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Continuous-time random walks with internal dynamics and subdiffusive
reaction-diffusion equations
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We formulate the generalized master equation for a class of continuous-time random walks in the presence
of a prescribed deterministic evolution between successive transitions. This formulation is exemplified by
means of an advection-diffusion and a jump-diffusion scheme. Based on this master equation, we also derive
reaction-diffusion equations for subdiffusive chemical species, using a mean-field approximation.
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While transport in equilibrium systems occurs due to
Brownian motion of the microscopic particles following
Fick’s law, systems far from equilibrium often show
anomalous—i.e., non-Fickian and non-Gaussian—diffusion
[1-3]. Here, the mean—square displacement of a particle is
given by a power law (x*(¢)) < ¢% with a# 1. As a model of
such anomalous behavior, the continuous-time random walk
(CTRW) introduced by Montroll and Weiss in 1965 [4] and
extended by Scher and Montroll to explain anomalous diffu-
sion [5] has attracted much attention during the last few de-
cades. The Scher-Montroll CTRW process corresponds to the
situation in which a particle (walker) is trapped on a site for
a time 7 distributed with a power-law probability density
W(7) and then makes a jump to another site. In between the
jumps it neither moves nor changes its identity—i.e., does
not exhibit any dynamics of its own. The probability distri-
bution of the walker’s positions is determined by a general-
ized master equation [6], which, under certain assumptions,
takes the form of a diffusion equation with a time memory
[1]. Even this simple model exhibits extremely interesting
properties connected with its intrinsic nonstationarity [7] and
is still under extensive investigation both theoretically and
experimentally.

In many situations, however, the system undergoes addi-
tional, internal dynamics also during waiting periods, due,
e.g., to a deterministic drift generated by an external force or
due to chemical reactions among the diffusing particles. The
purpose of the present article is to perform a treatment of
such processes based on the derivation of a generalized mas-
ter equation. We shall argue that, generally, these types of
stochastic processes cannot be captured by a subordination
procedure along the lines of Fogedby [8]. Our approach will
allow us to formulate subdiffusive reaction-diffusion equa-
tions, which are of utmost importance for pattern formation
in biological systems, due to the ubiquity of subdiffusive
transport in biological systems (see, e.g., Ref. [9] and refer-
ences therein).

Our treatment extends earlier work of Shlesinger e al.
[10] on Lévy walks, which have been developed for the de-
scription of particle transport in chaotic and turbulent flows,
the work of Metzler et al. [11] on passively transported par-
ticles in flows undergoing jumps with respect to the moving
fluid, and the work of Eliazar and Klafter [12] on the behav-
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ior of overdamped particles exposed to random impacts, a
special case of a shot noise situation.

Generalized master (or Fokker-Planck) equations can be
obtained in a straightforward manner by the method of sub-
ordination proposed by Fogedby [8]. Here, one considers a
Markov process x(s) for a variable x depending on an inter-
nal (operational) time variable s. The corresponding prob-
ability distribution f(x,s) obeys the Fokker-Planck equation

2 fys) = Liafols.9) n
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where the Fokker-Planck operator Lgp is defined, e.g., in Ref.
[13]. A related stochastic process y(t)=x(s(r)) is created by a
time transformation s(z), which is assumed to be an indepen-
dent random process with non-negative increments. It can be
shown that the probability distribution of the process y(z),
f(y,1), obeys a generalized Fokker-Planck equation

gf(y,t) = f dr' Q(t —t")Lpf(y,t'), (2)
t 0

whose solution reads f(y,7)=[{p(s,0)fo(y,s)ds [8]. In par-
ticular, it was shown that the quantity p(s,?) is the probabil-
ity distribution of the process s(z), which is related to the
kernel Q() by the relation

t
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The choice Q(t—t")<(t—t")%" leads to fractional equations
[1]. Independently of the work by Fogedby, one of us (I.S.)
arrived at a similar conclusion for a much broader class of
stochastic processes and clarified the meaning of the kernel
Q(t-1') [14].

Due to various applications briefly mentioned above, the
case of anomalous diffusion in the presence of an additional
deterministic process is of significant interest. However,
Fogedby’s approach can only be extended to this situation in
a straightforward manner if the deterministic dynamics de-
pends on the internal time s, not on the physical time ¢. In
the latter case one expects a quite different behavior, and the
derivation of a respective generalized Fokker-Planck
equation—which is the main goal of the present article—
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turns out to be somewhat involved. Before we address this
issue in a general way, it is useful to first look at two con-
crete examples.

In the first one, we consider a particle with coordinate g
which is advected with a constant velocity v and subjected to
transitions occurning at randomly distributed time intervals.
The resulting generalized Fokker-Planck equation reads

2
[gwa—ﬂﬂq,ﬂ: f Q=) g =vlt=1)r).
@)

In this context, we would like to point out the occurrence of
a retardation effect in the diffusion term (cf. Refs. [15,16])
which is due to the advective force acting in real time on the
anomalously diffusing particle. The above equation can be
solved by the ansatz f(g,f)=F(g—uvt,t). The probability dis-
tribution is then governed by

#
(e = f dr' Qi 1) F(&r), 5)

s
with é=g—vt. Thus, in the present case, a transition to a
comoving reference frame leads to a conventional CTRW for
the variable &, in contrast to the behavior for a subordinated
process described by Eq. (2). Similar arguments have been
given in Ref. [11]. However, the generalized Fokker-Planck
equation proposed therein is only valid to order v?.

Let us now proceed to our second example. Here, we
consider the motion of an overdamped particle (g=-7vq),
subjected to random transitions with a suitably defined wait-
ing time distribution W(z). The evolution equation for the
probability distribution f(g,f) describing such a process
takes the form

d P
;tf(q,t) = va—qqf(q,t)

td ’ ( /)ﬁ 1 q ’
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(6)

Using this equation, we can derive an expression for the
moments of this process to arbitrary order, in the limit of
long times. Considering symmetric initial conditions one ob-
tains for the moments of even order the rather strange behav-
ior (¢**(1))=Q(7). This behavior differs from the one ob-
tained for the subordinated case, in which the moments tend
to constants.

Having considered two specific examples, we now de-
scribe the derivation of a generalized master equation for the
class of processes under consideration. We assume that the
variable ¢ undergoes a purely deterministic (or a Markovian
random) process which is characterized by the transition
probability (or propagator) p(q,q';t—t'). For the two ex-
amples considered above, we have, respectively, p(q,q’,t
~1')=8(g—q'~v(t-1")) and p(q,q',1-1")=8lg-q'e "),
However, the considered class also includes diffusion pro-
cesses described by a Fokker-Planck operator. We further
assume that the variable g undergoes sudden transitions from
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state ¢ to state ¢’ after time intervals 7 which are character-
ized by a waiting-time distribution W(7). Let us denote the
transition probability from state ¢’ to state ¢ by F(q.q').
Then the probability that such a jump between ¢ and ¢’
occurs in the time interval 7 is just F(g,q’)W(7). Factoriza-
tion of this quantity demonstrates that waiting times and
transitions are statistically independent, which is characteris-
tic for decoupled CTRWs .

As usual in the theory of CTRWs, the next step is to
introduce the probability density for having arrived at times
t" at an infinitesimal interval close to the position ¢’ shortly
after a jump. The respective quantity shall be denoted by
7(q',t"). The probability density of arriving at g at time ¢
after another jump is then given by

n(q,t)=f dt’qu”qu’F(q,q”)W(t—t’)
0

X p(q".q" . t=t")n(q".t") + 81)f(q,0).  (7)

Here, it has been taken into account that the system evolves
after the first jump according to the process described by the
propagator p(q”,q',t—t"), performing another jump from ¢”
to ¢ at time ¢. The probability density f(g,7) related to the
probability for finding a particle in the interval dg close to g
is then given by

f(q,t)=J dt’fdq’p(q,q’,t—t’)W(t—t’)n(q’J’). (8)
0

After having arrived after the jump at time ¢’ in the interval
close to ¢', the position of the particle changes according to
the propagator p from ¢’ to g. The quantity w(z—1t'") is the
probability that no jump occurs in the time interval £—1¢'. It is
related to the quantity W(sr—1') according to

wit—1")=1 -fH drW(7). 9)

0

The operator representation p(q,q’,t—t’):{eL("”)}q,q, of
the propagator p(q,q’,t—t") allows for the determination of
the Laplace-transformed equations

and

77(61,>\)=f(61,0)+fdq’F(q,q’)W(k—L)n(q’,h). (11)
Here, the Laplace transforms of f(g,7), w(t), and W(z) are
denoted, respectively, by f(g,\), w(\), and W(\). Combin-

ing both relationships, we arrive at the generalized master
equation for the process under consideration:

(9 ' ! !
[@ —L}f(q,t) = fo dr'Q(t—1t')

X qu’[F(q,q’)

—8g-q")]e" (g ). (12)
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Here, we have introduced the kernel Q(z—¢"), which is de-
fined by its Laplace transform [6]

AW(N)

=1——W()\)' (13)

o)

For example, an exponential waiting-time distribution W(z)
=T'e7!" leads to the kernel Q(r)=48(t). The representation of
Q(¢) in terms of the waiting time is necessary in order to
obtain generalized master equations which define a non-
negative probability density f(g,7) for all times 7 [14].

At this point, it is useful to recall that, allowing only for
nearby jumps, the transition probability F(g,q’) in the mas-
ter equation yields a generalized Fokker-Planck equation
[17]. In our case, it is of the form

[%‘L}f(q,t):f dr' LepQ(t — 1")e" = f(gq,t'). (14)
0

Here, the two operators L and Lgp arise. The Fokker-Planck
operator Lpp is connected with the transition probability
F(q.,q') of the time-random sudden jumps [17], whereas the
operator L is connected with the propagator p(q,q’,7,t") and
describes the continuously evolving process. This is the de-
sired Fokker-Planck-type equation for the class of stochastic
processes under consideration—a key result of the present
paper—representing a nontrivial generalization of Eq. (2)
with the operator L, describing the time evolution of the
system between successive jumps, entering on both sides of
the equation.

At first glance, Eq. (14) appears to be rather complicated,
maybe not analytically tractable. However, as the above ex-
amples show, analytical solutions are indeed possible. In this
context, we would like to briefly mention the following strat-
egy to solve this generalized Fokker-Planck equation. It turns
out to be convenient to switch to a kind of interaction picture
by employing the ansatz

flg.t)=e"g(q.1). (15)

Then, the resulting problem to be solved is

(9 I3
5g(q,t)=e‘L’Lppe“ f dr'Q(t—t')g(q,t").  (16)
0

Provided the two Fokker-Planck operators L and Lgp com-
mute, we (only) have to solve the simpler problem

gg(q,t) = LFPJ dr'Q(t—1")g(q,t"). (17)
t 0

Comparing this result with the Fokker-Planck equation (2), it
is evident that g(g,f) describes a subordinated process.

The first of the above-mentioned examples falls into this
category. As a further ezzxample, we w01211d like to consider the
two operators L:Q,% and LszQO% describing pure dif-
fusion interrupted by randomly distributed sudden
transitions—i.e., a jump-diffusion process. The correspond-
ing probability distribution takes the form

RAPID COMMUNICATIONS

PHYSICAL REVIEW E 78, 060102(R) (2008)

[ q_]
f(q,t)—JO dsp(s,t)GXP[— 200+ 00 | (18)

Calculating the even moments we find that their long-term
behavior is dominated by the scaling behavior {g(#)?*)e .
The additional jumps result in subdominated scalings.

The master equation just derived can also be used to ob-
tain reaction-subdiffusion equations, which happens to be a
particularly interesting application. The subdiffusive trans-
port is modeled by the introduction of random waiting times
between the jumps of particles. The reaction among the
chemical species evolves, however, continuously in time,
changing the concentrations also between the jumps. Our
derivation starts from extending the procedure leading to Eq.
(12) to multiple dimensions, leading to a master equation for
a multidimensional state vector, and the reaction-
subdiffusion equations are then derived along the lines of the
derivation of the reaction-diffusion equations from the usual
Fokker-Planck equations.

We partition real space into small compartments labeled
by the index i and consider N different chemical species
(labeled by =1, ...,N), which locally react according to the
deterministic reaction kinetics

éa,i: Ra(ca,[)' (19)

Further, we allow for diffusive transitions between neighbor-
ing cells. For the sake of simplicity, we assume that the tran-
sitions of all particles occur simultaneously (“global update™)
at random times, characterized by the waiting-time distribu-
tion W(¢). The situations with independent particle jumps
(“local update™) are also treatable, but lead to considerably
more complicated calculations. Lumping all concentrations
¢, into the state vector ¢, we can formulate the generalized
master equation

(%f(c,t) =- ﬂicR(c)f(c’t) + fot dr'o(t—t')

XJdc’Jdc"[F(c,c’)—é(c—c’)]

X 8¢’ = G(c",t=1")f(c",1"). (20)

Here the function G(c¢’,r—¢') is the solution of the kinetic
equation (19) with the initial condition G(c¢’,0)=¢’.

The desired subdiffusive reaction-diffusion equation is an
evolution equation for the mean value of the quantity ¢, C
=[dc ¢f(c,1). Tt reads

iC=fR(c)f(c,t)+Jtdt’Q(t—t')
or 0
X (J de de’cF(e,G(c',r—1t"))f(c',t")

—fdc’G(c’,t—t’)f(c’,t’)). (21)

The mean-field approximation [dc H(¢)f(c,t)=H(C) leads
then to a closed equation for the mean concentrations. Al-
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lowing only for nearest-neighbor transitions, we obtain the
reaction-subdiffusion equation

t

gC(x,t) “R(C(x.1)) + DA, f dt' 01— 1) G(C(x. 1) 1= 1').
0

(22)

There have been several attempts to establish reaction-
diffusion equations for subdiffusive chemical species (see
[18] and references therein). Ad hoc formulations can be ob-
tained from Eq. (22) by replacing G(C(x,t'),t—t") with
C(x,1"). However, such equations show serious inconsisten-
cies; in some cases, even mass conservation is violated [18].
The correct way to proceed was discussed in [18] for a spe-
cial example of a linear bimolecular reaction scheme A=5B.
This case is contained in our general subdiffusive reaction-
diffusion equation as follows. If we take the reaction rates
R=MC to be linear in C, we obtain G(C(x,?'),t—t")
=eM("’/)C(x,t’). For a two-component vector C(x,7) we end
up directly with the system considered in [18]. Since the
particles in this scheme do not interact, the global update
assumption leads to the same results as the independent-
particle motion considered in Ref. [18]. An important appli-
cation is the treatment of radiaoctive decay in flows through
porous media.

Finally, as a nonlinear example, we consider the subdiffu-
sive Fisher-Kolmogorov-Petrovskii-Piskunov (FKPP) equa-
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tion, which has been proposed as a model equation for the
propagation of favorable genes in a population [19]. The
diffusive version of the FKPP equation is one of the basic
equations for the investigation of reaction fronts in nonlinear
reaction kinetics. Our subdiffusive version for the A+A=A
reaction reads

&%C(x,t) — Ce[l - Caf)] + %JO 'Ot —1')

C(x,t")
[1- e_(’_’,)]C(x,t’) g

(23)

Note the emergence of a nonlinear diffusion term in addition
to a temporal memory. We stress that the equation for a re-
versible reaction under global update differs from the one
obtained in Ref. [20] for the locally updated irreversible A
+B — 2B reaction scheme.

We have considered stochastic processes which are partly
generated by Markovian processes and which, additionally,
are subjected to the impact of fluctuations randomly occur-
ring in time. These impacts are treated in the framework of
continuous-time random walk processes by a waiting-time
distribution. We have derived the generalized master equa-
tion for this class of processes and have been able to formu-
late subdiffusive reaction-diffusion systems also for nonlin-
ear reaction kinetics, which are of relevance for pattern
formation in biological systems.
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