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Bistability of a two-dimensional Klein-Gordon system as a reliable means
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Departing from a reliable computational method to approximate solutions of dissipative, nonlinear wave
equations, we study the bistability of a (2+ 1)-dimensional sine-Gordon system, spatially defined on a bounded
square of the first quadrant of the Cartesian plane, and subject to Dirichlet boundary data in the form of
harmonic driving on the coordinate axes, oscillating at a frequency in the forbidden band gap of the medium.
It is shown numerically that, as its spatially discrete counterpart, the continuous (2+ 1)-dimensional sine-
Gordon equation presents the process of nonlinear supratransmission, and that this phenomenon is independent
of the discretization procedure. Moreover, our simulations show that a bistable region, where a conducting state
and an insulating state may coexist, is present in this system, even in the presence of external damping. As an
application, it is shown that the bistable regime may be properly employed in order to transmit certain

monochromatic waves through these media.
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I. INTRODUCTION

The (1+1)-dimensional sine-Gordon equation is a partial
differential equation that has been thoroughly studied in the
mathematical (both analytically and numerically) and physi-
cal literatures. However, this equation is far from being com-
pletely understood, and time has come to show that new and
fascinating properties of the sine-Gordon equation are fre-
quently discovered.

One of the properties of the sine-Gordon equation that
was recently unveiled is the so-called phenomenon of non-
linear supratransmission [1], which consists in a sudden in-
crease in the amplitude of wave signals in a bounded or
semiunbounded medium, subject to harmonic driving in the
boundary. It has been shown analytically and numerically
[2,3] that both Neumann and Dirichlet boundary data in the
form of sinusoidal perturbations are able to induce the pres-
ence of supratransmission. Moreover, nowadays we know
that other systems, such as Fermi-Pasta-Ulam discrete chains
[4], also present nonlinear supratransmission, and it has been
suggested that every nonlinear system may be able to present
it as long as it possesses a natural, forbidden band gap.

In addition to nonlinear supratransmission, the
(1+1)-dimensional sine-Gordon equation has been shown to
present another quite interesting property: nonlinear bistabil-
ity. This property is characterized by the coexistence of two
stationary states, called conducting and insulating regimes.
More precisely, if starting from a value of zero we slowly
increase the driving amplitude of a (bounded or semiun-
bounded) medium subject to harmonic driving in one end at
a frequency () in the forbidden band gap, then the existence
of a critical value A; at which the medium starts to absorb
energy from the boundary is observed. The value A; is called
the supratransmission threshold, and it marks the transition
from an insulating to a conducting regime. Moreover, if the
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driving amplitude is then decreased after reaching the critical
amplitude A, the medium still continues to absorb energy
from the boundary until the amplitude reaches a second criti-
cal value A; <A, called the lower-transmission or infratrans-
mission threshold, below which the boundary finally stops
irradiating energy into the system. This is nonlinear bistabil-
ity.

Nonlinear bistability has been discovered in many nonlin-
ear systems. For instance, it has been found in the Duffing
equation with nonlinear damping term, an equation impor-
tant in the modeling of nanomechanical resonators [5]. Also,
it has been used in the design of light detectors sensitive to
very weak excitations, where the underlying theory is based
on a nonlinear Schrédinger equation [6], and in the study of
nonlinear effects in semiconductor ring resonators [7]; how-
ever, nonlinear bistability historically was discovered in
Bragg media driven in the nonlinear Kerr regime [8].

All of the works cited above share a characteristic in com-
mon: They study nonlinear media in one (discrete or continu-
ous) space dimension. It is an interesting problem to inves-
tigate the presence of bistability in media with two or three
space dimensions, which is a topic of research that has not
been fully attacked yet. In this paper, we study numerically
the nonlinear bistability of a (2+ 1)-dimensional, continuous
sine-Gordon equation with spatial domain confined in a
bounded square of the first quadrant of R?, when two adja-
cent boundaries lie on the coordinate axes.

It is important to mention that the present work is moti-
vated by the study of the spatially discrete, (1+1)-
dimensional systems that arise in the investigation of arrays
of parallel Josephson junctions connected through supercon-
ducting wires and perturbed harmonically at one end [3], and
the investigation of semi-infinite linear arrays of pendula at-
tached by springs and harmonically driven at the end [1].
The study on linear arrays of harmonic oscillators is the
source of motivation of the present work, and it is described
by the system of ordinary differential equations
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subject to the boundary condition wuy=¢, where ¢(r)
=A sin(Qz). Here, the time-dependent real function u,, physi-
cally represents the gauge invariant phase difference [9], and
Viun denotes the finite second difference u,,;—2u,+u,_;.
Both the coupling coefficient ¢ and the damping coefficient
are assumed to be nonnegative numbers and Q<1.

In Sec. IT of this work, we present the partial differential
equation that represents our point of departure—the continu-
ous, (2+1)-dimensional sine-Gordon equation with
damping—and take this opportunity to introduce the energy
equation of the system under study. In Sec. III, we quote the
finite-difference schemes employed to approximate solutions
to the problem in this work, and the total energy of the sys-
tem. Simulations are presented in the following section.
There, we establish numerically the presence of nonlinear
supratransmission in the medium of interest, stating that its
presence is independent of the discretization process. In one
of the outcomes of our investigation, we find computational
evidence of the existence of a region of bistability, and hys-
teresis diagrams are constructed as one of the interesting re-
sults of our work.

Section V presents an application of nonlinear bistability
to the efficient propagation of monochromatic waves in (2
+1)-dimensional sine-Gordon media confined in a bounded
domain of R2. In Sec. VI, we give a brief discussion of our
results, in view of the analytical and numerical evidence of
bistability in (1+ 1)-dimensional, continuous media governed
by sine-Gordon equations [2,3]. Finally, we close this work
with a section of concluding remarks and proposed direc-
tions of research.

II. MATHEMATICAL MODEL

We let u be a function of (x,y,f), where x and y take
values on the closed interval [0, L], for some L>0, and ¢ is
restricted to be a nonnegative variable. Moreover, we let y be
a fixed nonnegative real number that will physically repre-
sent a coefficient of damping. The problem under study in
this work is the following initial-boundary value problem

Pu u

— —V? — +G'(u) =0,

pY: u+ y(% +G'(u)

Ju(x,0

M=u(x,0)=0, xeD,

ot 2)

L.
s u(x,1) = A sin(Q), X € dD,,

n- Vu(x,1) =0, X € dD,,

where V? represents the two-dimensional Laplacian operator,
V is the gradient vector, D denotes the closed square [0, L]
X [0,L]CR?, f is the unitary vector normal to the boundary
dD of D, dD, is the portion of the boundary of D that coin-
cides with the x or the y axis, dD,=dD\dD,, and G is a
continuously differentiable real function over all R.

The partial differential equation in Eq. (2) is clearly a
generalization of the (2+1)-dimensional dissipative sine-
Gordon equation, which is a regime that has been widely
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studied in the specialized literature: analytically [10-13], nu-
merically [14-16], and physically [17-21]. The conservative
regime has a forbidden band gap <1, and it has been
established that the spatially discrete form of Eq. (2) has the
property that such a medium subject to a harmonic driving in
the boundary with a frequency () presents the phenomenon
of transmission of energy in the form of localized nonlinear
modes [14].

It is indispensable to point out that the total energy of a
conservative system governed by the partial differential
equation in Eq. (2) is given by the formula

E:ff Hax. (3)
D

Here, the local energy density H is provided by the expres-
sion

fou\* 1
H=={—| +=|Vu|? 4
2] s L oo, @
where | -+|| is the Euclidean norm in R2. As a consequence,

the derivative of the total energy with respect to time is cal-
culated through

) ou . ou :
E(t)=LDEVu~nds—yJfD<at)dX, (5)

where obviously the first integral in the right-hand side of
Eq. (5) is a contour integral.

III. COMPUTATIONAL TECHNIQUE

In this section, we briefly describe the numerical method
used to approximate solutions to Eq. (2) over a time interval
[0,7], for T a positive number. Let 0=x,<x; <+ <xy,=L
and 0=y <y, <---<yy=L be two regular partitions of the
interval [0,L], of norms Ax=L/M and Ay=L/N, respec-
tively, and let O0=¢; <#; <--- <tp=T be a regular partition of
[0,7] of norm At=T/P. Let u, , be the approximation to the
exact value of u at the point (mAx,nAy) and time f;, and let

¢ =A sin(Qzy). 6)

To approximate solutions to Eq. (2), we employ the finite-
difference scheme

sl 1{552552] v

m; - 2 2 |t oxs 5lum n
(An)* 2| (Ax) (Ay) 2At '
Gltyn) = Gluty, )
] =0,
ugl,n = ulln,n = O’
k k
u, o=Uuy,= b,
St km,O 0,n ¢k (7)

k —
Upng— Up v =0,
k [
Up N = Uy N1 = O’

where G represents the potential of the sine-Gordon system
(2), namely, G(u)=1-cos u. Here, the following notation
was adopted for the sake of simplicity:
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Kok k
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y&mun m n+l m n—1

The operators just defined are assumed to be additive and
homogeneous, and their compositions are defined in the tra-
ditional way.

The method presented here is a variation of the computa-
tional technique employed to approximate solutions of a spa-
tially discrete sine-Gordon system [14]. It is important to
mention that our technique is consistent with the problem,
conditionally stable, and has a consistent energy scheme as-
sociated with it, which has the property of consistently ap-
proximating the rate of change of energy with respect to
time, namely,

M-1 N-1
(5 k+1)2+(5 m)
E= > 3 H,AxAy +42{ OZ(A )2“0 }AxAy

m=1 n=1 m=1

k+1 2 S kN2
_E |:( . Onz)(;xgzxuo’n) :|AXA}’, 9)

where the discrete Hamiltonian H,, ,, is given by the formula

k+1 k
Hk — l( Uy — Winn

2
1
5 k+1\2 S k+1 2
2\ A )+8(A )2[( o)™+ (Oty1)

+ (6, um D+ (Sad D7 3

+ (S ) + (S )* + (5),um,n_,)2]

m,n—

k+1
+ ( mn) ; G(Mm n) ) (10)

It is readily checked that finite-difference schemes (7),
(10), and (9) are consistent approximations of the continuous
formulas (2), (4), and (3), respectively. Moreover, scheme
(10) is always nonnegative, a characteristic which is in
agreement with the fact that Eq. (4) is positive definite. Also,
an algebraic manipulation of the discrete schemes shows that
the discrete rate of change of energy is given by the identity
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Ec-E. 1(5514 )MMA

At mel A 2Ay ] 2At
- (55 uOn) 5”011
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m=1 n=1

which is a consistent estimation of the derivative of the en-
ergy of medium (2) presented as Eq. (5). As a consequence,
the discrete energy is conserved for a conservative, un-
damped medium (2) in which the boundary condition on 4D,
is constant.

IV. SIMULATIONS
A. Nonlinear supratransmission

It is known that the process of nonlinear supratransmis-
sion is present in discrete, (2+ 1)-dimensional systems con-
sisting of coupled sine-Gordon equations, with two adjacent
boundaries harmonically perturbed by a frequency in the for-
bidden band gap [14]. We now proceed to verify computa-
tionally that this phenomenon is also present in continuous,
(2+1)-dimensional sine-Gordon problems such as Eq. (2).
So let us fix a spatial domain [0,L]X[0,L] with L=5, con-
sider problem (2) with no damping and driving frequency
equal to 0.9, and choose two different driving amplitudes A
=0.99 and 1.00. From a computational perspective, we set
Ar=0.025 and Ax=Ay=0.25, and fix a time interval [0, 500].
Moreover, in order to avoid the creation of shock waves in
the medium due to the abrupt change from a stationary re-
gime to one in which the boundary moves vertically at an
initial velocity equal to AQ), we opt to slowly and linearly
increase the value of the driving amplitude from O to its
actual value A, on the time interval [0, 10].

Under these circumstances, Fig. 1 presents the graph of
the solution u at time 451.5, versus the spatial variables x
and y. The left graph represents the solution corresponding to
a driving amplitude equal to 0.99, while the right graph pre-
sents the solution corresponding to an amplitude equal to
1.00. The results show the presence of a drastic change in the
qualitative nature of the solutions, at least when 2=0.9. We
have run simulations for other values of A around the critical
value 1.00, and have concluded that this value constitutes
indeed a threshold value, above which the creation of local-
ized nonlinear solutions is triggered.

Before moving forward in our investigation, it is impor-
tant to mention that time r=451.5 was chosen by virtue of
the fact that it is around this instant when the sine-Gordon
system driven with an amplitude of 1.00 reaches its highest
maximum in the experiment described above. A numerical
determination of the smallest time at which supratransmis-
sion shows up in a system described by Eq. (2) will be car-
ried out at the end of the present section.

As a means to verify our observations, we have focused
our attention on the development of solutions on the straight
line y=x. Figure 2 depicts the time evolution of solutions
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FIG. 1. (Color online) Graph of the solution u versus x and y, corresponding to undamped, initial-boundary-value problem (2), at time
451.5. A driving frequency Q) equal to 0.9 was fixed, and two different driving amplitudes have been chosen: A=0.99 (left) and 1.00 (right).
The graphs show the presence of nonlinear supratransmission in continuous, (2+ 1)-dimensional sine-Gordon equations.

(presented in the top row) and local energy densities (bottom
row) of an undamped medium governed by Eq. (2) restricted
to the spatial domain y=x and the time interval [450, 500],
for the two different amplitude values studied in the previous
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paragraph, and driving frequency equal to 0.9. For a diving
amplitude equal to 0.99, our computations show that the so-
lution to the problem is clearly bounded by 3 and that the
local energy density is nonnegative and bounded by 1. How-

500

]
®) Time 450 0 «

30
20

10

0
500

()

FIG. 2. (Color online) Time-dependent graphs of the solution u (top row) and the local energy density (bottom row) of Eq. (2) along the
line y=x, for a system with no damping, defined in the spatial domain [0,5]X[0,5]. A driving frequency =0.9 was fixed, and two different
driving amplitudes were chosen: one right before supraransmission occurs (A=0.99, left column), and the other after it has already taken

place (A=1.00, right column).

056603-4



BISTABILITY OF A TWO-DIMENSIONAL KLEIN-GORDON...

4 T L
—_L=5
==:L=6

8BL i, - L=10 ]
\ L 0 ) L=30
3t Y L SN S |
8 LY " 1 ‘\\ -
> ‘. (%4 ) “‘_ S
= 257 ’ NN h
o ~\f ¢ >~
c (Y \ Y;u\ )
< 2r SN B
DA
E ss\\
9O 15¢- ‘s\\/ 0 ]
= o ”\
5 ~ . /Q/ ‘ y
1t N
0.5r e
0 L L L L
0.5 0.6 0.7 0.8 0.9 1
Frequency

FIG. 3. (Color online) Diagrams of occurrence of critical ampli-
tude at which supratransmission starts versus driving frequency, for
an undamped, two-dimensional sine-Gordon problem (2) defined
spatially in the set [0,L]X[0,L], for several values of L. The sys-
tem is harmonically perturbed on the coordinate axes.

ever, a driving amplitude of 1 manifests itself in solution
amplitudes that reach the value of 6 in the farthest point of
the domain D, and values of the local energy density that
reach up to 30. These results obviously establish the presence
of nonlinear supratransmission in the medium under study, at
least for the case when the driving frequency is equal to 0.9.

At this point it is indispensable to show that the abrupt
change in the behavior of solutions to the problem around a
threshold value is a phenomenon that happens for every
value of () in the forbidden band-gap region, and its occur-
rence does not depend on the computational parameters Ax,
Ay, and At. Fixing all the parameters of the model, we have
performed numerical experiments in order to approximate
the critical amplitude at which supratransmission occurs for
several fixed values of Ax=Ay, letting then A¢ tend to zero.
The results show that the associated critical amplitude con-
verges to a fixed value A; as Ax, Ay, and At tend to zero,
confirming thus that the existence of the critical amplitude is
independent of the computational parameters. Moreover, our
experiments show that values of Ax=Ay less than or equal to
0.2 and values of At less than or equal to %Ax provide
approximations to A; which are correct within four decimal
places.

The next step in this work is to construct a diagram of
critical amplitude above which supratransmission occurs ver-
sus driving frequency for an undamped medium governed by
Eq. (2), fixing the computational parameters Ax=Ay=0.1
and Ar=0.01, and fixing (L,L) € [0,L]X[0.L] as the point
where supratransmission is to be measured. The results are
presented as the solid line in Fig. 3, and they show a resem-
blance with the qualitative behavior of the graph correspond-
ing to the (1+1)-dimensional scenario [1], and the limiting,
discrete, (2+1)-dimensional case investigated in Ref. [14].
This latter limiting case was obtained using a relatively large
bounded, discrete system in which unboundedness was simu-
lated through an absorbing boundary on dD,, as described in
Ref. [22].
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FIG. 4. (Color online) Diagrams of occurrence of critical ampli-
tude at which supratransmission starts versus driving frequency, for
the two-dimensional sine-Gordon problem (2) defined spatially in
the set [0,5]X[0,5], for several values of y. The system is har-
monically perturbed on the coordinate axes.

Figure 3 presents diagrams of critical amplitude versus
driving frequency for undamped sine-Gordon systems de-
fined in [0,L] X [0, L], for various values of L, and relatively
large frequencies. The graph shows that the critical ampli-
tude increases as L increases, at least for most of the consid-
ered values of () in [0.7, 1]. We must mention here that the
results obtained for L=30 are in excellent agreement with
those of the limiting case scenario investigated in Ref. [14]
through a different computational technique.

We have carried out a similar investigation in weakly
damped sine-Gordon problems governed by Eq. (2), and we
have likewise found the presence of the process of nonlinear
supratransmission. It is not our intention to provide numeri-
cal proof of its existence here; however, we provide dia-
grams of critical amplitude versus driving frequency of a
sine-Gordon medium defined on [0,5]X[0,5], for several
values of the parameter y. This information is given in Fig.
4, and it shows that weak damping delays the appearance of
the supratransmission threshold, for values of € in [0.6, 1].
We must declare that we have chosen several other fre-
quency values in [0.1, 0.6), and we have found out that, for
every fixed frequency (), the value of the critical amplitude
increases as y increases. Moreover, our computations show
that the presence of a nonzero damping coefficient results in
smoother graphs of critical amplitude versus driving fre-
quency, at least for the frequency range considered in this
work.

Finally, in our investigation it is important to posses an
estimate of the time it takes in order for the phenomenon of
supratransmission to be observed in system (2); particularly,
it is indispensable to posses an upper bound for such an
instant of time, which we will denote by #,. Figure 5 actually
presents the relationship between ¢, and the frequency of the
driving boundary in systems governed by Eq. (2) over the
spatial domain [0,5]%[0,5], for several values of the damp-
ing coefficient. Certainly, the graphs do not provide smooth
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FIG. 5. (Color online) Graphs of smallest time #,(y) at which
supratransmission is observed in a system described by Eq. (2)
versus driving frequency over the spatial domain [0,5]X[0,5], for
four different values of the damping coefficient y: 0, 0.05, 0.1, and
0.2.

relationships between the time 7, and the driving frequency.
This is due to the fact that the supratransmission values em-
ployed are mere approximations; however, the importance of
these results lies in the fact that ¢, is clearly bounded from
above, an upper bound being, for instance, r=100.

B. Bistability

Throughout this section, we let A; and A; be the nonlinear
thresholds of supratransmission and infratransmission, re-
spectively, associated with a fixed system described by Eq.
(2). In other words, we let A be the critical amplitude above
which the medium starts to absorb energy from the driving
boundary, and we let A; be the amplitude threshold below
which a medium that is already absorbing energy from the
boundary suddenly stops doing so. We prove here that
damped sine-Gordon systems governed by Eq. (2) present
these two critical amplitudes.

At this stage of our work, we will fix the driving fre-
quency and vary the driving amplitude on an interval
[0,A,,.x] which contains the supratransmission threshold. As
a first step, we will measure the maximum local energy at the
point (L,L) for each of the amplitudes in a regular partition
of [0,A .- These amplitudes will increase from zero until
the supratransmission threshold is reached. After that, the
driving amplitude will be decreased and the maximum local
energy at (L,L) will be computed again, until we reach the
infratransmission threshold. In a first computational experi-
ment, we will fix a damping coefficient equal to 0.1, while
this same parameter will be equal to 0.03 in a second trial.
As a consequence of our results, we will check that the in-
fratransmission threshold tends to zero as the damping coef-
ficient tends to zero, a result which is in perfect agreement
with the (1+1)-dimensional case [2].

In order to evidence the bistable behavior of the
(2+1)-dimensional problem (2), perturbed at the boundary

PHYSICAL REVIEW E 78, 056603 (2008)

by a frequency () in the forbidden band-gap and nonnegative
amplitude A, we drive the system at the boundary using the
function

#(1) = A(1)sin(Q1), (12)

where A(7) may be any of the two driving amplitude func-
tions

Aot
—, t=<10,
A(r)=1 10 (13)
Ay, t=10,
and
rA
t
i t € [0,10],
10° =10.10]
A,, ¢ e [10,490],
A(r) = [ :
AO_As
A, + T(r—490), 1 € [490,500],
LAO’ =500,

(14)

It is evident from the definition of function (14) that it
attains the supratransmission threshold for a period of time
equal to 480, after which it increases or decreases monotoni-
cally in order to reach the value A in a finite time. On the
other hand, Eq. (13) is always nondecreasing, and reaches its
maximum value A in a time period equal to 10.

Let us fix the spatial domain [0,5]X[0,5] for a two-
dimensional sine-Gordon system described by Eq. (2), with
damping coefficient equal to 0.1 and driving frequency 0.75.
Our numerical results have shown that the supratransmission
threshold for such parameters is approximately equal to 2.36;
s0, in a first step, we compute the maximum value of u# and
H at (5, 5), attained by the medium driven by Eq. (12) with
amplitude function given by Eq. (13), over a time interval [0,
1000], with A, changing from O to A,. The results are pre-
sented in Fig. 6(a), in which the arrow pointing right shows
the direction of increase of A,. Evidently, the supratransmis-
sion threshold is reached in a value close to the one obtained
previously, in both the solution and the local energy density
domains.

In a second stage, we choose a driving amplitude function
given by Eq. (14), for several values of A decreasing in the
interval [0, 3], and drive system (2) for a period of time equal
to 1500. The maximum values of u(5,5) and H(5,5) are
presented also in Fig. 6(a), and it shows that a sudden de-
crease in the maximum amplitude of solutions and local en-
ergy density occurs around the amplitude value 1.62. We
identify this new critical amplitude as the infratransmission
(or lower transmission) threshold and, as in the
(1+1)-dimensional case, we denote it by A;.

Figure 6(b) presents the results of a similar experiment
conducted on a sine-Gordon medium with damping coeffi-
cient equal to 0.03 and the same driving frequency as in the
paragraph above, and it show also the presence of an infrat-
ransmission threshold. The results show that the value of the
infratransmission threshold decreases as y decreases. Figure
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FIG. 6. (Color online) Maximum value of the solution u at the point (5, 5) to damped problem (2) defined on [0,5]X[0,5], for different
driving amplitudes and a fixed driving amplitude 1=0.75. Two scenarios have been considered: y=0.1 and (left graph) and y=0.03 (right
graph). The insets represent the corresponding graphs of maximum local energy density at the point (5, 5) versus driving amplitude.

7 in fact presents graphs of occurrence of the lower trans-
mission amplitude versus driving frequency for several val-
ues of 7y. Here, it is interesting to notice that the graph of
nonlinear infratransmission is equal to zero when 7y equals
zero. Thus, an undamped two-dimensional sine-Gordon sys-
tem which has already reached the supratransmission thresh-
old will continue absorbing energy from the boundary as
long as the driving amplitude is a positive real number. Also,
it is worth noticing from Fig. 7 that the difference between
the supratransmission and infratransmission functions de-
creases as the value of 7y increases.
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FIG. 7. (Color online) Diagrams of occurrence of the threshold
value at which infratransmission occurs versus driving amplitude,
for the two-dimensional sine-Gordon problem (2) defined spatially
in the set [0,5]X[0,5], for several values of y. The system is
harmonically perturbed on the coordinate axes. The supratransmis-
sion thresholds for y equal to 0.05, 0.1, and 0.2 are presented in
dashed, dashed-dotted, and dotted lines, respectively.

V. APPLICATION

The purpose of this section is to show that it is possible to
transmit binary information in a medium described by Eq.
(2) by means of a suitable modulation of the driving bound-
ary. For practical purposes, we focus our attention on the
point (L,L) of the spatial domain, and fix the parameters L
=5, y=0.1, and 2=0.79, in which case the approximate val-
ues of the supratransmission and infratransmission thresh-
olds are A;=2.18 and A;=1.43.

In a general framework, let us assume that the binary
message (by,b,, ...,b,) is to be transmitted into the medium
of interest by a suitable modulation of the driving boundary,
where each of the b; is a digit in the set {0, 1}. We let a, be
equal to zero, and for every j=1,2,...,n, we define

a]=b,AA+(1 —b])Al (15)

With this notation at hand, we let 7> 10 be a real number
which is a multiple of the period of the driving, and let 7;
=jT for every integer j. We define the driving amplitude
function

A0 =2 a()x(s,_,7)(0), (16)
j=1

where ys(x) denotes the characteristic or indicator function
on the set § evaluated on x, which is equal to 1 if x € S, and
0 otherwise. Moreover, we let

a—aj_
R S ) +a;, T St<t_;+10,

a:

s T]_l+10§t< T]

(17)
The driving function defined in Eq. (16) is a continuous

function whose values oscillate in the interval [A;,A,] for ¢
=T, and it represents the transitions between the conducting
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FIG. 8. (Color online) Graph of solution u of problem (2) at the
point (5, 5) versus normalized time in the bounded domain [0,5]
X[0,5], with a coefficient of damping equal to 0.1 and a driving
frequency of 0.79, as a result of transmitting the binary message
“10111001011011101001” by perturbing the driving boundary. The
inset represents the graph of the time evolution of the amplitude
function (16).

and insulating regimes of system (2) which are required to
transmit binary bits into the medium. More concretely, for
every period of time [Tj_l, 7;), the value of a; given by Eq.
(15) will be equal to A; if b;=0, or A if b;=1. As defined by
Eq. (17) and in order to avoid numerical instability, a; will
linearly change from a;_, to a; in the first ten units in the
time interval [7;_;,7;), after which «; will be constantly
equal to a;. In view of this, amplitude function (16) will
practically take on constant values over each interval
[7j_1.7;), those values being equal to A; or A, depending on
whether a bit equal to 0 or equal to 1 is to be transmitted
within that interval, respectively.

In practice, we let T be equal to 250 periods of the driving
boundary, and compute the time evolution of the solution u
and the local energy density H at (5, 5). The results are
presented in Fig. 8 for a time normalized with respect to the
period 7. Here, it is easy to see that the maximum amplitude
of the solution at (5, 5) is approximately equal to 5.3 when a
bit equal to 1 is transmitted, while a bit equal to 0 produces
an amplitude smaller than 0.3. Similar qualitative remarks
may be made in the graph of local energy density versus
normalized time.

VI. DISCUSSION

It is worthwhile noticing that the numerical results in Ref.
[2] are supported by an analytical apparatus which still does
not exist in the (2+1)-dimensional scenario. However, it is
important to realize that our results are qualitatively in agree-
ment with those obtained for (1+ 1)-dimensional media gov-
erned by sine-Gordon equations. It is particularly interesting
to point out the similarities of our results with respect to Ref.
[2], especially the qualitative similarities between the graph
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of output amplitude versus input amplitude summarized in
Fig. 6, and the numerical results reported in Fig. 8 of that
work.

It was proved in Ref. [2] that a (1+1)-dimensional sine-
Gordon equation defined on a closed and bounded spatial
interval [0,L] and subject to harmonic driving on one end,
admits three qualitatively different solutions. The proof is
based on the assumption that the solutions of the sine-
Gordon problem studied may be expressed in the form

u(x,t) =4 arctan[ X(x)7(¢)]. (18)

This is a well-known technique called Lamb’s substitution,
which is usually employed together with the method of sepa-
ration of variables in order to solve the sine-Gordon equa-
tion.

The calculations in Ref. [2] establish a well-defined cor-
respondence between the output amplitude (that is, the am-
plitude measured at x=L) and the driving amplitude A, for
values of A above certain critical value A; which depends on
the driving frequency: the nonlinear supratransmission
threshold. On the other hand, for values of A less than Aj,
there exist three theoretical output amplitudes derived from
the three solutions obtained through Lamb’s substitution. In-
deed, the results in Ref. [2] present the plot of the predicted
output amplitude versus A derived from the three solutions;
moreover, the numerical simulations of that work establish
that one of the solutions is unstable, so that only two output
amplitudes coexist for values of A<<A,. Moreover, when
damping is present, the existence of a second critical ampli-
tude A; is observed, below which there exists a unique output
amplitude for each A <A,.

On the other hand, Fig. 6 of our work presents a graph of
maximum output amplitude versus driving frequency for a
damped, two-dimensional sine-Gordon problem of the form
(2). In this scenario, we have shown that, as in the
(1+1)-dimensional case, there exist critical amplitudes A;
and A,, with the property that two different output ampli-
tudes coexist for driving amplitudes A € (4;,A,). Likewise,
driving amplitudes satisfying A<<A; or A>A, have associ-
ated a unique maximum output amplitude.

In view of these observations, we suspect that the
(2+1)-dimensional sine-Gordon problem investigated in this
article has a theory which is very similar to the
(1+1)-dimensional scenario. Particularly, it is suspected that
the undamped model possesses three qualitatively different
solutions of which one of them is unstable. This underlying
theory should be able to predict the relation between the
output and the driving amplitudes presented in Fig. 6 of our
work.

VII. CONCLUSIONS

In this article, we have presented numerical evidence in
favor of the existence of the processes of nonlinear su-
pratransmission and nonlinear bistability in a harmonically
perturbed, two-dimensional sine-Gordon medium with a con-
stant damping coefficient. A numerical approximation to the
process of supratransmission has been provided for the un-
damped scenario, and predictions for several weakly un-
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damped cases have been given in this work for high driving
frequencies. Moreover, the effects of the size of a bounded
domain and variations in the damping coefficient have been
studied here from a computational perspective.

As a result of our study, it has been shown that the pres-
ence of damping tends to delay the appearance of both the
supratransmission and infratransmission (or lower transmis-
sion) thresholds. Our results have established also that the
bistability region is narrowed by the presence of damping.
As a consequence, the difference between the supratransmis-
sion and infratransmission thresholds can be made arbitrarily
small by taking a sufficiently large value of the damping
coefficient. On the other hand, a system without damping
lacks nonzero infratransmission threshold, a fact which is in
perfect agreement with the theory supporting the
(1+1)-dimensional scenario [2].

Our numerical results have been produced through a com-
putational method to approximate solutions of a generic class
of (2+ 1)-dimensional Klein-Gordon equations, which has an
energy scheme associated with it that consistently approxi-
mates the rate of change of the energy of the system. Most of
the conclusions drawn in this work have been verified in
both the domain of solutions and the domain of the local
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energy density, obtaining results which are in perfect agree-
ment.

As an application of our observations, we have proved
that a suitable manipulation of the driving amplitude in a
sine-Gordon system may result in a perfect transmission of
binary information. This fact is established by considering a
damped sine-Gordon system subject to a harmonic perturba-
tion with a fixed frequency in the forbidden band-gap, and
varying the driving amplitude conveniently between the su-
pratransmission and infratransmission thresholds. Results for
both the solution of the system and its local energy density
yield consistent conclusions.
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