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We show that the exactly solved low-temperature branch of the two-dimensional O(n) model is equivalent
to an O(n) model with vacancies and a different value of n. We present analytic results for several universal
parameters of the latter model, which is identified as a tricritical point. These results apply to the range n
=<3/2 and include the exact tricritical point, the conformal anomaly, and a number of scaling dimensions,
among which are the thermal and magnetic exponents, and the exponent associated with the crossover to
ordinary critical behavior and to tricritical behavior with cubic symmetry. We describe the translation of the
tricritical model in a Coulomb gas. The results are verified numerically by means of transfer-matrix calcula-
tions. We use a generalized ADE model as an intermediary and present the expression of the one-point
distribution function in that language. The analytic calculations are done both for the square and the honey-

comb lattice.

DOI: 10.1103/PhysRevE.78.061104

I. INTRODUCTION

The O(n) model is defined in terms of n-component spins
on a lattice that interact in an isotropic way. Graph expansion
[1] of the partition integral of this model leads to a weighted
sum of graphs, in which every node is connected to its neigh-
bors by an even number of bonds. In the resulting partition
sum, the spin dimensionality » is only a parameter and may
be varied continuously. For a special choice of the model on
the honeycomb lattice, one thus derives a model of noninter-
secting loops [2]. Exact results for the universal parameters
[3] as a function of n were obtained for this O(n) model for
two cases, one of them describing the critical point and the
other a special (see [4]) case of the low-temperature phase.
These results are described in the context of the Coulomb
gas in a review by Nienhuis [5].

These two cases of universal behavior were also found
along two branches of a square-lattice O(n) model [6,7], to-
gether with two different branches describing the critical be-
havior that occurs when O(n) and Ising degrees of freedom
on the square lattice display a joint critical point. But it took
a long time before an exact description was also proposed [8]
for the tricritical O(n) universal parameters in two dimen-
sions as a function of n. The plausibility of this description
follows from earlier identifications of the fully packed O(n)
loop model with the critical Potts model and of the critical
O(n) model with the tricritical Potts model [3]. Therefore it
seemed plausible that the tricritical O(n) model is associated
with an even higher critical Potts model. Such a model is
known in the form of the tri-tricritical Potts model, for which
some universal parameters are known [9,10]. Moreover,
these universal parameters were found to agree accurately
with numerical estimates of the conformal anomaly and
some critical exponents of the tricritical O(n) model on the
honeycomb lattice.

In this paper we provide a more exact basis for this char-
acterization of the tricritical O(n) universal parameters by
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means of an exact mapping between an O(n)-symmetric spin
model with vacancies and an O(n') loop model without va-
cancies which was exactly solved in Refs. [6,11]. This map-
ping consists of several steps. One of these maps the spin
model with vacancies onto a loop model with vacancies, as
reported in Sec. II. It includes, as a limiting case, the map-
ping between both models without vacancies. In Sec. III, we
first represent the exactly solved square-lattice loop model
[6,11] as a generalized ADE model involving discrete site
variables, separated by domain walls. Some of the states of
these site variables are interpreted as vacancies. Then, sum-
mation over the remaining states leads to an O(n) loop model
with vacancies and with a modified loop weight n. The latter
model can again be transformed into an O(n) spin model
with vacancies and with a number n of spin components
different from that of the spin representation of the original
loop model without vacancies. Section III also provides
a similar analysis involving models on the honeycomb lattice
and the interpretation of the models with vacancies as
tricritical models. We include a mapping on the Coulomb
gas, which yields some critical exponents, including the one
that is responsible for a crossover to models with cubic sym-
metry. This part is presented in Sec. IV. In Sec. V we define
the transfer matrix and apply it to confirm numerically some
of the predicted exponents. Results and consequences are
discussed in Sec. VL.

II. MAPPING OF THE SPIN MODEL ON A SOLVABLE
LOOP MODEL

As a candidate system to display O(n) tricriticality, we
choose a generalized version of the O(n) spin model on the
square lattice studied by Nienhuis and co-workers [6,7,11].
The n-component spins occupy the midpoints of the lattice
edges. They are denoted §; where the index i labels the cor-
responding edge. The integration measure is normalized by
fds=1 and the mean length of the spins by [ds(s-5)=n. The
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FIG. 1. Part of the square lattice with spin variables (@) and
face variables (O) representing the vacancies. The vertices are
shown as +. The figure includes the labeling of the variables used
in the definition of the local weight W(k), when applied to the
central vertex in this figure.

distribution is chosen isotropic—i.e., in accordance with
O(n) symmetry. The model also includes face variables #;
=0 or 1, which sit on the faces of the square lattice. The
index j labels the corresponding face. The value ;=0 corre-
sponds to a “vacancy” which has the effect of eliminating the
interactions involving any of the four adjacent spins. The
vacancies thus introduce dilution and may thus be expected
to lead to a tricritical transition, analogous to that in the Potts
model.

We write the partition sum as

Z=| TI S {H

faces j ;=0 edges i

fdi} T ww. @

vert k

While the spins reside on the edges of the lattice and the
vacancies on the faces, the Boltzmann weight factorizes into
factors W(k) giving the interaction between all variables in-
cident on a vertex. A part of the lattice is shown in Fig. 1.
The local weight W(k) is defined by

4
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where the indices of the s and ¢ variables are defined modulo
4. They describe the position of the variables in the local
configuration as specified in Fig. 1 around the vertex k. The
vacancy weight V(z,,1,,15,14) per vertex is specified by

V(tlstz’t%t4) = 5zl+t2+t3+z4,4 + U] 5t1+12+t3+14,3
+ 0251‘1+t2+l3+t4,2511,t3 +v 5f1+l2+t3+t4,2(1 - 511,1‘3)
+ U3 611+t2+t3+t4,1 + 0451‘1+t2+l3+t4,05 (3)

so that the index of v, indicates the number of vacancies. The
expansion in loop diagrams proceeds analogous to Ref. [7],
but as a consequence of the added ¢ variables, the loops are
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FIG. 2. Vertex weights of the O(n) model with vacancies. The
solid lines represent loop segments and the open circles the vacan-
cies on the faces of the lattice. The presence of a vacancy implies
that the four surrounding edges are not visited by a loop. The ab-
sence of a circle corresponds to an occupied face, whose edges may
or may not be visited by a loop. The same weights apply to rotated
versions of the vertices shown here. The spin variables, which sit on
the middle of the edges, are absent in the loop representation.

restricted to the edges that are not adjacent to a vacancy.
Furthermore, the term p(1—t,,,) leads to an additional poten-
tial for a loop segment that, with respect to a vertex, is di-
agonally opposite to a vacancy. The loop expansion trans-
forms the partition function into

1 10
spin = Zloop = H E E nNLH Wivi, (4)

A
J =0 J{cH{n i=1

where the second sum is on all configurations £ of closed
loops, covering zero or more edges of the square lattice,
while avoiding edges adjacent to a vacancy. Every vertex is
of one of ten types shown in Fig. 2. The total number of
vertices of type i is denoted N; and the total number of loops
as Np. The vertex weights W; are given in Fig. 2 in terms of
the parameters that already appear in the spin representation
of Eq. (2).

III. EXACT ANALYSIS
A. Dense loop model

Consider the exactly solved low-temperature branch of
the O(n) loop model on the square lattice, named branch 2 in
[7,6]. Tts partition sum, although of the form of Eq. (4), is
denoted Zgenge 100ps referring to the relatively dense filling of
the lattice with loops. The weights can be parametrized in
terms of the angle 6e[0,7/2]. As a consequence of the
absence of vacancies, only the vertices labeled 1-4 in Fig. 2
have nonzero weight; their weights are specified as

W, = u = h(6)sin(6),
Ws=v=h(60)sin(36/4),

W, =w=h(0)sin(0/4), (s)

with A(6)=1/[2 sin()cos(36/4)+sin(36/4)]. The weight of
the loops (or the dimensionality of the spins) is
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d q

FIG. 3. The adjacency diagram A having ¢ branches. For ¢=0,
1, and 2, it reduces to the diagrams A,, A4, and Ejg, respectively.

n' =-2cos(26). (6)

We use n' because we wish to reserve n for another model
that will appear later, in which all weights W, are nonzero.

B. ADE models

Here we construct an alternative representation of the
loop model partition sum. Following Pasquier [12,13], the
loops are interpreted as domain walls in a configuration of
discrete variables residing on the faces of the lattice. These
variables take values corresponding to the nodes of a graph
A called the adjacency diagram. In this paper we consider
the family of graphs shown in Fig. 3, but the discussion in
this section is general and the figure can be seen as an ex-
ample. We call this model an ADE model after the classifi-
cation of adjacency diagrams. Neighboring faces not sepa-
rated by a loop carry the same value. If they are separated by
a loop, their values are adjacent in A (hence its name).

Associated with A we introduce the adjacency matrix A
with elements A; ;, where i and j represent nodes of A. The
elements are defined as A; ;=1 if i and j are adjacent and
A; ;=0 otherwise. Of the 2(1+¢) eigenvectors of A, four are
symmetric under permutation of the ¢ branches. In the sym-
metric subspace the eigenvector equation can be written as

that for the right-hand eigenvector of the 4 X 4 matrix g,»’j:

0100
- |1 04q0
A= (7)
0101
0010

The first two elements of the eigenvectors of A correspond to
the nodes a and b, respectively, and the last two with the
nodes of type ¢ and d, respectively (see Fig. 3). We choose
the number of branches of the diagram A to be g=(n’'

—1/n")?, so that the symmetric eigenvalues A, of A are
given by

Aozn,,
A] = l/n,,
Az—— 1/}’1,,
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Ay=-n', (8)

and for each of these eigenvalues, the elements of the corre-
sponding eigenvectors are

(S, S1.8%,85) = (A, — 1A L A (A, — 1/A,),A 1), (9)

Besides these, there are 2(g—1) eigenvectors antisymmetric
for interchange of two of the branches of A. They have ei-
genvalues

As=-1, (10)

each (¢g—1)-fold degenerate.

Of the eigenvectors of A, generally denoted as S¥, we
omit the upper index for the case u=0. For n' > 1 this is the
Perron-Frobenius eigenvector, with eigenvalue Ag=n’'>A,
for u=1,2,3.

We write the weight of the corresponding ADE model in
terms of a product of local weight factors as

S\ Yoend 27
mm=HW®Hm(ﬁ : (11)

vertk turns Jj

There is a factor W(k) for each vertex depending only on the
local configuration of domain walls and a factor for each turn
of the domain wall which also depends on the states of the
faces on the inside (i) and outside (j) of the loop. The bend-
ing angles .,q are counted positive where the loop bends
inwards, so that the sum of the bending angles along a loop
is 4+2. Thus the weight of an entire closed domain wall is

S.

Wloop = Ai,j_l
S

(12)
and still depends on the state i inside and j outside the do-
main wall. When for a fixed configuration of domain walls
the sum over compatible state configurations is performed,
each closed domain wall thus contributes a factor equal to
the largest eigenvalue of A—i.e., n'—just as in the O(n’)
loop model. This confirms that the partition function of the
ADE model satisfies

ZApE = E E WADE = Zgense loop> (13)
g {sHg

where the first sum is on all loop configurations and the
second one on the configurations of ADE variables compat-
ible with the loops. The suffix of the right-hand side empha-
sizes that the loop model is in the dense phase and does not
permit vacancies, which will be introduced later. Since in
Zgense 100p the variable n’ and therefore g only enter as pa-
rameters, we may vary them continuously, thus representing
the continuous n’-weight loop model.

When the models reside on a torus rather than in the
plane, there may be loops that wind the torus. In the loop
model these typically have the same weight n’ as the con-
tractible loops. However, in the ADE model, the correspond-
ing domain walls have a net bending angle equal to zero.
This implies that they carry the weight A;, rather than
A; S/ Sy. The summation over the states of the domains then
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reduces to taking the trace of a power of A, equal to the
number of noncontractible loops. The result is that all the
winding loops have the same weight, equal to an eigenvalue
of A, which should then be summed over these eigenvalues.
We conclude that the ADE model on a torus corresponds to a
loop model in which the winding loops receive special treat-
ment. Or alternatively the loop model partition sum with all
loops weighted equally is the largest sector of the ADE trans-
fer matrix.

C. Correlation functions

We will now calculate the one-point distribution (1PD)
P(k) of the ADE model—i.e., the probability that a face is in
state k. Consider a loop well inside a large lattice. We assume
that the IPD is unaffected by the presence of the loop (or any
other loop). In other words, we assume that the 1PD condi-
tional on the presence of a loop is the same as the uncondi-
tional 1PD. That this is plausible follows from the calcula-
tion of the partition sum above: the contribution to the
partition sum of a particular domain is independent of the
domains it is contained in, and it is independent of all the
domains it contains, once the state of these domains has been
summed over.

The conditional probability P(k|j) that the inside domain
of a loop is in state k, provided the outside domain is in a
given state j, is determined by Eq. (12) as P(kl|))
=A;;Si/(n'S;). Thus we find the joint probability P(k, ) that
the outside of a loop is in state j and its inside in state k as

. . . N4 Sk
P(k.j) = P(/)P(k|]) = P(])Ak,jﬁ- (14)
J
Summation on j now yields the probability that the inside
domain is in state k, which should be equal to P(k):

> P(k.j) = P(k). (15)

Using the symmetry of A, one finds the unique (normalized)
solution to this consistency condition as
Si

k) = .
PO=3

(16)

An approach alternative to the condition that the loop
considered be well inside a large lattice is to consider a
bounded lattice of arbitrary size, with the faces on the bound-
ary all in the same state, with Eq. (16) as the probability
distribution for that state, the ideal fixed boundary condition.
Then by induction the same distribution holds for the do-
mains separated from the boundary by one domain wall and
so on recursively to the innermost domains. It is then as-
sumed that in the thermodynamic limit the boundary condi-
tion should not matter, well away from the boundary.

Consider the function S/S;—i.e., the ratio of an arbitrary
eigenvector §# and the Perron-Frobenius eigenvector S. If
this function is part of a correlation function (- --S{/S---),
where k is the state of a given face, it effectively changes the
weight of the loops surrounding the face. This is easily seen
in expression (12): the factor S§/S replaces the numerator
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by S%, so that the weight of the loop becomes that of the
corresponding eigenvalue A, as long as they do not sur-
round other operator insertions. We will call these functions
weight-changing operators.

A more interesting result [14] comes from the two-point

function
SKSy
<4l> (17)
S; Sk

j and k being the state of two arbitrary faces. The weights of
the loops surrounding either of these faces but not the other
is changed into the respective eigenvalues A, and A, corre-
sponding to the eigenvectors $# and S”. Now consider the
innermost domain wall that surrounds both faces. After the
states of the domains nested inside it are summed over, the
weight governing the state of the final domain is

ko (18)

where k is the state of the surrounding domain. This can be
expanded as a linear combination of all eigenvectors:

SHSY=5,, Cx S~ (19)

where, provided the eigenvectors are normalized,

SHSVSH
CKV — 2 st e ot By (20)
TS

Apparently the combination of two operators labeled p and v
look from a distance like a linear combination of operators «.

These structure constants of the operator product expan-
sion, or fusion rules, may readily be calculated explicitly for
the diagrams in Fig. 3, but here we only note that they are
symmetric in u, v, and « and that they vanish if one of the
indices corresponds with the largest eigenvalue and the oth-
ers two differ. This implies that the two-point correlation
function of two different weight-changing operators vanishes
in the thermodynamic limit. Obviously these fusion rules
may be used just as well in correlation functions of more
than two operators.

D. Equivalence with the O(n) model with vacancies

We now dilute the system by considering the extremal
nodes of A—i.e., the nodes with coordination number 1—as
vacant states. The obvious result is that vertices with vacan-
cies, numbered 5,...,10, will have nonzero weight. The
present subsection will also yield the less obvious result that
the model with vacancies can still be expressed as an O(n)
model, now with a different value of n.

The vacancies come in g+ 1 types, g of type d and one a.
However, in any configuration the type of each vacancy is
fully determined by the neighboring domains. Thus, it is suf-
ficient to specify the g+ 1 states for the nonvacant domains in
order to fully describe an ADE configuration (with the ex-
ception of the completely vacant state).
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Now we identify the domain walls between domains in
state b and in states of type c as loops, so that we have a loop
model with vacant faces. Note that for any given configura-
tion of vacancies this loop model is much like that described
in Sec. III B, but on a restricted lattice, from which the va-
cant faces are omitted, and with a reduced adjacency dia-
gram, of only the full nodes in Fig. 3. Note that the eigen-
vectors of the reduced adjacency matrix, up to normalization,
are the same as the eigenvectors of the total adjacency ma-
trix, restricted to the nodes b and those of type c. The eigen-
values are *+g. Following the arguments_used before, we
obtain a loop model with loop weight n=vg=n'-1/n’, with
weights that follow from the original ADE model with the
complete adjacency diagram and the entire lattice. Thus the
successive transformations are

Zdense loop ZADE - Zloop+vac’ (21)

in which the right-hand side is the partition sum of a model
with loops and vacancies. The weights of this loop model
are, with reference to Fig. 2, given by

W, =1,
Wy=u,
Wi =v,
Wyi=w,

Ws=w(S,/S) " =w(S/8) " =w(n')~14,
We=u(S,/Sp)" = u(S4S) " = u(n')™"",
W7 =0,

Wy = wl(S4/Sp)"? + (S,/S.) "]
=wl(SaS)"? + (518" = wl(n') ™2 + (n") "],

Wo=u(S,/S,) " = u(S/S)" = u(n")""4,

W](): l, (22)

respectively. The two terms in Wy arise from the two orien-
tations of the type-4 vertex of the O(n’) loop model.

We note that the weights are completely given by the
configuration of loops and vacancies, irrespective of the type
of vacancy. Furthermore, any configuration of loops and va-
cancies consisting of the local vertices in Fig. 2 is possible
for the adjacency diagram in Fig. 3. These properties are not
generic for any adjacency diagram and are the basis of our
choice of the diagram in Fig. 3, together with the fact that is
contains a continuously variable parameter controlling the
eigenvalues of its adjacency matrix.

E. O(n) model on the honeycomb lattice

A similar O(n) spin model with vacancies on the faces
can be defined on the honeycomb lattice; see, e.g., Ref. [8].
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FIG. 4. Vertex weights of the honeycomb O(n) model with va-
cancies on the faces. Solid lines represent loop segments and circles
the vacancies on the elementary hexagons. A vacancy excludes the
six surrounding edges to be visited by a loop. Rotated versions of
these vertices have the same weights. The spin variables, which sit
on the vertices, play no part in the loop representation.

Here we also include interactions between the vacancies, de-
scribed by the three vertex weights v, v,, and v; where the
indices show the number of vacancies adjacent to the vertex.

The transformation into a loop model partition sum pro-
ceeds the same as for the square lattice and leads to the form
of Eq. (4) but with only five independent vertices. They are
shown in Fig. 4, together with their weights. For the simpli-
fied case v;=v,=v3=0 without vacancies and with the spe-
cial choice [15]

u=1N2+V2-n' (23)

(which is different from that for the square lattice), this
model is solvable [15-17]. The high-loop-density branch of
this model corresponds to the minus sign.

The mapping of the low-temperature O(n’) model on the
dilute O(n) model can be performed analogously for the hon-
eycomb lattice and leads to the following vertex weights for
the model with vacancies:

W3 =u(S/Sp)"0 = u(SyS)" = u(n')"°,
Wy =1(Sy/S) "0 = u(S,18) "0 = u(n")"®,

W5=1.

The adjacency matrix and thus its eigenvector components
are the same as for the square lattice model, Eq. (9). Also the
loop weight

n=n'-— (24)
is the same.

F. Interpretation

It remains to be shown that the constructed model of
loops and vacancies is a tricritical O(n) model. To this pur-
pose we obtain its conformal anomaly ¢ via the equivalence
with the low-temperature O(n) model of Eq. (5), for which
[6.7]
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6(1 -g)?
c:l—ﬁ, 2cos(mg)=—n', 0sg=<l1,
8
(25)
, 1
n=n"-—.
n

This combination of ¢ and n does not agree with the known
critical and low-temperature O(n) universality classes [3].
Since it is known that the introduction of vacancies can lead
to tricriticality, this already suggests that the model defined
by Egs. (4), (22), and (24) is tricritical. Further justification
will be given below.

IV. UNIVERSAL PROPERTIES AND MAPPING ON THE
COULOMB GAS

A. Conformal anomaly

Equation (25) shows that the model with vacancies de-
rived above does not fit the critical and low-temperature
O(n) universality classes [3]. It does, however, precisely
match the result for ¢ inferred in Ref. [8] for the tricritical
O(n) model—namely,

6 T 1
c=1-————, 2cos =A, m=1, n=A-—.
m(im+1) m+1 A
(26)

The parametrizations of n in Egs. (25) and (26) imply that
n'=A. This provides a confirmation that the O(n) loop model
defined by the vertex weights of Eq. (22) and the loop weight
of Eq. (24) is a tricritical O(n) model. For the Ising model
n=1 and the self-avoiding walk n=0, this proposal repro-
duces the known tricritical values of ¢=7/10 and ¢=0, re-
spectively.

B. Relation with the Coulomb gas

The Coulomb gas offers a powerful tool to calculate criti-
cal exponents, provided the Coulomb gas coupling constant
g is known for the model under investigation. The coupling
constant is related [18,19] to the conformal anomaly ¢ ac-
cording to Eq. (25). In combination with Eq. (26) this yields
g as a function of m, which is two valued. For the tricritical
O(n) model one has g=m/(m+1), in agreement with the
conformal classification of the tricritical Ising (n=1) model.
In Coulomb gas language, the conformal anomaly is repre-
sented by means of a pair of electric charges e as follows:

!

ep=1-g, n'=-2cos mg. (27)
Combination with another pair of charges *e,, yields a scal-
ing dimension

X.= _.L’ (28)
2g

which reproduces the dimensions listed in Refs. [8,9] for the
tricritical O(n) universality class for charges e,, according to

(5]
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cos(me,) = —zﬁ (29)

The A, follow from the eigenvalues of the adjacency matrix
[12,13], which is the same as that used for the tri-tricritical
Potts model [9]. Six eigenvalues were already listed in Ref.
[9] and in Egs. (8) and (10). The leading scaling dimensions
follow as

x1=(1_’)2_(1_g)2

k]

2
_P-(1-g)
2= 2g s
X;=1 i
3= 2’
4
X4=1—_—§,
9¢ 2
5
X=1-—-&, (30)
18g 2
with
1 1
f=—arccos ————. (31)
T 2 cos(mg)

These exponents are associated with the weight-changing op-
erators S4/S,, discussed in Sec. III C. This implies [see Eq.
(9)] that the X, is associated with the enhancement (or sup-
pression) of vacancies: its eigenvector has a different signs in
the vacant and nonvacant states. It follows that X, is one of
the thermal exponents, leading or otherwise. The exponent
X, belongs to the operator that breaks the pseudosymmetry
between the left- and right-hand sides of A. It changes the
weight of the loops from n to —n, but is not meaningful in the
local O(n) spin version of the loop model. One can arrange
this effect, however, by an operator that terminates a seam
across which the interactions have the opposite sign. It will
appear later as the interface exponent. The exponent X5 com-
bines the effect of the prior two operators. Finally the opera-
tor associated with the exponent X, breaks the symmetry
between the g branches, while that of X5 combines this with
the enhancement of vacancies. Again, these operators only
show up in models where the nodes of A are meaningful. In
our O(n) models, the diagram is only used to give the proper
weights to various configurations.

In addition to the dimensions describing singularities as-
sociated directly with the ADE model, we consider expo-
nents describing crossover phenomena due to a possible per-
turbation of the O(n) symmetry. Such perturbations can, in
Coulomb gas language, be associated with pair of electric
charges 1—g combined with a pair of magnetic charges
whose magnitude depends on the type of perturbation [5]. A
pair of magnetic charges *k, associated with the defect of 2k
lines coming together, then corresponds with a scaling di-
mension
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1 gk*-1)
— .
2g 2

=1- (32)

C. Specific exponents
1. Magnetic exponent

In the O(n) loop model, the magnetic correlation function
is represented by configurations containing a single loop seg-
ment connecting the correlated points. In Coulomb gas lan-
guage it corresponds to a magnetic charge k=1/2. Then, Eq.
(32) yields

Xy=1-— 2% (33)
2¢ 8

This is in agreement with an earlier conjecture [20] and with
numerical results for a related model with vacancies on the
honeycomb lattice [8]. After the mapping onto the model
with vacancies, the defects—i.e., the end points of the loop
segment—can only sit on nonvacant sites and not in the re-
gions occupied by vacancies. But otherwise, the defects have
the same physical effect and, therefore, the same exponent
(33). Therefore the magnetic exponent of the tricritical O(n)
model is the same as that of the low-temperature O(n’)
model.

2. Temperature exponent

Above we already identified the exponent X, as a thermal
exponent. This agrees with identification on the basis of nu-
merical evidence, in [8], as, in fact, the leading thermal ex-
ponent. Effects described by this exponent are absent in the
thermal properties of the low-temperature O(n') model. This
fits well in the interpretation [3] that the latter model is con-
fined to the critical subspace of a larger parameter space.
Such “unphysical” O(n') exponents are, however, known to
reappear in correlations on dilute O(n) loop configurations
[21]. We further remark that the thermal exponent of the
O(n') model, associated with the suppression and enhance-
ment of loops, should be another thermal exponent; its value,
4/g-2, however, indicates that it is irrelevant. Another op-
tion to find a second thermal exponent comes from the ob-
servation that the value of ¢ in Eq. (31) is only the smallest
solution of the inverse cosine. The next leading exponent is
obtained by replacing 7 by 2—¢ in X,, so that

2-1°-(1-g)

X, — Xp= 22

(34)

3. Other exponents

The introduction of a “seam”—i.e., a row of antiferro-
magnetic bonds, such that the bonds are perpendicular to the
row—Ieads to a change of the partition sum described by an
“interface” dimension X,,. While in Ref. [8] the identification
X,,=X; was made on the basis of numerical evidence, here
we can make the identification by inspection of the corre-
sponding operator. A seam along the length of the cylinder
changes the sign of the noncontractible loops. That corre-
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sponds precisely to A;=1/n" in Eq. (8) because inversion of
n' results in a change of sign of n.

In the O(n) spin model, other interface exponents can be
constructed by the introduction of a cut across which the spin
s is identified with R-s, where R is an operator in the or-
thogonal group O(n). The weight of the loops crossing this
cut is then equal to [ds(s-R-5s). By varying R this can take
any value. The corresponding exponent is obtained by the
relation A—1/A=[dss-R-s and Egs. (28) and (29).

A cubic perturbation of the O(n) symmetry can be repre-
sented by magnetic charges k= %2 in Eq. (32) [3,22], which
yields

X 2= 1 - L + 3_g

. 35
P, 222 (35)

It is the exponent that describes the crossover when a cubic
symmetry breaking is introduced. Also when intersections
between the loops are permitted, this exponent governs the
crossover to another universality class. This indicates the fact
that the results in this paper are applicable exclusively when
intersections are prevented, by the specific choice of the
Hamiltonian.

V. NUMERICAL VERIFICATION

For the construction of the transfer matrix we choose the
usual geometry of a model wrapped on a cylinder, such that
one of the lattice edge directions runs parallel to the axis of
the cylinder. The transfer-matrix method used here is based
on that of Ref. [7], including the sparse-matrix composition.
The main modification is the generalization of the set of
connectivities used in Ref. [7] to include the specification of
the vacancy variables on the faces.

A. Enumeration of the connectivities

We consider the model of Eq. (4) on a cylinder with a
circumference of L lattice units. The cylinder is has an open
end such that there are L external edges, which may or may
not be covered by segments of incomplete loops. The con-
nectivity specifies the following information: (a) which of
the faces at the end of the cylinder carry vacancies and (b)
the way in which pairs of covered external edges are con-
nected by incomplete loops of L. These connectivities are
subject to the restriction that the loop segments cannot be
adjacent to a vacancy. Each connectivity can be fully speci-
fied by a row of integers (i;,i,,...,i;) such that

ij=1i,>0 if and only if edge / is connected to edge m,
ip=0 if and only if edge k is not visited by a loop
segment and the face to the right of k is
occupied,

i,=—1 if and only if face to the right is vacant.
The positions of the vacancies can simply be coded by
means of an L-bit binary number (p;,p,,...,p,) with value
B=3t_,pi2'+1. For a given S, we no longer need those i
that sit adjacent to a vacancy. After dropping these i, from
(iysiny...»ip), let (ji»ja,....j,) denote the remaining se-
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TABLE I. Conformal anomaly ¢ and interface critical dimension X,, as determined from the transfer-
matrix calculations described in the text. Estimated error margins in the last decimal place are given in
parentheses. The numerical results are indicated by “(num).” For comparison, we include theoretical values.

n ¢ (num) ¢ (exact) X, (num) X, (exact)
-2.0 -0.99155 (1) —-0.9915599 -0.20179901 (1) —-0.201799000
-1.75 -0.91099 (1) —-0.9109986 -0.17697229 (2) -0.176972272
-1.50 -0.81973 (1) -0.8197365 -0.15164470 (2) —-0.151644706
-1.25 -0.71646 (1) —-0.7164556 -0.1259301 (1) —-0.125930086
-1.00 -0.59999 (1) -6/10 —0.100000000(1) -1/10
-0.75 —-0.46962 (1) —-0.4696195 —-0.07409548 (2) —-0.074095457
-0.50 -0.32528 (1) —-0.3252829 —0.048531921(1) —-0.048531921
-0.25 -0.16799 (1) —-0.1679953 —-0.023691688(1) —-0.023691689

0 0 0 0 0

0.25 0.175264(1) 0.1752630 0.02211104 (1) 0.0221110351

0.50 0.353480(1) 0.3534792 0.042235700(1) 0.0422356998

0.75 0.529949(1) 0.5299489 0.060000362(1) 0.0600003616

1.00 0.700000(1) 7/10 0.07500000 (1) 3/40

1.25 0.85897 (1) 0.8589769 0.086505216(2) 0.0865052157

1.50 1.00000 (1) 1 0.08801923 (5) 0.0880192310

quence of length u. This sequence can be coded by means of
an integer o(j,, /s, ...,J,) in the range 1 < o=<a,. The actual
values of o and of a, are given in Ref. [7]. Let

A(B) = Eg;}au(a)

be the number of connectivities whose binary vacancy num-
ber is smaller than B, where u(a) is the number of dangling
edges which are not adjacent to a vacant face in the face
configuration «. Then, the integer that codes the connectivity
with vacancies is

’lL)zA(B)+0-(]1’]25 ’]u) (36)

A decoding algorithm, that constructs a sequence
(iy,i3,...,i;) given the integer 7y, was constructed using
similar methods.

‘}/(il’iz’ ..

B. Numerical calculations

Several eigenvalues of translationally invariant (zero-
momentum) eigenstates of the transfer matrix were com-
puted for a limited range of system sizes L= 16 as follows.

(i) The largest eigenvalue A(LO) in the “even sector,” which
means that the transfer matrix operates in the space of con-
nectivities whose dangling bonds occur only in connected
pairs.

(ii) The second largest eigenvalue Ag) in the same sector.

(iii) The largest eigenvalue A(L2) in the “odd sector,” which
means that the transfer matrix operates in the space of con-
nectivities with, apart from dangling pairs of bonds, pre-
cisely one dangling bond that is single.

(iv) The largest eigenvalue A in the even sector of the
transfer matrix of a model with a “seam.” The seam modifies
one row of bonds. These bonds are perpendicular to the axis,
while the row itself is parallel to the axis. All edges of this

seam contribute a factor of —1 to the Boltzmann weight, if
covered by a loop segment. In actual calculations, this is
realized by changing the sign of some of the vertex weights
of Fig. 2 and Eq. (22), for those vertices that are immediately
to the left of the seam.

The finite-size data for the largest eigenvalue A(LO) deter-
mine the free energy density, from which we estimated the
conformal anomaly ¢ [18,19]. The ratio A"/ A'” defines the
correlation length of the energy-energy correlation function.
Using Cardy’s conformal mapping [23] of an infinite cylin-
der on the infinite plane, one can thus estimate the tempera-
ture dimension X,. Similarly, A(L2)/ A(LO) is used to find the
magnetic dimension Xj,. Finally the ratio A(L3)/ A(LO) yields the
so-called interface exponent X;,. All of the quantities c, X,
X, and X;,, were already described exactly as a function of n
and verified numerically; see Ref. [8] and references therein.
The present numerical analysis is aimed at confirming that
the present model describes the tricritical O(n) model. The
numerical analysis follows basically the lines of Refs. [7,15];
see also [24]. The final estimates are listed in Tables I and II.
They agree convincingly with the analytic expressions listed
in Sec. IV whose values are also included in the tables.

VI. DISCUSSION

The present tricritical O(n) model appears to belong to the
same universality class as a loop model defined in Ref. [9].
The latter model was defined as the surrounding loop model
of the critical g-state random cluster model on the square
lattice. It is possible to apply the same method as used
above—namely, to use the ADE interpretation and to restore
the loops except those surrounding the vacancies of type a
and d—to the latter loop model. We have chosen the present
formulation based on the low-temperature O(n) model of
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TABLE II. Temperature critical dimension X, and magnetic dimension X, as determined from the transfer-
matrix calculations described in the text. Estimated error margins in the last decimal place are given in
parentheses. The numerical results are indicated by “(num).” For comparison, we include theoretical values.

n X, (num) X, (exact) X;, (num) X, (exact)
-2.0 —-0.0951628 (1) —0.0951627339
-1.50 0.709784688 —0.0876432 (1) —0.0876431495
-1.25 0.4814737 (2) 0.481473928 —-0.0790909 (1) —0.0790908776
-1.00 0.39999999 (1) 2/5 —-0.05833333 (1) -7/120
-0.75 0.3446680 (2) 0.344668096 —0.045889544(1) —0.0458895426
-0.50 0.3039307 (2) 0.303930873 —0.031982842(2) —0.0319828413

0.00 0.2500000 (1) 1/4 0 0

0.25 0.2324956 (1) 0.232495729 0.017729518(1) 0.0177295181
0.50 0.2192386 (1) 0.219238626 0.03627658 (1) 0.0362765827
0.75 0.2088742 (1) 0.208874121 0.05539746 (1) 0.0553974632

1.00 0.20000001 (1) 1/5 0.07500000 (1) 3/40

1.25 0.19068002 (1) 0.190680043 0.09549715 (1) 0.0954971419

1.50 0.16844985 (5) 0.168449854 0.125000000(1) 1/8

branch 2 defined in Refs. [6,7]. This is more natural in the
sense that it allows for sites that are neither visited by a loop
nor adjacent to a vacancy. The relations between the various
models, as constructed and listed in Secs. II and III, are
summarized by

Zspin - Zdense loop - ZADE e Zloop+vac = Zdilute spin*
(37

The last step follows from the general equivalence formu-
lated in Sec. II.

As found in Ref. [8], the introduction of vacant faces in
the honeycomb O(n) model leads to tricriticality when the
fugacity of the vacancies is sufficiently large. No vacancy-
vacancy couplings were introduced. Numerical work on the
square lattice O(n) model for n=1 revealed a peculiar differ-
ence with the honeycomb O(n) model. No tricritical point
was found when vacancy-vacancy couplings are absent. In-
stead, a multicritical point resembling that of branch 3 of
Ref. [7] was found. The physical interpretation of this mul-
ticritical point is that the O(n) critical line merges with an
Ising critical line, where auxiliary variables in the form of
dual Ising spins undergo a phase transition. A qualitative
difference with the model described by the vertex weights of
Eq. (22) is that the vacancies attract each other in the latter
model.

A comparison of the numerical results for the present
model with those for the tricritical honeycomb model O(n)
studied in Ref. [8] shows a conspicuous difference in the
estimated accuracies. This difference can be explained from
the way in which the two different sets of tricritical points
were found. For the honeycomb lattice O(n) model of Ref.
[8], the tricritical points were determined numerically in a
small parameter space. From the perspective of the renormal-
ization theory, this procedure yields a rather arbitrary tricriti-
cal point in the sense that the irrelevant fields are nonzero in
general and thus introduces corrections to scaling. In con-

trast, the exact equivalence of the present tricritical square-
lattice O(n) model with the O(n) low-temperature branch
indicates that the leading irrelevant field vanishes, since the
equivalent O(n) low-temperature branch is characterized by
the vanishing of its irrelevant temperature field. As a result,
the corrections to scaling are suppressed and the apparent
finite-size convergence improves drastically.

Since it is widely believed that the universal parameters
describing the critical state are determined by the symmetry
of the model, the dimensionality, and the range of interac-
tion, it seems plausible that the tricritical model presented
above serves as a representative of the generic O(n) univer-
sality in two dimensions. Indeed the spin-spin interactions
defined in Sec. II contain only scalar products, which satisfy
the O(n) symmetry.

However, in this case the O(n) symmetry of the spin
model is not a secure guide for the universality class. This is
because, like in the dense loop phase of the pure O(n) model,
intersections are relevant [3,5]. The same applies to the tric-
ritical point reported here: the exponent associated with
crossing loops is the same as that of cubic symmetry break-
ing. Recently, Jacobsen et al. [4] proposed that the low-
temperature phase of the generic O(n) model is described by
the intersecting loop model proposed in [25] and since called
the Brauer model [26].

It is interesting to note that the mappings described in
Sec. III can also be applied to the critical “branch 17 [6,7,11]
of the square-lattice O(n) model. Just as branch 1 is the
analytic continuation of branch 2, we can continue the
tricritical branch through the “end point” n=3/2, g=1to g
> 1. The weights for branch 1 are also given by Eq. (5), but
instead with 7/2 < @<ar. The relation between n and n’ re-
mains the same, but the vertex weights as specified by Eq.
(5) change, and the relation between the Coulomb gas cou-
pling and the conformal classification parameter m is no
longer g=m/(m+1), but becomes g=(m+1)/m= 1, while it
relates to n’ as n'=2 cos(m/m) (see, e.g., Ref. [7]). For n
=1 or n’=(1+5)/2 one thus finds a higher critical Ising
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model that is to be compared with the m=5 model in the
series of Andrews et al. [27]. For n=0 or n' =1 the model
displays an Ising-like critical point. The resulting branch of
multicritical points can thus be seen as a generalization of
the m=5 Ising-like model for n=1 to continuous values of
n—i.e., the point where the tricritical point itself turns first-
order.

PHYSICAL REVIEW E 78, 061104 (2008)
ACKNOWLEDGMENTS

This research is supported by the NSFC under Grant No.
10675021, by the Beijing Normal University through a grant
as well as support from its HSCC (High Performance Scien-
tific Computing Center), and, in part, by the Lorentz Fund.
We thank Youjin Deng for some valuable discussions.

[1] H. E. Stanley, Phys. Rev. Lett. 20, 589 (1968).

[2] E. Domany, D. Mukamel, B. Nienhuis, and A. Schwimmer,
Nucl. Phys. B 190, [FS3], 279 (1981).

[3] B. Nienhuis, Phys. Rev. Lett. 49, 1062 (1982); J. Stat. Phys.
34, 731 (1984).

[4]J. L. Jacobsen, N. Read, and H. Saleur, Phys. Rev. Lett. 90,
090601 (2003).

[5] B. Nienhuis, in Phase Transitions and Critical Phenomena,
edited by C. Domb and J. L. Lebowitz (Academic Press, Lon-
don, 1987), Vol. 11.

[6] M. T. Batchelor, B. Nienhuis, and S. O. Warnaar, Phys. Rev.
Lett. 62, 2425 (1989).

[7] H. W. J. Blote and B. Nienhuis, J. Phys. A 22, 1415 (1989); B.
Nienhuis, Int. J. Mod. Phys. B 4, 929 (1990).

[8] W.-A. Guo, B. Nienhuis, and H. W. J. Blote, Phys. Rev. Lett.
96, 045704 (2006).

[9] B. Nienhuis, S. O. Warnaar, and H. W. J. Blote, J. Phys. A 26,
477 (1993).

[10] Y. M. M. Knops, H. W. J. Blote, and B. Nienhuis, J. Phys. A
26, 495 (1993).

[11] S. O. Warnaar, P. A. Pearce, K. A. Seaton, and B. Nienhuis, J.
Stat. Phys. 74, 469 (1994).

[12] V. Pasquier, J. Phys. A 20, L1229 (1987).

[13] V. Pasquier, Nucl. Phys. B 285 [FS19], 162 (1987).

[14] V. Pasquier, J. Phys. A 20, 5707 (1987).

[15] H. W. J. Blote and M. P. Nightingale, Physica A 112, 405

(1982).

[16] R. J. Baxter, J. Phys. A 19, 2821 (1986); 20, 5241 (1987).

[17] M. T. Batchelor and H. W. J. Blote, Phys. Rev. Lett. 61, 138
(1988); Phys. Rev. B 39, 2391 (1989).

[18] H. W. J. Blote, J. L. Cardy, and M. P. Nightingale, Phys. Rev.
Lett. 56, 742 (1986).

[19] 1. Affleck, Phys. Rev. Lett. 56, 746 (1986).

[20] W. Janke and A. M. J. Schakel, Phys. Rev. Lett. 95, 135702
(2005).

[21] Y. Deng, T. M. Garoni, W.-A. Guo, H. W. J. Blote, and A. D.
Sokal, Phys. Rev. Lett. 98, 120601 (2007).

[22] B. Duplantier and H. Saleur, Phys. Rev. Lett. 59, 539 (1987).

[23]J. L. Cardy, J. Phys. A 17, L385 (1984).

[24] For reviews, see, e.g., M. P. Nightingale, in Finite-Size Scaling
and Numerical Simulation of Statistical Systems, edited by V.
Privman (World Scientific, Singapore 1990); M. N. Barber, in
Phase Transitions and Critical Phenomena, edited by C.
Domb and J. L. Lebowitz (Academic, New York 1983), Vol. 8.

[25] M. J. Martins, B. Nienhuis, and R. Rietman, Phys. Rev. Lett.
81, 504 (1998); M. J. Martins and B. Nienhuis, J. Phys. A 31,
L723 (1998).

[26] J. de Gier and B. Nienhuis, J. Stat. Mech.: Theory Exp. (2005)
PO1006.

[27] G. E. Andrews, R. J. Baxter, and P. J. Forrester, J. Stat. Phys.
35, 193 (1984).

061104-10



