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An ion projectile stopping at a velocity smaller than the target electron thermal velocity in a strong magnetic
field is investigated within a different diffusion formulation, based on Green-Kubo integrands evaluated in
magnetized one component plasma models, respectively framed on target ions and electrons. Analytic expres-
sions are reported for slowing down orthogonal and parallel to an arbitrary large magnetic field, which are free
from the usual uncertainties plaguing the standard perturbative derivations. Magnetic and target temperature
dependences of the low velocity slowing down are thoroughly detailed for dense plasmas of fast ignition
concern and ultracold plasmas envisioned for ion beam cooling, as well.
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I. INTRODUCTION AND MOTIVATION

Ion beam stopping in a dense plasma submitted to an
arbitrary large and steady magnetic field B is a recurrent
topic encompassing a huge range of practical situations of
very high interest. This range includes ultracold plasmas
�UCPs� �1�, cold electron setups used for ion beam cooling
�2–4�, as well as many very dense systems involved in mag-
netized target fusions �MTFs� �5�, or inertial confinement
fusion �ICF�. This latter thermonuclear scheme presently ad-
vocates a highly regarded fast ignition scenario �FIS� �6�,
based on femtolaser produced proton or heavier ion beams
impinging a precompressed capsule containing a thermo-
nuclear fuel �7� in it. Then, B values up to 1010 G may be
reached in the laboratory �8�. Such a topic is also of intense
astrophysical concern �9�. These interaction geometries high-
light low ion velocity slowing down �LIVSD� as playing a
fundamental role in asserting the confining capabilities and
thermonuclear burn efficiency in dense and strongly magne-
tized media.

Up to now, the basic features of ion stopping in a dense
and arbitrary magnetized plasma have been essentially ap-
proached through a twofold methodology. The latter mostly
elaborates on a clever combination of the binary collision
�BC� method with the linear response �LR� highlighting a
collective dielectric description of the target electron fluid.
This combination is now perfectly well mastered in the ab-
sence of an applied magnetic field �B=0�. It keeps its effi-
ciency when B�0, by emulating short and large distance
cutoffs with a replacement of the base Coulomb interaction
by a renormalized one including diffraction corrections ��
�0� at short distances and Debye screening at large ones
�2,23�.

However, very significant gaps in this program involve
the crucial ion stopping along B and perpendicular to it. In
particular, at high B values, the BC predicts a vanishingly
parallel energy loss, which remains at variance with the non-
zero LR one.

Also challenging BC-LR discrepancies persist in the or-
thogonal direction, especially for vanishingly small ion pro-
jectile velocity Vb→0.

Quantitatively, the reliability of the BC-LR combination
is mostly grounded on a good agreement with numerical
simulations out of a classical trajectory Monte Carlo
�CTMC� code. However, this code exhibits too high a level
of numerical noise at large B values, and in the Vb→0 limit,
while keeping a plasma coupling below unity, which is pre-
cisely the domain of many important applications of current
interest, as those envisioned in the sequel, This situation mo-
tivates us to propose an alternative approach to this param-
eter range, by implementing low ion velocity slowing down
�LIVSD� through diffusion coefficients of the magnetized
one component plasma featuring either the target electrons or
target ions.

As detailed below, these methods allow for a direct and
complete accounting of the low frequency plasma modes in-
volved in the LIVSD mechanism, in the presence of an arbi-
trary strong magnetic field.

Our present goal is to demonstrate that transverse and
parallel LIVSD to B may be given analytic expressions
through a derivation free from ambiguities usually plaguing
the most sophisticated combination of binary collision ap-
proximation and dielectric response �2–4�. We thus imple-
ment a radically different approach �10� to LIVSD when pro-
jectile velocity Vb remains smaller than target electron
thermal velocity Vthe. We thus consider ion stopping,

S�Vb� �
dEb

dx
�Vb� , �1�

near Vb=0. The ratio S�Vb� /Vb usually monitors a linear
stopping profile, up to 100 keV /amu �11� in cold matter.
Similar trends are also reported in highly ionized plasma
with B=0 �12� or B�0 �2�.

From now on, we intend to make use of a very powerful
connection between very low velocity ion stopping and par-
ticle diffusion through Einstein characterization of ion mo-
bility associated to thermal electron fluctuations in target,
around the slow ion projectile visualized as an impurity im-
mersed in a dense and homogeneous electron fluid. Techni-
cally, we are then led to use the recently proposed and exact
Dufty-Berkovsky relationship �11,13�
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lim
Vb→0

S�Vb�
Vb

= kBTeD
−1, �2�

connecting the ratio of stopping to Vb in the zero velocity
limit with the ion diffusion coefficient in target.

We first detail the determination of D in a framework of
magnetized one-component-plasmas �OCP� models through
specific magnetohydrodynamic modes. Then, we check the
implementation of Eq. �2� in the zero field �B=0� case. We
display typical LIVSD B and T behaviors for a dense target
of ICF concern �6–8�, and an ultracold plasma of ion beam
cooling interest �2–4�. We stress transverse and parallel ge-
ometries

II. FORMALISM

A. General

In a magnetized plasma the particle self-diffusion coeffi-
cient D can be readily expressed in terms of Green-Kubo
integrands �GKIs� involving field fluctuations in the target
electron fluid, under the form

D =
c2

B2�
0

�

d��E� ��� · E� �0�� �3�

in terms of an equilibrium canonical average of the two-point
autocorrelation function for fluctuating electric fields
�14,15�.

At this juncture we need to frame the GKI in suitable
magnetized one component plasma �OCP� models �14,15�
for the transverse and parallel geometries, respectively. This
procedure implies that the slowly incoming ions are evolving
against a background of faster fluctuating target electrons
�Vb�Vthe� providing the OCP rigid neutralizing background
thus validating the OCP assumption.

Moreover, restricting to proton projectiles impacting an
electron-proton plasma �16�, we immediately perceive the
pertinence of the diffusion-based LIVSD as phrased by Eq.
�2�.

First, the proton beam can easily self-diffuse amongst its
target homologues, while the same mechanism experienced
by target electrons allow them to drag ambipolarly the in-
coming proton projectiles �17�. So, the transverse electron
LIVSD can be either monitored by the well known classical
diffusion D�	B−2, or by the Bohmlike hydrodynamic one
with D�	B−1. In the first case, momentum conservation at
the level of the electron-ion pair implies that the ions will
diffuse with the same coefficient as the electrons. Finally, we
should also notice that the relationship �2� implies the exis-
tence of bona fide diffusion coefficients, through a nonzero
minimum for the electron collision frequency.

Transverse D� and parallel D
 diffusion coefficient have
already been discussed at length by Marchetti et al. �14� and
Cohen-Suttorp �15�. Their derivation is based on the specific
features of four finite frequency and propagating hydro-
modes in a strongly magnetized OCP with the ratio of
plasma to cyclotron frequencies, �p /�b�1.

B. MHD OCP modes

According to the Marchetti-Kirkpatrick-Dorfman �MKD�
analysis �14� there are five modes: four propagating finite
frequency modes and one purely diffusive mode. They are as
follows:

�i� Two high-frequency modes, known in the Vlasov limit
as the first Bernstein modes, or the upper hybrid modes. The
dispersion relation is given for �p /�b�1 by

�h��k� = i��b�1 +
1

2

�p
2

�b
2 k̂�

2 +
�

2	
T

k�
2

�b
2�

+ kz
2�
�i��b��1 +

1

2
k̂�

2 �p
2

�b
2�

+ k�
2 ���i��b
k̂z
� + 0�k3� �4�

with �= �1. When B=0, these modes reduce to the plasma
modes. �=cp /cv is the ratio of specific heats, 	=nm and 
T
is the isothermal compressibility.

�ii� Two finite-frequency modes, known in the Vlasov
limit as the propagating plasma modes, with frequency, for
�p /�b�1,

����k� = i��p
kz
�1 +
�

2	
T

k2

�b
2 −

1

2
k̂�

2 �p
2

�b
2 −

3�

4	
T

k�
2

�b
2�

+ kz
2�
��i��p
k̂z
��1 + k̂�

2 �p
2

�b
2�

+ k�
2 ��� �i��p
k̂z
� + 0�k3� . �5�

When B=0, these reduce to then shear modes.
�iii� One diffusive heat mode, with dispersion relation

�H�k� = D

Tkz

2 + D�
T k�

2 + 0�k4� �6�

which does contribute to particle transport, and is thus ig-
nored in the sequel.

Here k̂�=k� /k and k̂z=kz /k. In Eqs. �4� and �5� terms of
0��p

3 /�b
3� have been neglected.

The viscosities �
, ��, �
�, and ��� are linear combinations
of the five kinematic viscosities �j for j=0,1 , . . . ,4. They are
defined as

�
�i��b� = �2�i��b� − i��4�i��b� , �7a�

���i��b� = �1�i��b� +
1

6
�0�i��b� − i��3�i��b� �7b�

and

�
��i��p
k̂z
� =
2

3
− �0�i��p
k̂z
� , �7c�

��� �i��p
k̂z
� =
1

2
�2�i��p
k̂z
� + i�

�p

�b

k̂z
�4�i��p
k̂z
� .

�7d�

As expected, they are finite frequency complex transport co-
efficients.
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The viscosities are evaluated to lowest order in the plasma
parameter for the propagating modes as

�0
0�i��p
k̂z
� =

1

m

� 2�c

5��
− i��p
k̂z
�−1

,

�1
0�i��p
k̂z
� �

1

m
�b
2

�c

10��
−

i��p
k̂z

4m
�b

2 ,

�2
0�i��p
k̂z
� �

1

m
�b
2 −

2�c

5��
−

i��p
k̂z

m
�b

2 ,

�3
0�i��p
k̂z
� �

1

2m
�b
,

�4
0�i��p
k̂z
� �

1

m
�b
. �8�

The imaginary parts of �3 and �4 are neglected because they
are of order ��p /�b�3.

The time evolution of the currents in the limit �p�1 can
be approximately described by the Landau kinetic equation.
MKD find that �
, �
�, and D


T are 0��b
o�; Re ��, Re ��� , and

D�
T are 0��b

−2�; and Im �� as well as Im ��� are 0��b
−1�.

To leading order in �p /�b, the upper hybrid modes rep-
resent velocity fluctuations in the xy plane, while the propa-
gating plasma modes are associated with density fluctuations
and fluctuations of velocity in the z direction. The heat mode
represents temperature and density fluctuations.

C. Self-diffusion coefficients

So, exploring first the �b��p domain, one can explicit
the parallel and B independent diffusion �14�,

D

�0� =

3��Vthi
2

�c
	 0��b

0� , �9a�

where Vthi
2 =

kBT

Mp
, and �c=�p�p ln�1 /�p� in terms of the plasma

parameter �p=1 /n�D
3 , where n denotes charge particle den-

sity, and �D, the Debye length, in a beam plasma system
taken as globally neutral with �c /�b�1.

At the same level of approximation transverse diffusion
reads as �14�

D�
�0� =

rL
2�c

3��
	 0��b

−2� , �9b�

in terms of Larmor radius rL=Vthi /�b.
With higher B values ��b��p� one reaches the transverse

hydro-Bohm regime featuring �14,18�

D� = D�
�0� +

0.5Vthi
2

�b
�p

2�ln�1/�p��3/2, �10�

while parallel diffusion retains a �b dependence through �13�

D

−1 =

�5/2

�pa2� 3

�
�1/2

· �0.5 ln�1 + X2� − 0.3 +
0.0235

r2 � ,

�11�

where

� =
a2

3�D
2 with a = � 3

4�n
�1/3

, r =
�p

�b
,

and X =
1
�3

·
1

�3/2 .

��1 encompasses, most if not all, situations of practical
interest.

When electron diffusion is considered, Vthe should be used
in Eq. �10�, and the above ambipolar process has to be imple-
mented.

III. B=0 LIMIT

In order to document the LIVSD physics highlighted by
the Dufty-Berkovsky �DB� expression �2�, we first pay atten-
tion to the unmagnetized B=0 limit. We investigate it
through three independent avenues. First, we consider the
usual single projectile ion slowing down into the target elec-
tron fluid described in the small �p limit as a Fried Conte
dielectric �12,20,21� Then, low velocity ion stopping can be
expressed under the form �ND=n�D

3 �

− �dE

dx
� = Rl�P + R3�p

3 + 0��p
5� , �12�

with the “friction coefficient”

Rl =
Z2ND

12��2�
�ln�K2 + 1� −

K2

K2 + 1
� , �12a�

and the �p
3 coefficient

R3 =
Z2ND

12��2�
�−

3

10
ln�K2 + 1� + �8

5
−

�

20
�� ,

−
29

10

1

k2 + 1
+ �13

10
+

3�

20
� ,

�� 1

�K2 + 1�2 +
�

10

1

�K2 + 1�3� , �12b�

where Z=Z /ND and K=8�n�D
3 /Z. In the present �p�1 ap-

proximation, we always witness R3≪R1, which validates
quantitatively the exact DB result �2�.

An obvious alternative to the series �12� is afforded
through the B=0 limit of the B-perturbative analysis worked
out by Steinberg and Ortner �19�, with

−
dE

dx
=

2

3

�2�m�1/2

�kT�3/2 Z2e4nDVp, m = electron mass,

�13�

and D=−ln�y2 /8�−C−1, where y=��p /kT and C=0.5722,
denotes the Euler constant.
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Expressions �12� and �13� are quantitatively equivalent,
thus providing a theoretical template against which to evalu-
ate LIVSD deduced from OCP diffusion coefficients.

The second advocated route implements the small �p ap-
proximation for that B=0 self-diffusion coefficient given by
Sjögren et al. �22�, under the form

D2 =
104Z2 + 111�2Z + 59

32Z2 + 75�2Z + 50
D2

�1�, �14�

with

D2
�1� = a2�p��

3
�1/2��Z�2 + 1��5/2 ln

kmax

kmin
�−1

. �14a�

For Z=1, Eq. �14� gives D2=1.70 D2
�1�, with D2

�1� evalu-
ated through a one Sonine polynomial approximation. The
argument under the logarithm in Eq. �14� documents the
usual Coulomb logarithm 	�D /�L for T�1 Ry, or �D /�DdB
for T�1 Ry. �L denotes the usual Landau length �L
=e2 /kBT and �DdB=� /�2mkBT, the electron De Broglie
wavelength, taking care of the intrinsically quantum behav-

ior of the high-temperature plasma in the short range limit
�23�.

Finally, one has also to pay attention to the parallel diffu-
sion coefficient �9a� featuring the �b��p range. The three
given approaches are thus contrasted in Fig. 1 where curve
�a� features Eqs. �12� and �13�, curve �b� implements Eqs.
�2�–�14�, while curve �c� illustrates the same process through
the B-independent diffusion coefficient �9a�.

The rather handsome matching of the three independent
approaches at B=0, in a dense but still weakly coupled target
plasma, encourages us to investigate further the strongly
magnetized ones.

FIG. 1. �Color online� Low velocity proton stopping in dense
plasma �n=1021 e-cm−3� in terms of target temperature, �a� B=0,
LIVSD, Eqs. �12� and �13�, �b� B=0, LIVSD, Eq. �14�, and �c�
parallel LIVSD, Eq. �2� with Eq. �9a�.

FIG. 2. �Color online� Proton transverse LIVSD in a dense tar-
get �n=1021 e-cm−3, T=1 keV� in terms of B �G�; �a� classical elec-
tron contribution to stopping, Eq. �9a�; �b� Bohm-like electron con-
tribution to stopping, Eq. �10�; �c� classical ion contribution to
stopping, Eq. �9a�; �d� Bohm-like ion contribution to stopping,
Eq. �10�.

(b)

(a)

FIG. 3. �Color online� Proton parallel LIVSD in a dense target
�n=1021 e-cm−3, T=1 keV� in terms of B �G�: �a� Bohm-like elec-
tron contribution to stopping, Eq. �11�; �b� classical electron contri-
bution to stopping, Eq. �9a�; �c� Bohm-like ion contribution to stop-
ping, Eq. �11�; �d� classical ion contribution to stopping, Eq. �9a�.

FIG. 4. �Color online� Proton transverse LIVSD in a cold
plasma �n=3.5�107 e-cm−3, T=100 °K� in terms of 102�B�G�
�106; �a� target electron slowing down �D�	B−2�, Eq. �9b� �b�
target ion slowing down �D�	B−2�, Eq. �9b�; �c� Target electron
slowing down �D�	B−1�, Eq. �10�; �d� target ion slowing down
�D�	B−1�, Eq. �10�.

CLAUDE DEUTSCH AND ROMAIN POPOFF PHYSICAL REVIEW E 78, 056405 �2008�

056405-4



IV. LIVSD IN STRONGLY MAGNETIZED TARGETS

We are now ready to implement the DB expression �2�
through the diffusion coefficients for strongly magnetized
OCP �Eqs. �9a�, �9b�, �10�, and �11��, we thus emphasis
transverse and parallel LIVSD, which are quantities of great
physical interest, but hardly accessible to the most sophisti-
cated combinations of binary collision and dielectric ap-
proaches �2–5�.

A. B dependence

D� and D
 expressions introduced in Eq. �2� are expected
to document a strong anisotropy between transverse and par-
allel slowing down. However, in both cases, B dependence is
obviously increasing with B2 �classical� or B �Bohmlike�.

We thus consider respectively a dense and strongly mag-
netized target plasma envisioned for fast ignition in ICF
�6–8� with n=1021 e-cm−3, T=1 keV and 1010�B�G�
�1011 �see Figs. 2 and 3�, and also a highly dilute �n
	107 e-cm−3� one at very low temperature �T�K�=100�, �see
Figs. 4 and 5 of current use for ion beam cooling �2–4,24�,
on the Lear accelerating line, at Cern for instance. In both
cases, one witnesses a steady LIVSD increase with B, for
both D� and D
, when B dependent D expressions are intro-
duced in Eq. �2�.

B. T dependence

The temperature behavior is much more intriguing, as re-
spectively displayed on Figs. 6 and 7 for transverse and par-
allel LIVSD in the highly strongly magnetized and dense
target already considered for fast ignition in ICF. One then
witnesses a monotonous increase for transverse stopping

FIG. 5. �Color online� Proton parallel LIVSD in a cold plasma
with n=3.5�107 e-cm−3, T=100 K in terms of magnetic intensity
102�B �G��106: �a� target electron slowing down for B�0, Eq.
�11�; �b� target ion slowing down for B�0 Eq. �11�; �c� target ion
slowing down with B-independent D, Eq. �9a�; �d� target electron
slowing down with B-independent D, Eq. �9a�.

FIG. 6. �Color online� Proton transverse LIVSD in a dense
plasma with n=1021 e-cm−3, 100�T �eV��5000 and B=1010 G in
terms of T �eV�: �a� target electron slowing down �D�	B−2�, Eq.
�9a�; �b� target ion slowing down �D�	B−2�, Eq. �9a�; �c� target
electron slowing down �D�	B−1�, Eq. �10�; �d� target ion slowing
down �D�	B−1�, Eq. �10�.

FIG. 7. �Color online� Proton parallel LIVSD in a dense plasma
n=1021 e-cm−3, 100�T �eV��5000 and B=1010 G, in terms of
T �eV�: �a� electron stopping �B�0�; �b� ion stopping �B�0�; �c�
ion stopping �B=0�, �d� electron stopping �B=0�.

FIG. 8. �Color online� Proton transverse LIVSD in a cold
plasma; n=3.5�107 e-cm−3, 10�T �K��105 and B=104 G, in
terms of T �K�; �a� target electron slowing down �D�	B−2�. Eq.
�9a�; �b� target electron slowing �D�	B−1�, Eq. �10�; �c� target ion
slowing down �D�	B2�, Eq. �9a�; �d� target ion slowing down
�D�	B−2�, Eq. �10�.
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�Fig. 6� contrasted to a monotonous decay for the parallel
counterpart �Fig. 7�.

Such a behavior is likely to be generic, because one re-
trieves it in the very different situation of the cold plasma
used for ion beam cooling �2–4,24�, as evidenced by the
corresponding transverse �Fig. 8� and parallel �Fig. 9� behav-
iors.

The intermediate regime alluded to in Ref. �20�, with
D�	B0, corresponds to the diffusion coefficient �14�,

D�� = D�
�0��1 +

0.6�p�c

r2�p
� , �15�

with the ensuing LIVSD pictured as curve �b� ion Fig. 10,
dedicated to transverse slowing down in a dense target with
n=1021 e-cm−3, B=1010 G in terms of temperature. As an-
ticipated, expression �15� yields LIVSD very close to those
deduced from Eq. �9b�.

V. SUMMARIES

As a summary, we implemented the very simple LIVSD
expression �2� to the a priori very involved ion beam arbi-

trarily magnetized plasma interaction. We used transverse
and parallel diffusion coefficients �14,15� in suitably framed
magnetized one component plasma �OCP� with target elec-
trons building up the corresponding neutralizing background.
Thus we reached analytic LIVSD transverse and parallel
expressions advocating contrasting temperature behaviors.
These quantities are of obvious significance in asserting the
confinement capabilities of a very large scope of dense and
strongly magnetized plasmas ranging from ultracold ones �1�
to those featuring the highest B values one can produce in the
laboratory or observe in astrophysics �2–9�.

It should also be appreciated that in contradistinction to
the usual perturbative techniques of current use �2–5�, our
present asymptotic analysis produces analytic LIVSD ex-
pressions, which are of immediate use for numerical coding.
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