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Experiments on a chain of coupled pendula driven periodically at one end demonstrate the existence of a
regime which produces an output frequency at an odd fraction of the driving frequency. The stationary state is
then obtained with numerical simulations and modeled with an analytical solution of the continuous sine-
Gordon equation that resembles a kinklike motion back and forth in the restricted geometry of the chain. This
solution differs from the expressions used to understand nonlinear bistability where the synchronization con-
straint was the basic assumption. As a result the short pendula chain is shown to possess tristable stationary
states and to act as a frequency divider.
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I. INTRODUCTION

The sine-Gordon model and its discrete analog, the
Frenkel-Kontorova chain, are among the most prominent
equations of nonlinear physics, and have attracted interest of
people working in quite different fields, see, e.g., Refs. �1–3�.
In particular, topological �kinks� and nontopological �breath-
ers� solutions of the sine-Gordon equation describe the dy-
namics of nonlinear excitations in various spatially modu-
lated systems, e.g., dislocations in crystals �4�, magnetic and
ferroelectric domain walls’ motion �5�, vortices in arrays of
Josephson junctions �6�, etc. At the same time the model has
a simple experimental counterpart, namely, the chain of lin-
early coupled pendula �3� which offers an interesting oppor-
tunity to easily visualize all the main nonlinear characteris-
tics of the sine-Gordon system. Then this simple laboratory
tool allows one to observe effects �7–10� which may then
apply in completely different physical situations.

As a matter of fact, a recent experimental discovery of the
supratransmission effect in the pendula chain �11� has led to
the study of similar phenomena in optical Bragg gratings
�12�, Josephson junction transmission line �13�, and wave-
guide arrays �14,15�. By this approach, many similar phe-
nomena observed in the same systems �16–20� have been
identified as effects of nonlinear bistability. Moreover it al-
lowed us to predict the existence of bistable magnetization
profiles in thin magnetic films �21� and to suggest ultrasen-
sitive detectors �or digital amplifiers� in optical waveguides
�22�, quantum Hall bilayers �23�, and Josephson Junction
parallel arrays �24�.

The bistability property can be simply formulated by say-
ing that �25� a given periodic boundary driving may produce
two completely different stationary states: One which tends
to the linear evanescent profile at vanishing amplitude, and
the other one which can be qualitatively understood as a
portion of the stationary breather like solution which exists
only if the system size is comparable with the characteristic
length of the fundamental �continuous� breather solution.
This is a main difference with most of the earlier studies on
the sine-Gordon model where the semi-infinite chain has
been examined �see, e.g., Ref. �26��.

We report here the discovery of a third stationary state
which can be qualitatively understood as the motion back
and forth of a kinklike structure in the short pendula chain.
The stationary regime appears to be completely different
from the two cases considered earlier, e.g., in Refs. �21–25�.
As a matter of fact, such a dynamics creates a frequency in
the system and furnishes a tool to divide the input frequency
by odd fractions �we shall illustrate chain end oscillations
with frequency � /3 or � /5, where � is the driver fre-
quency�. The value of the odd divider depends both on the
input frequency range and on the length of the chain. Let us
recall that the previously discovered two regimes are syn-
chronized to the driver �same input and output frequencies�.

II. MODEL EQUATIONS

The dynamics of the chain of N pendula is naturally de-
scribed by the Frenkel-Kontorova model �1�

ün + �u̇n − �2�un+1 + un−1 − 2un� + �0
2 sin un = 0, �1�

where an overdot means derivation with respect to time. The
variable un is the angular deviation of the nth pendulum, �0
is the eigenfrequency of a single pendulum, and � is propor-
tional to the linear torsion constant of the spring �for our
experimental chain �0=15.1 Hz, �=32.4 Hz�. The damping
coefficient � is phenomenological; it has been evaluated in
the experiments as approximately �=0.01�0. This is the
value actually used in the numerical simulations. The applied
periodic driving is here modeled by the boundary conditions

u0�t� = b cos��t�, uN+1 = uN �2�

which model a forced end in n=0 and a free other end in
n=N.

It is worth insisting on the fact that the chain is submitted
to a prescribed boundary value �the datum of u0�t��, not to a
given force acting on the first particle. In the experimental
setup, the motion of the virtual pendulum u0 is the driving
engine motion which has indeed a prescribed motion ob-
tained through feedback control. This has an important fun-
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damental consequence: the energy absorbed by damping is
continuously compensated by the action of the driving and
therefore the motion of the chain is quite similar to that of an
undamped device �for which, in a stationary regime, the driv-
ing would not give energy to the chain�.

The experiment consists thus in driving the short chain
pictured in Fig. 1 with a frequency in the forbidden band gap
����0�, which actually does not excite linear modes. With-
out external perturbation the system locks to a periodic so-
lution with low output amplitude uN�t�. Depending on the
value of an external kick one makes the system bifurcate to
two different stationary states and we thus obtain a tristable
behavior �with approximate hierarchy of energies 1:10:100�.
The reader will find in Ref. �27� a movie of the experiment
where the system is first set in the high-energy new station-
ary stable regime and then put down successively to the two
others stable states by taking energy off.

To develop an analytical description of the process, let us
consider the continuous approximation of Eq. �1� by substi-
tutions t→�0t, n=�0x /�. Neglecting dissipation we obtain
the sine-Gordon equation

x � �0,L� : utt − uxx + sin u = 0, �3�

where L=N� /�0. The mixed Dirichlet and Neumann bound-
ary conditions u�0, t�=b sin��t� �driven boundary�, ux�L , t�
=0 �free end boundary� allows us to seek the following pe-
riodic stationary solutions �25�:

u�x,t� = 4 arctan��� rs

b
�X�x�T�t�� , �4�

where one has three choices �cn, sn, and dn are the standard
Jacobi elliptic functions�

�I� X = cn���x − L�,��, T = cn��t,	� ,

�II� X = dn���x − L�,��, T = sn��t,	� ,

�III� X = dn���x − L� + K���,��, T = sn��t,	� . �5�

Here K��� stands for a complete elliptic integral of the first
kind of modulus �. These families of solutions are param-
etrized by the two free constants � and 	� �0,1�; then for
solutions of type I the remaining parameters are given by

b = �4	2�1 − 	2�, s = �2	2,

2r = 1 − �2 + 2�2	2 + ��1 − �2�2 + 4�2	2,

�2 =
b + r2

r
, �2 =

r2

b + r2 , �6�

while in both cases II and III they read

b = �4	2, s = − �2	2,

2r = 1 − �2�1 + 	2� + ��1 − �2�1 + 	2��2 − 4�4	2,

�2 = r, �2 = 1 −
b

r2 . �7�

Note that r should be real valued and positive which may
restrict the allowed values of �.

III. TRISTABILITY AND FREQUENCY DIVISION

Since the experiments �confirmed by numerical simula-
tions later on� show that the frequency � /3 can also be
excited, we assume that the period of the time dependent part
T�t� of the stationary solutions �5� coincide with an odd in-
teger fraction of the driving frequency �. Recalling that the
period of T�t� is 4K�	� /� we require thus

� = 2�K�	�/�m
� , �8�

where m is an odd integer. For a given value of the parameter
	� �0,1�, the above relation fixes the second parameter � in
terms of the driving frequency �. Therefore fixing � �driver
frequency� and varying 	 one can plot the output amplitude
u�N , t� in terms of the input u�0, t� from the analytic expres-
sions �5�. We display this dependence for �=0.9 �in units of
�0� as a full line in Fig. 2 where different colors report to
different solutions. We also plot �dashed line� the output am-
plitude for a driving frequency �=0.3. Therefore, to the
given driver amplitude maxt	u�0, t�	=0.5 may correspond to
two stable synchronized states �points 1 and 2 on the graph�
having the driver frequency 0.9 and one more stable state
with frequency 0.3.

FIG. 1. �Color online� Pictures of three stationary states of the
pendula chain obtained for one single given driving amplitude and
frequency. The upper graph corresponds to the lowest energy state
and the lower one describes the largest energy regime. An approxi-
mate energy hierarchy is 1:10:100.
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It is then a simple matter to check that the stationary state
related to point 3 of the plot of Fig. 2 corresponds effectively
to our numerical simulations, and hence to the experiments
of Fig. 1. It is done in Fig. 3, where the last plot shows the
result of a numerical simulation �full line� compared with the
analytic solution �dashed line� related to point 3 of Fig. 2. We
have also plotted the time evolution of the total energy of
each pendulum given by

En =
1

2
u̇n

2 +
�2

4
��un+1 − un�2 + �un−1 − un�2� + �0

2�1 − cos un� .

�9�

The numerical simulations of the process are done by apply-
ing to the model �1� the boundary conditions �2� with b
=0.5 and �=0.9�0, together with an initial condition where
a few pendula at the end of the chain are given large initial
amplitude. For instance, to reach the new stationary state �3�
of Fig. 3, the chosen initial amplitude is 2
, while for the
value 
, the system locks to the state �2�.

It is worth noting that both experiments �as those dis-
played in Ref. �27�� and numerical simulations contain in-
trinsic damping. Still the analytic solutions of the continuous
undamped sine-Gordon model fit strikingly well numerical
simulations of the discrete damped Frenkel-Kontorova
model �1�. This is a general property of such short length
driven systems to lock on fundamental solutions of the un-
damped limit, as previously displayed in Refs. �23,24,28�.
The main fact is that, without damping, the chain in a sta-
tionary regime does not absorb energy and the boundary
value does not transfer any power to the chain. With damp-

ing, the driving boundary does transmit power to the chain in
such a way as to compensate exactly for the losses. The point
is that the system is submitted to a prescribed boundary
value which adapts to the amount of lost power and keeps
amplitude and frequency constants �in the experiments pre-
sented in Fig. 1, the engine has a feedback driving mecha-
nism that controls the amplitude and frequency�. Last, the
proof that the analytical solutions constitute an attractor for
the damped system is, as far as we know, an open question.

Thus we have actually demonstrated the possibility of
conceiving a frequency divider with which the driving fre-
quency can be divided by 3, 5, or 7, depending on the chain
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FIG. 2. �Color online� Analytic input-output amplitude depen-
dences for different oscillation frequencies of stationary states given
by formulas �5� where continuous line represents solution �I�, dotted
line solution �II�, and dashed line solution �III�, plotted for two
frequencies, namely, 0.9�0 and 0.3�0 as indicated. The points 1, 2,
and 3 correspond to the stable regimes with a single driving ampli-
tude 	u0�t�	max=0.5 rad. The points 1 and 2 represent the situations
when the whole chain oscillates with the driving amplitude 0.9�0

but with different output amplitudes. The point 3 corresponds to the
driving frequency 0.3�0 and describes kink motion forth and back.
As the experiments and numerical simulations show �and this is a
main finding of the paper�, the latter regime can also be reached
with a driving frequency 0.9�0 three times larger than the one ac-
tually used.
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FIG. 3. �Color online� Numerical simulations on Frenkel-
Kontorova model �1� with a damping constant �=0.01�0 and eight
pendula. The time evolution of pendula energy and input-output
oscillations are displayed corresponding to the points numbered 1,
2, and 3 in Fig. 2. The driving amplitude is 	u0�t�	max=0.5 rad and
its frequency �=0.9�0 for all three cases. This results in the same
output frequency oscillations � in graphs �a� and �b� but � /3 out-
put oscillations in graph �c�. Dashed lines display analytical curves
obtained from Eq. �5�, while dotted-dashed and solid lines represent
time evolution of input and output oscillations, respectively.
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length. For example, Fig. 4 shows numerical simulations on
a chain of 12 pendula with a resulting frequency division by
5 at a driving frequency 0.9�0 and by 3 at a driving fre-
quency 0.5�0. In such a case we have obtained that the fre-
quency is divided by 5 if the driving frequency � is in the
range 0.88�0���0.92�0, while the same chain can divide
the frequency by 3 when 0.41�0���0.6�0.

IV. CONCLUSION

For a single monochromatic driving �fixed amplitude and
frequency�, we have demonstrated experimentally and nu-
merically the existence of three states which have been given
analytic expressions �in the continuous limit�: the first one is
the quasilinear solution �actually a breatherlike tail� and the
second one resembles half a breather, both of them oscillat-
ing with the driving frequency �, and which were already
known as the building blocks of nonlinear bistability. The
discovered third state resembles a kink moving back and
forth with the frequency � /3. These states have been given
explicit analytical expressions in the continuous limit: the
first state is described by the solution of type �III� in Eq. �5�
while the solution of type �I� describes altogether the “half-
breather” with frequency � and the “oscillating kink” with
frequency � /3.

The process of frequency division is thus induced by the
motion back and forth of a kinklike structure inside the
chain. It is possible to extend these studies to other realistic
physical systems governed by the sine-Gordon equation. We
expect such a stationary stable regime to be interesting for
applications where one is interested in producing an odd
fraction of the driving frequency. The fraction number de-
pends both on the length of the chain and on the input fre-
quency range. Last but not least, many other well known
nonlinear systems exhibit nonlinear bistable behavior, such
as, e.g., the nonlinear Schrödinger equation or the coupled
mode system in Bragg media, and this discovery is very
likely to apply also there.
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FIG. 4. �Color online� Time evolution of pendula energy and
input-output oscillations for the chain consisting of 12 pendula. As
seen one gets the frequency division on 5 at the output with respect
to the input frequency when the input frequency is �=0.9�0 �graph
�a��. In graph �b� the driving frequency is �=0.5�0 and one has
frequency division by factor 3.
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