaling, if the distribution of rates for crossing the barriers is
Pr�r� �23�. We will discuss below why this quenched result is
applicable to the BBL model, which has no quenched disor-
der. First, though, we show that this subdiffusive scaling can
be observed in the four-point functions of both BBL and
disordered FA models.

We consider the correlation function

G4�x,t� = 
pi+x�t�
pi�0�� , �25�

where 
pi�t�= pi�t�− pi�t��; pi�t� is the persistence operator
defined above, and the averages are over both initial condi-
tions and the stochastic dynamics. The normalized four point
susceptibility is

�4n�t� � �
x

G4�x,t�/G4�0,t� . �26�

In one dimension �4n�t� is a direct measurement of a growing
length scale, when normalized in this way �20,24�. �Note that
we evaluate averages in an ensemble with fixed “chemical

potential” , so that the mean density �̄ is allowed to fluctu-
ate. Since the dynamics conserve �̄, this choice does affect
the value of �4n�t� �8�.� In the scaling limit ��̄→2 from be-
low�, we expect

�4n�t� � ��t�1/zf��t/�z� �27�

where � is the correlation length whose scaling was given
above, z is given by Eqs. �23� or �24�, as appropriate, � is a
microscopic rate, and f�x� is a scaling function that is con-
stant at small x and decreases as x−1/z for large x. We argue
below that for the BBL model, the rate � is equal to �0
�recall Eq. �15��, while for the FA model, we have ��c �for
small excitation density c�.

We show results in Fig. 2. Both models are consistent
with Eq. �27�; we also find that the FA model exhibits the
same scaling as the BBL model, if we identify the excitation
densities c and �. Hence we argue that the disordered FA
model is an appropriate effective theory for the BBL model.

Figure 2 demonstrates further that BBL models with and
without conserved density behave very similarly. We con-
clude that the conservation of density is not relevant for scal-
ing: this is consistent with the use of the disordered FA
model as an effective theory, since that model has no con-
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FIG. 1. Typical realizations of the propensity, with times such that the spatially averaged persistence function satisfies 1− p�t���0.4.
Large values of the propensity indicate sites that are very likely to have relaxed, on this time scale. The models with subdiffusive dynamics
have large jumps in the propensity, which arise from sites that relax very infrequently. �a� BBL model at 	=2 and �=0.01. �b� Bond-
disordered FA model at 	=2 and c=0.01. �c� Pure FA model at c=0.01. In the pure case, there are no barriers for excitation propagation, and
the propensity is smooth �except near sites with ni�t=0�=1, where it is maximal�.
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FIG. 2. Subdiffusion in the FA and BBL models is apparent in the four-point susceptibility. �a� We show �4n�t� in the BBL model at
various 	 and �. For the case 	=0, we use a binary distribution of on-site densities Ps�����
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�1+��2; the small offset 0+ ensures that the facilitation constraint is well defined. The dashed lines show the power law predictions of Eq.
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=0. The label �G� denotes data for the grand canonical variant of the BBL model. �b� Bond-disordered FA model data with the same values
of 	, showing that this effective model captures the four point correlations of the BBL model. The labels �Q� and �S� denote data from the
model with quenched bond disorder and fluctuating site disorder respectively; the different variants have very similar behavior.
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served density. Quenching the disorder in the FA model has
only very weak effects on disorder-averaged properties such
as �4n�t�; finally, differences between bond-disordered and
site-disordered models are also very small.

A. Effective barrier models for single excitations

Figure 2 is clear evidence that both BBL and disordered
FA models have excitations that propagate subdiffusively at
large 	. Further, the dynamical exponents for all the models
with 	�1 seem to satisfy Eq. �24�.

For the FA model with quenched bond disorder, this result
is to be expected since the motion of independent random
walkers in this kind of environment is well understood �23�
and does indeed satisfy Eq. �24�. However, it was argued in
�5� that fluctuating disorder should lead to

z = 	, 	 � 2, �28�

and z=2 otherwise. This result is inconsistent with the data.
We are not aware of any analysis of fluctuating disorder

that is slaved to the motion of the random walker. In this
section, we give an argument that explains the applicability
of Eq. �24� to the FA model with fluctuating disorder, and
hence to the BBL model. While this is not a rigorous proof,
the various stages of the argument have been verified by
direct simulation.

To describe the motion of a single excitation in a disor-
dered environment, we consider a simple barrier model �23�.
A single particle moves on a chain of sites, with independent
random hop rates �ri� on the bonds, distributed according to
Pr�r�. We consider both quenched and fluctuating disorder: if
the disorder is fluctuating, then each random rate is redrawn
from the distribution Pann�r� when the bond is traversed by
the random walker. We have verified by simulation that both
variants of this model do indeed satisfy Eq. �24�. We explain
this result using an argument related to that of le Doussal,
Monthus, and Fisher �25�. The effective dynamics scheme
that we use for the barrier model with quenched disorder was
described in �26�, where it was shown that the effective dy-
namics are a good description of the quenched barrier model,
as long as the exponent 	 is large. We give a brief descrip-
tion of the effective dynamics here, referring to �26� for de-
tails.

In �25�, the authors proposed an effective dynamics for a
random walker in a �quenched� one-dimensional energy
landscape, made up of “barriers” and “valleys.” At each
stage of the effective dynamics, the smallest barrier in the
system is removed, and the particle moves to the bottom of
the valley that contains the origin. The time associated with
this process is the inverse transmission rate of the barrier that
was removed. For models in which the energy landscape has
short-ranged correlations, this effective dynamics mimics the
real dynamics of the random walker.

For the quenched barrier model, every site is at zero en-
ergy, and sites are separated by barriers of varying heights.
The effective dynamics involves successive removal of the
smallest barriers. Thus, at a given stage of the dynamics, the
remaining barriers divide the system into “effective traps.”
As discussed in �26�, the barrier model requires a modifica-

tion to the scheme of �25�, in that the time at which barrier i
is removed depends both on the rate ri and on the widths of
the effective traps to the left and right of barrier i. If the
widths of these traps are l1 and l2, the time �i associated with
barrier i is determined by �i

−1=ri�1 / l1+1 / l2�.
To arrive at the subdiffusive scaling of the quenched bar-

rier model, we assume that, at time t, effective traps have a
typical width ��t�. All barriers with �i� t have been re-
moved; typically, these barriers have ri���t� / t.1 Thus, the
density of remaining barriers is

��t�−1 � 	
0

��t�/t

dr Pr�r� , �29�

which yields �for large t�

t � ��t�1+	. �30�

The root mean square displacement of the diffusing excita-
tion scales with ��t�, so we identify the dynamic exponent
z=1+	, consistent with Eq. �24�. As discussed in �26�, the
effective dynamics scheme is predicated on a separation of
time scales between crossing rates for successive barriers. In
fact, these time scales become well separated only in the
limit of large 	, where the diffusion front of the effective
dynamics approaches that of the quenched barrier model.
Nevertheless, the effective dynamics turns out to give the
correct dynamical scaling �24� of the diffusion front through-
out the entire subdiffusive regime, i.e., all the way down to
the crossover to simple diffusion at 	=1.

We now apply this scheme to models with fluctuating
disorder. The fluctuations in the disorder have two main ef-
fects. First, once large barriers have been crossed, their rates
are randomized. Thus, if multiple crossings of the same large
barrier are important for the quenched model, we expect dif-
ferent behavior for fluctuating disorder. However, a central
assumption of the effective dynamics is that the time to
travel a distance � is dominated by the time required for the
first crossing of the largest barrier between the initial and
final sites �26�. Hence, multiple crossings of large barriers
are ignored in the effective dynamics, which should therefore
be consistent with fluctuating disorder. The second effect of
fluctuating disorder is that barrier transmission rates are be-
ing randomized as the excitation moves around, so a barrier
which previously had a large transmission rate may acquire a
new rate that is very small. This new rate would then act as
a high barrier and so have a strong effect on the resulting
motion. As before, the time taken to move a distance � will
be given by the time taken to cross the largest barrier be-
tween initial and final states: this might be a barrier that was
present initially, or one that appeared as the excitation moved
through the system. The key point here is that the system is
in a steady state, so the introduction of new barriers occurs
with the same rate as the removal of barriers of the same
size. Since barriers are removed only when they are crossed,

1As discussed in �26�, these arguments based on a typical length
scale ��t� are valid since the distribution of trap widths l is much
narrower than the distribution of time scales �, so fluctuations in l
can be neglected.
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barriers that appear in the system are typically of a size com-
parable with those that have already been crossed at least
once. In the language of the effective dynamics, these barri-
ers are “irrelevant.” For these reasons, the effective dynamics
apply equally well to models with quenched and fluctuating
disorder, and we expect the dynamical exponent z=1+	 for
both cases. This expectation is verified in Fig. 3. We empha-
sise that while the effective dynamics gives accurate predic-
tions for the diffusion front only when 	 is large �26�, it
gives the correct dynamical scaling for all 	�1: we show
this by presenting data for the relatively modest value of 	
=3.

Of course, the situation would be very different if the
fluctuating disorder was annealed in a two-sided way, where
every time an excitation moved to a new site one randomizes
the rates for both of the barriers adjacent to that site. This
would produce a continuous-time random walk �23�, with
subdiffusion exponents as in Eq. �28�.

To obtain the scaling of length and time scales in the FA
and BBL models, we note that the equilibrium spacing be-
tween defects sets the dynamical correlation length � �for
these one-dimensional models�. We define the persistence
time �p by pi��p��=1 /e, where pi�t� is the persistence func-
tion, defined above. As in the pure FA model, �p scales with
the time taken for an excitation to propagate a distance �, so
we identify �p��−1�z, consistent with Eq. �27�. To obtain
the scaling of � with the excitation density � or c, it is
useful to rephrase the scaling argument associated with the
effective dynamics. In the BBL model, Eq. �15� implies that
the fraction of sites with rate ri�r scales as

n�r� � �r/�0�1/	 �31�

for small r. Thus, moving a distance � typically requires the
particle to cross a barrier whose transmission rate is ri
��0�−	. The time taken to cross such a barrier is typically

�i�� /ri��0
−1�1+	. This is consistent with Eq. �30�, and it

allows us to identify the coefficient � in Eq. �27� with �0 in
Eq. �15�. In the FA model, crossing a barrier with transmis-
sion rate ri typically requires a spin to flip from state 0 to
state 1, and this process occurs with rate e−��c. Thus, mov-
ing a distance � typically requires the crossing of a barrier
with ri��−	, which takes a time �i�� / �ric��c−1�1+	. Thus,
we identify the coefficient � in Eq. �27� with the inverse
excitation density c. Overall, for 	�1, we arrive at �p
�c−2−	 for the FA model, and �p��ln�1 /���−	�−1−	 for the
BBL model, where we used �0�−	��ln�1 /���−	.

We conclude that the effective dynamics scheme pre-
sented here captures the propagation of mobility excitations
in the BBL and disordered FA models on large length and
time scales, even though the BBL model has nontrivial dy-
namical correlations in the densities �i which the coarse-
grained FA model neglects. This analysis demonstrates that
the scaling properties of the persistence time and the four-
point susceptibility, as expressed in Eqs. �23�, �24�, and �27�,
can be understood in terms of independently propagating
�noncooperative� excitations.

B. Long-time limit

So far, we have considered time scales up to the persis-
tence time �p: excitations move distances smaller than their
typical spacing, and can be treated independently. We now
turn to much longer time scales. The assumption of indepen-
dently propagating defects in one dimension leads to a per-
sistence function consistent with the results of �5�:

p�t� � pi�t�� = exp�−
��t�1/z

�
� �32�

for t�1.
However, for times larger than �p, this prediction fails.

For example, in the site-disordered FA model, the fraction of
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FIG. 3. Dynamics of a random walker in a disordered environment of random energy barriers, where the distribution of barrier-crossing
rates is Pr�r�, with 	=3. We compare quenched and fluctuating disorder: in the fluctuating case, the rate for hopping between sites i to i
+1 is randomized whenever the random walker hops between these sites. We compare these two dynamical models with the effective
dynamics discussed in the main text. �a� Mean square displacement of the random walker, x2�t�. In the long-time regime, we find dynamical
scaling x2�t����t�2/�1+	�= ��t�1/2. The power law x2� t1/2 is shown as a light dashed line. The agreement between the effective dynamics
and the model with quenched disorder was discussed in �26�. Here we emphasize that the only effect of introducing fluctuating disorder is
a small reduction in the prefactor �. �b� Scaling form of the diffusion front, normalized to equal height at the origin. That is, we write the
distribution of the particle displacement as P�x � t�= P�0 � t�f�xP�0 � t�� and we plot the function f�u�. Within the scaling regime, f�u� does not
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	, but vanish in the limit of large 	.
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sites with rate ri�r is n�r�=r1/	. At infinite temperature ��
=0,c=1 /2�, the facilitation constraint in the FA model can
be ignored �most sites are faciliated�. In that case, the typical
time taken to flip �for the first time� a site with initial rate ri
is �i=1 /ri. Thus, the persistence function decays as
pi�t���=0�n�t−1�� t−1/	. Lowering the temperature in the
FA model only slows down the dynamics, so pi�t��� t−1/	

for all times and temperatures. Thus, Eq. �32� must break
down at long times: we attribute this breakdown to the fact
that a single site with a small rate ri can block the motion of
several excitations.

We now consider this long-time regime in more detail,
and return to the effective dynamics picture, working with a
finite density of excitations, �. If the density of relevant bar-
riers is larger than the density of excitations, each effective
trap typically contains at most one excitation, and excitations
can be treated independently. However, when the spacing
between relevant barriers becomes larger than the distance
between excitations, one enters a different regime. To see
this, note that the typical time scale associated with rear-
rangement of a “slow” �relevant� site i in the BBL model is
generically �i=1 / �ri��i−1+�i+1�� where �i−1 and �i+1 are the
excitation densities in the effective traps to left and right of
site i. �Recall that ri is the rate with which the relevant site
rearranges, given that there is an excitation adjacent to that
site. Thus, the time taken to flip a relevant site depends on
the density of excitations in the adjacent traps.�

In the short-time regime where there are many more ef-
fective traps than there are excitations, then we can write
�i�1 / li if trap i contains an excitation, and �i=0 otherwise
�as above, li is the width of the effective trap i�. Considering
a site i for which one of the adjacent traps contains an exci-
tation, we arrive at the scaling relation �i� li /ri�� /ri, as
discussed above. However, if there are more excitations than
effective traps, we expect the density in each trap to be close
to its equilibrium value �i��i+1��. Thus, we expect �i
��2�ri�−1 for ���1. In both cases, for a given time t, we
use n�r���r /��1/	 to evaluate the fraction of sites with �i
� t: the mean spacing between these “relevant” sites is ��t�.
The result is

��t� � ���t�1/�1+	�, ��t� � � ,

��t/��1/	, ��t� � � ,
� �33�

where we have used ���−1. For long times, the exponent
1 /	 sets the time dependence of ��t�: this result applies for
all 	�0. In the short-time regime, Eq. �33� is consistent
with the analysis of the previous section, and with Eq. �27�,
as long as 	�1. However, if 	�1, the motion of excita-
tions is diffusive: thus, in the short-time regime, there is no
distinction between relevant and irrelevant barriers. This
means that if 	�1, the spacing between relevant barriers,
��t�, is only well defined in the long-time limit, and the
short-time scaling regime of Eq. �33� does not exist.

We observe that in the long time limit, ��t� represents the
mean spacing between isolated sites with small rates ri, and
these sites dominate the long-time limit of the persistence
function. That is, in the long-time scaling regime, Eq. �32� is
replaced by

p�t� � ��t�−1 � ��t/��−1/	. �34�

The crossover between the two scaling regimes occurs
when ��t�����−1 or c−1, respectively. This can be ob-
served in the long-time behavior of the persistence function
in the site-disordered FA model. To obtain the long-time
limit of this function more quantitatively, we decompose the
persistence p�t�=cp1�t�+ �1−c�p0�t� into contributions from
sites that were initially in states 1 and 0 �these two popula-
tions have weights c and �1−c�, respectively�. Then, in the
long-time regime ���, we have �i��2cri�−1 for sites that
were initially in state 1, given that each of the two facilitat-
ing neighbour sites contains a defect with probability c. For
those sites initially in state 0, the spin flip rate is suppressed
by e−�, leading to �i��2ce−�ri�−1. The persistence functions
are then estimated as the density of sites with �i� t, giving
p1�t�=n�1 / �2ct�� and p0�t�=n�1 / �2ce−�t��, respectively. Us-
ing n�r�=r1/	, we thus arrive at

p�t� � ��t�−1/	, ��t� � � � c−1, �35�

with

� = 2ce−��1 + c�e−�/	 − 1��−	. �36�

In the limit of dilute excitations �c�1� this reduces to �
�c2. Identifying p�t� with ��t�−1, this result is consistent
with Eq. �33�, since we argued in Sec. III A that ��c for the
FA model.

Results are shown in Fig. 4: at infinite temperature the
power law behavior of the persistence is clear. At lower tem-
peratures, the crossover to power law behavior occurs deep
in the tails of the persistence �p�t��c�. In the FA model, this
long-time regime can be demonstrated by simulations at high
temperature, on relatively short time scales. However, in the
BBL model, the equivalent of the high-temperature regime
requires small , increasing the prefactor �0, and reducing
the fraction of sites with small ri. This means that very long
simulations are required to access the long-time limit in the
BBL model, and we do not show numerical data in this case.
However, the simulations of the site-disordered FA model
confirm the validity of the arguments of this section, which
apply to both FA and BBL models. �To observe the long-time
regime in the bond-disordered FA model, one would need to
define and measure a persistence observable on bond i, asso-
ciated with the rearrangement of density across that bond.�

IV. PROBE PARTICLES

It is a familiar feature of kinetically constrained models
that propagation of probe particles is different from that of
excitations �3,4,6,27�. We now turn to probe particle motion
in the BBL and disordered FA models.

A. Probes in the BBL model

We introduce �noninteracting� probe particles to the BBL
model as follows. A probe can move along a bond when
density rearranges across that bond. If the bond connects
sites i and i+1, then after the rearrangement, the probe oc-
cupies site i with probability �i / ��i+�i+1�. The joint station-
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ary distribution for the probe position and the BBL densities
is

Pprobe,stat�X,��i�� � �i=X

i

Ps��i� , �37�

where X is the position �site index� of the probe. Thus, the
probability of finding a probe on site i=X is proportional to
the local BBL density on that site, �i=X. This is consistent
with the probe representing a typical particle in the BBL
model, before the coarse-graining into the densities �i is car-
ried out. An alternative rule, which is more consistent with
the effective FA model described below, is to assign the
probe with equal probability to sites i and i+1. As we discuss
below, the excitation motion in these models sets bounds on
the motion of the probes: we are primarily concerned with
the situation in which these bounds are saturated, in which
case details of the microscopic probe motion should be irrel-
evant. When the bounds are not saturated, the choice of dy-
namical rule does produce quantitative differences, although
qualitative features are preserved.

B. Probes in the FA model

We couple probe particles to the FA model using the
method of �3�. Probes can hop between pairs of adjacent sites
only when both sites have n=1; they attempt these hops with
unit rate. With these rules, the equilibrium distribution analo-
gous to Eq. �37� is independent of X: that is, the distribution
of the probe position decouples from the excitation variables
ni and the rates ri.

From the data presented above on the excitation dynamics
of the site-disordered and bond-disordered FA models, one
might expect that the two model variants also exhibit similar
probe dynamics. However, this is not the case because bar-
riers to excitation diffusion act differently on the probes. To
see this, consider the site-disordered model, and suppose that
site i starts with ni=0 and with a small rate ri. The probe
cannot cross this site until its excitation state changes to ni
=1. The rate for this is of order cri, and so the rate for a
probe to cross this site also vanishes with ri: high barriers for

excitations �small ri� are also high barriers for probes in the
site-disordered FA model.

Now consider the bond-disordered FA model, focusing on
a particular bond i, with a small rate ri. The probe particle
can cross this bond if ni=1 and ni+1=1: this state can occur
on time scales much shorter than �cri�−1 if an excitation ar-
riving from the right facilitates ni+1 and another excitation
arriving from the left facilitates ni. This process sets a rate
for crossing the slow bond that is independent of ri. So the
barriers for excitation diffusion have a much smaller effect
on probe propagation in the bond-disordered model. �One
way to avoid this behavior would be to allow the probe to
move along bond i only when the rate for that bond is ran-
domized, but we have not pursued this as we wanted to keep
the probe dynamics similar to that used in �3�.�

It is clear that in the original BBL model, the barriers for
excitation diffusion do also act on probes. A high barrier here
is a site with density �i�2. This can take part in a rearrange-
ment only once a rearrangement of neighbouring sites has
produced a low-density �i−1�2−�i or �i+1�2−�i. The rate
for these processes, and hence for probe diffusion across site
i, vanishes as �i→2. In summary, only the site-disordered
FA model can provide an accurate representation of the BBL
probe dynamics because it retains the effect of high barriers
on the probes. We therefore do not consider the bond-
disordered case in the following.

C. Results for probe motion

In the BBL and site-disordered FA models, the preceding
discussion illustrates that sites with small rate ri are able to
block the propagation of probes. Taking the FA model for
concreteness, the probe cannot pass any site for which ni
=0 for all times between 0 and t. As discussed in Sec. III B,
the mean spacing between these sites scales as t1/	 for large
times t. This sets a limit on probe motion,

X�t�2� � ��t�2 � t2/	. �38�

For 	�2, this bound is irrelevant: the probes simply diffuse.
However, for 	�2, we expect this bound to be saturated at
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large times. At long times, we have ��t�� p�t�−1 �recall Eq.
�34��. Thus, Fig. 5 demonstrates that the bound �38� does
saturate at long times, although we note that the times re-
quired are quite large, even at infinite temperature �c=1 /2�.
Physically, the length scale ��t� represents the size of an
effective trap: saturation of the bound requires that the probe
particle explores the whole of the trap before the barriers
delimiting the trap become irrelevant. The scaling arguments
presented here do not allow us to estimate the time required
to reach this regime. However, Eq. �38� shows that probe
propagation must be asympotically subdiffusive for all 	
�2, and the data are consistent with saturation of this bound
throughout this regime.

We emphasize that, while Fig. 5 demonstrates that Eq.
�38� holds on long time scales in the FA model, the scaling
arguments presented here apply equally well to the BBL
model, so asymptotic probe motion in that model must be
subdiffusive for 	�2.

We now turn to time scales shorter than �p, for which the
length scale � again sets a bound on probe motion. Following
�4�, we decompose the probes into two populations: those
that have moved at least once, and those which have not
moved at all. We denote the fraction of probes that have
moved at least once by ��t�. Confinement of probes by sites
that are persistently unfacilitated again sets an upper bound
on the displacement of probes:

�X�t��n�
1 − ��t�

� ��t�n, �39�

where the left-hand side is the nth moment of the distance
moved by those probes that have moved at least once, and
the scaling of ��t� was given in Eq. �33�. Again, saturation of
this bound occurs when motion of the probe particle within
the effective trap is fast enough that the probe can delocalize
within the trap before the barriers delimiting the trap become
irrelevant. In the joint limit of large time and large 	, the
time scales associated with adjacent barriers become well
separated �25,26�, allowing equilibration to take place. Thus,
for large 	, we expect the bound of Eq. �39� to be saturated
for times t�1, even if t��p.

Assuming saturation of the bound Eq. �39� and t��p, the
probe persistence scales as 1−��t��1
−exp�−��t� /�����t� /�. �This is the same scaling as for the
excitation persistence in Eq. �32�.� Combining this with Eq.
�33�, we arrive at

�X�t��n� � �−1��t��1+n�/�1+	�. �40�

Our simulations are restricted to finite time scales and values
of 	 that are not very large, so we are not able to investigate
this bound in detail. However, the results shown in Fig. 6 are
certainly consistent with the prediction of Eq. �40�.

V. CONCLUSION

To summarize our main results, we have established that
probes and mobility excitations both propagate subdiffu-
sively in the BBL model, and that this subdiffusive behavior
can be reproduced in a simple effective FA model. This ob-
servation allows us to analyze the subdiffusive motion, and
to predict the dynamical exponents for both excitations and
probes in the subdiffusive regime �Eqs. �24� and �38��. A key
part of the reasoning consists in showing that quenched and
annealed disorder lead to qualitatively the same behavior.
This allowed us to deduce that correlation length and time
scales are related in these models, by ���1+	. When 	 is
large, we conclude that the very broad distribution of rates in
these models leads to a relaxation time that increases much
more quickly than the associated length scales, on approach-
ing the glass transition.

We also identify two kinds of subdiffusive motion in these
models. On time scales 1� t��p, mobility excitations propa-
gate independently and subdiffusively, according to

X2� � ��t�2/�1+	�. �41�

The mean square displacement for probes is different and
given by Eq. �40� with n=2. One has to remember though
that the associated root mean square displacement X2�1/2

does not define a length scale for probe motion, since it
arises from an average over a dominant population of probes
that have not yet moved, and a smaller population that has
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moved by ��t�1/�1+	�. For the same reason the exponent for
the scaling of �X�t��n� in Eq. �40� is not simply proportional
to n. On time scales t��p, excitations coagulate and branch,
and it is not consistent to discuss motion of a single excita-
tion. However, in this long-time regime, probe particles
propagate subdiffusively, according to

X2� � ��t/��2/	. �42�

The presence of different dynamical exponents for probes
and excitations may seem surprising, but we emphasize that
Eqs. �41� and �42� apply in separate scaling regimes. �When
the concentration of excitations is small, the persistence time
�p�1 separates two well-defined scaling regimes; of course
t is always taken to be large compared to unity.�

Conceptually, it is interesting to note that, in the pure FA
model at low temperature, relaxation is controlled by rare
active sites �defects�. In the disordered model, on the other
hand, rare inactive regions �sites with small ri� play at least
as important a role.

Finally, our results for probe particles imply that the
Stokes-Einstein relation �9� between relaxation time and
probe diffusion constant, D��1, has broken down com-
pletely in these systems. In the pure FA model, D� diverges
at low temperatures �3�. On the other hand, in the disordered

model, the presence of sites �or barriers� with arbitrarily
small rate ri means that the persistence decays as a power
law for large times, while the motion of the probes is sub-
diffusive even in the long-time limit. However, we can define
an analog of the Fickian length �F= X2��p��1/2 which repre-
sents the distance traveled by a probe, through repeated en-
counters with a single excitation �4�. If the bound of Eq. �39�
is saturated we arrive at �F����p���. For the site-
disordered FA model, this leads to �F�c−1, at least for large
	; on the other hand, in the pure FA model, �F�c−1/2. Physi-
cally, confinement of the excitation in an effective trap
means that it facilitates any probes in that trap very many
times, allowing the probe to delocalize thoughout the trap. In
this way, the presence of large barriers to excitation diffusion
in the BBL and disordered FA models strengthens the effects
discussed in �3,4�, in which the square of the Fickian length
represents the number of hops that a probe makes through
multiple encounters with a single excitation.
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