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An analytical model for the linear Richtmyer-Meshkov instability in solids under conditions of high-energy
density is presented, in order to describe the evolution of small perturbations at the solid-vacuum interface. The
model shows that plasticity determines the maximum perturbation amplitude and provides simple scaling laws
for it as well as for the time when it is reached. After the maximum amplitude is reached, the interface remains
oscillating with a period that is determined by the elastic shear modulus. Extensive two-dimensional simula-
tions are presented that show excellent agreement with the analytical model. The results suggest the possibility
to experimentally evaluate the yield strength of solids under dynamic conditions by using a Richtmyer-
Meshkov-instability-based technique.
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I. INTRODUCTION

Hydrodynamic instabilities in solids under high-energy
density conditions are governed by their elastic and plastic
properties. At present the interest in this field is growing
either because instabilities in solids are an object of research
by itself or for their application as a tool for the experimental
investigation of constitutive properties of matter �1–12�. In
particular, Rayleigh-Taylor �RT� and Richtmyer-Meshkov
�RM� instabilities may arise in the LAPLAS �Laboratory of
Planetary Sciences� experiment proposed in the framework
of the new FAIR �Facility for Antiproton and Ion Research�
facility presently under construction at Gesellschaft für
Schwerionenforschung �GSI� in Darmstadt �13,14�. This ex-
periment is being designed for the study of equation of state
and transport properties of high-energy density matter and
consists in the quasi-isentropic implosion of a cylindrical
shell driven by an intense heavy ion beam �15–17�. The ion
beam with a ring shaped focal spot heats the annular region
�the absorber� surrounding a shell that acts as a pusher. The
pusher is made of a heavy metal and it is imploded by the
absorber expansion thus compressing a material sample in
the axial region. Hydrodynamic instabilities at the absorber-
pusher interface could affect the implosion performance and,
therefore, they must be investigated. Since the involved load-
ing pressures are below the melting limit, the pusher remains
in solid state during the implosion process. For this, we need
to take into account the elastic-plastic constitutive properties
of the shell material. The situation in the LAPLAS experi-
ment is somewhat similar to the one present in magnetically
accelerated shells �12,18�, and in shells accelerated by gas-
eous detonation products �11,19,20�.

On the other hand, RT instability has also been used as a
tool for the experimental evaluation of the elastic limit of

accelerated solids �4,10,11,19–22�. In fact, since the pioneer-
ing work by Barnes et al. �19,20�, the use of RT instabilities
in solids has been playing an increasing role in the experi-
mental evaluation of material strength. This technique has
been further developed in the last few years by introducing
the laser driven quasi-isentropic acceleration of a plate with
precut modulations. The acceleration is driven by pressures
up to 200 GPa generated with high power laser facilities
�4,10,11,21,22�. This recent progress allows, in principle, for
achieving high loading pressures by keeping the sample be-
low the melting temperature. Nevertheless, because of the
relatively long pulse duration required by this technique, the
maximum driving pressures obtained so far in the available
laser facilities have been limited to values of around
200 GPa, postponing the achievement of the regime close to
1000 GPa up to the availability of the largest laser facility
ever constructed, namely, the National Ignition Facility
�NIF� in USA.

Probably because of the great interest in the RT based
technique for the evaluation of yield strength, most of the
work on hydrodynamic instabilities in matter under extreme
conditions of pressure have concentrated on RT instability
and relatively little effort has been dedicated to RM instabil-
ity in solids with elastic-plastic constitutive properties
�5,9,23�. RM instability occurs when a shock wave goes
through an interface separating two media or when a shock is
launched into a medium from an otherwise free surface, by
the impact of a projectile on it �24–26�. Two recent studies,
however, have analyzed the RM flow in perfectly elastic
�Hookean� media and show that elasticity ensures the stabil-
ity of the interface. As a result, the interface oscillates har-
monically with a period that essentially depends on the solid
shear modulus G �5,9�. For the more interesting and realistic
case of elastic-plastic solids there exists, to our knowledge,
only a study reported by Bakharakh et al. �23� consisting of
numerical simulations. They found that after an initial time
of monotonic growth, the perturbation amplitude reaches a*roberto.piriz@uclm.es
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maximum and then remains close to it. From these numerical
results they also found a scaling law for this maximum am-
plitude in terms of the yield strength Y and other material
and experiment parameters. Nevertheless, this study was lim-
ited to relatively low driving pressures and hence, rather low
compressions were obtained. More recently, Mikaelian �27�
also presented a few results of numerical simulations. In ad-
dition, during the processing of this manuscript, the numeri-
cal simulations reported in Ref. �28� were noticed to us.
However, no theoretical model has been proposed so far for
the interpretation of numerical results.

In this paper we present an analytical model for the RM
instability in solids that is constructed by assuming that the
shocked material behaves similar to an elastic-perfectly plas-
tic medium described by the Prandtl-Reuss flow rule with the
von Mises yield criterion �29,30�. In addition, we have per-
formed extensive two-dimensional �2D� numerical simula-
tions with the finite element code ABAQUS �31� for compari-
son with the analytical results and we have found an
excellent agreement between model and simulations. In the
limit of relatively low shock compressions we retrieve the
numerical results by Bakharakh et al. �23� both, with model
and simulations.

II. THE ANALYTICAL MODEL

We consider a medium of density � with elastic-plastic
properties that occupies the semi-space y�0 and has a free
surface at y=0 �Fig. 1�. We also assume that this interface
has a small sinusoidal perturbation in the transverse direction
of amplitude �i and wavelength � which are taken in such a
way that k�i�1 �k=2� /� is the perturbation wave number�.
At t=0, a constant pressure p0 is maintained at the solid-
vacuum boundary �y=0�, driving a shock which moves with
constant velocity into the solid material. We concentrate here
on the time asymptotic linear evolution of the interface cor-
rugation that takes place once the shock traversed several
wavelengths into the undisturbed material. We do not de-
scribe the details of the interaction between the shock and
the interface during the transient phase in which the shock is
still near y=0. As shown in Ref. �26�, the effect of such an

interaction would be to generate a rotational velocity field
inside the shock compressed material. This rotational veloc-
ity field has characteristic lengths that cannot be determined
self-consistently from the present model. We also assume
that the perturbations are incompressible.

As we have previously discussed in Ref. �5�, the
asymptotic evolution of the interface, that is, after an initial
transient phase, can be described by considering that the only
force acting on the interface is the one due to the shear stress.
The shear stress is described by the deviatoric part Sij of the
stress tensor �ij =−p	ij +Sij, where p is the thermodynamic
pressure �the isotropic part of �ij� and 	ij is the identity ten-
sor. In addition, as we have shown in Refs. �5,8,32�, an ap-
proximate equation of motion can be derived by assuming a
perturbed velocity field of the following form:

vy = �̇�t�eqy sin kx , �1�

vx = 
̇�t�eqxy cos kx , �2�

where �̇�t� is the instantaneous normal velocity of the inter-
face and q−1 and qx

−1 are the characteristic lengths with which
the surface modes decay with distance from the interface. As
we have discussed above, q and qx must be imposed into the
model equations in the same manner it has been done in the
past in similar models for the RT instability problem
�6–8,33–37� and for the RM flow problem in purely elastic
media �5�. Thus, we take q−1=�k−1 and qx

−1=�xk
−1, where �

is a numerical factor that express our ignorance about the
exact velocity field and that will be obtained by comparison
with the numerical simulation results. Incompressibility of

the perturbations ��vi /�xi=0� requires that q�̇=k
̇ at y=0.
On the other hand, �x=k /qx will be determined, as we will
see later, from the self-consistency of the equation of motion.

With the previous assumptions we can write the equation
of motion for the asymptotic linear evolution of the interface
�5–8�:

�
�

k

dvy

dt
= − Syy �3�

�see Ref. �5� for more details about derivation of this equa-
tion� where now Syy is the perturbation of the normal com-
ponent of the deviatoric part of the stress tensor. Hereafter,
Sij will denote the perturbation of the deviatoric part of the
stress tensor. In addition, � is the post-shock density and it is
determined by the pressure p0 driving the shock and by the
equation of state �EOS� of the solid material. Here, as in
Refs. �23,30�, we have adopted a Mie-Grüneisen EOS with a
Grüneisen coefficient �=�0�0 /� ��0 is a material param-
eter�. In addition, in order to express the Hugoniot of the
solid we have taken the usual linear relationship between the
shock velocity us and the particle velocity up:

p − ph = �0�0�
 − 
h� �4�

us = c0 + sup, �5�

where p and 
 are the pressure and the specific internal en-
ergy of the material, and the index “h” denotes the Hugoniot

y

x

� �
0

p
0

u
p

u
s

vacuum

0

elastic-plastic solid

FIG. 1. Diagram of the solid-vacuum interface and of the shock
wave separating the shocked region from the material unaffected by
the shock
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reference state. The constants c0 and s are parameters char-
acteristic of the material. Therefore, the following relation-
ships between the post-shock density � and the driving pres-
sure p0 can be written as

� = 1 −
�0

�
, p0 − pi =

�0c0
2�

�1 − s��2 , up =
c0�

1 − s�
, �6�

where pi is the initial pressure of the material �usually it is
pi� p0�. Then, Eq. �3� can be used to describe the interface
evolution after an initial transient phase. Two-dimensional
�2D� numerical simulations show that during this transient
phase the material does not feel the effect of the constitutive
properties and, thus, it evolves similar to the classical case
for an ideal fluid �Sij =0� �Fig. 2�. We will further discuss this
point later. Now, in order to describe the interface evolution
after such an initial transient phase, we need to derive a
suitable expression for the normal component Syy of the de-
viatoric part of the stress tensor. In Ref. �8� we have obtained
Syy for viscous fluids and elastic �Hookean� solids. Here we
have to find Syy for an elastic-plastic material.

A. Elastic-plastic media

In order to get a convenient expression for the tensor Sij
we assume a Prandtl-Reuss rule with the von Mises yield
stress criterion �29�

Ṡij + 2GSij
SmnDmn

SmnSmn
= 2GDij �7�

if

SijDij � 0 and SijSij =
2

3
Y2 �8�

and

Ṡij = 2GDij �9�

if

SijDij � 0 or SijSij �
2

3
Y2, �10�

where, by assuming that perturbations are incompressible
��vi /�xi=0�, we have

Dij =
1

2
� �vi

�xj
+

�v j

�xi
� . �11�

Following Ref. �29�, for convenience, we define the time
independent tensor Mij as follows:

Mij =
Dij

k�̇
. �12�

In the previous equations we have used usual index notation
in which repeated indices denote summation. Then, multiply-
ing Eq. �7� by Dij and defining suitable dimensionless vari-
ables, we get a differential equation for the product SijMij
�29�:

d�

dx̄
+ �2 = 1, ��x̄0� = �0, �13�

where

� =
SijMij

�M��2

3
Y

, x̄ =
2kG�M�

�2

3
Y

�, �M�2 = MijMij . �14�

For deriving Eq. �13� we have used the following relation-
ships:

ṠijMij =
��SijMij�

�t
= �̇

��SijMij�
��

, �15�

where Mij is independent of time and �̇=d��t� /dt.
The solution of Eq. �13� turns out to be �29�

��x̄� =
�0 + tanh�x̄ − x̄0�

1 + �0 tanh�x̄ − x̄0�
. �16�

Introducing this result into Eq. �7� we get the differential
equations for the components of the tensor Sij:

dS

dx̄
+ ��x̄�S = 1, S�x̄0� = S0, �17�

where we have defined S as

S =
�M�

�2

3
YMij

Sij . �18�

By solving Eq. �17� we get
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FIG. 2. Relative perturbation amplitude as a function of time for
different values of the yield strength Y. Perturbation growth for an
ideal fluid �classical� and for a pure elastic medium are also shown.
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S =
S0 + tanh�x̄ − x̄0�

1 + S0 tanh�x̄ − x̄0�
. �19�

Since we are considering the regime for which, at x̄= x̄0, the
material is already on the yield surface, it results to be S0
=1 and therefore, S=1 for all values of x̄ �provided that
SijDij �0 and �S�=�2 /3Y�. Thus, the deviatoric tensor Sij is

Sij =�2

3

Mij

�M�
Y,SijDij � 0�k�̇ � 0�, �S�2 =

2

3
Y2. �20�

On the other hand, when SijDij �0 �k�̇�0� or �S�
��2 /3Y, we have to use Eq. �9�. Then, by proceeding in the
same manner used to obtain Eq. �13�, we get

��SijMij�
��

= 2kG�M�2. �21�

Upon integration the previous equation yields

Sij = 2kGMij�� − �̄�,k�̇ � 0 or �S� ��2

3
Y , �22�

where �̄ represents the amplitude mean values around which
elastic oscillations take place during the elastic phases.

B. Model results

Equations �20� and �22� provide the required expression
of Syy that we must introduce into the equation of motion.
However, in order to use these equations the perturbed ve-
locity field must be specified. As we have already mentioned,
we will adopt the expressions given by Eqs. �1� and �2� with

q−1=�k−1 and 
̇= �̇ /�. Instead, for determining �x in terms of
�, we notice that consistency of Eq. �3� demands that �M�
must be independent of the coordinate x. Therefore, at y=0,
we have

�M�2 =
2

�2 =
1

2
� 1

��x
+ 1�2

. �23�

The previous equation provide �x��� and so, qx can be evalu-
ated after the parameter � is specified. Also we obtain

Myy =
sin kx

�
. �24�

By defining Sy =Syy /sin kx and using Eq. �24�, the equa-
tion of motion of the interface �y=0� reads

�
�

k
�̈ = − Sy , �25�

where:

Sy = 	�
2

3

Y

��M�
, k�̇ � 0,� � �p,

2
k

�
G�� − �̄� , k�̇ � 0,� � �p,


 �26�

where �p−�i is the amplitude for which the elastic limit is
achieved ��i is the initial amplitude when the material is

stress-free and, therefore, for the initial elastic phase it is �̄
=�i�:

�p − �i =�2

3

1

2�M�
Y

kG
. �27�

As we have already mentioned, there is an initial transient
phase during which the material seemingly does not feel the
effects of the constitutive properties on the interface evolu-
tion and, thus, the perturbations grow as in the classical case
for an ideal fluid �see Fig. 2� �5�. After this transient phase
�for times t� t0�, when the perturbation amplitude ��t� has
growth up to a value �0��i ��0=��t0��, Eqs. �25� and �26�
can be used for describing the interface evolution. For most
cases of practical interest we can assume that at t= t0, the
amplitude has already overcome the elastic limit ��0��p�
and thus

�0 − �i ��2

3

1

2�M�
Y

kG
. �28�

Therefore, the later evolution will take place within the plas-

tic regime ����p�, provided that k�̇�0. Actually, as we will
see later, this assumption is not very restrictive because in
every case the amplitude will grow up to a maximum value
�m that will be reached at the time tm and, for times t� tm, the
material will remain always into the purely elastic regime
�Fig. 3�. So, by taking �p��0, we neglect only an interme-
diate regime for which it is �0��p��m and a short elastic
phase exists after the initial transient phase. In any case such
an intermediate regime can also be described by the present
model. Here we restrict ourselves to the most interesting re-
gime defined by Eq. �28�.

By integrating Eqs. �25� and �26� for times t� tm, we get
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FIG. 3. Relative perturbation amplitude as a function of time for
a typical case. Amplitude and frequency vary during the first oscil-
lation period of the elastic phase.
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�̇ − �̇0 = −�2

3

1

�2�M�
kY

�
�t − t0� , �29�

� − �0 = �̇0�t − t0� −�2

3

1

2�2�M�
kY

�
�t − t0�2. �30�

Then, the maximum amplitude �m and the time tm when this
maximum is reached are given by the following equations:

�m − �0 =�3

2

�2�M�
2

��̇0
2

kY
. �31�

tm − t0 =�3

2
�2�M�

��̇0

kY
. �32�

For times t� t0 the amplitude grows classically �like in an
ideal fluid� and it reaches the asymptotic velocity that will be

the initial velocity �̇0 for the following plastic phase. There-
fore, we have �24–26�:

�̇0 = k�iup, �33�

where up, as well as � in the previous equations, are deter-
mined by the driving pressure p0 and the material constants
�see Eqs. �6��. By introducing Eqs. �6� with pi� p0 into Eq.
�33� and then replacing it into Eq. �31�, we get after a short
algebra:

�m − �0

�0
��3

2

�2�M�
2

k�0p0
2

Y�0c0
2� �i

�0
�2 �1 − s��2

1 − �
. �34�

In the limit of relatively low yield strength Y �Y /k�0G�1� it
results to be �0��i, and for weak shock compressions it is
��1. Therefore, the previous equation reads

�m − �i

�i
��3

2

�2�M�
2

k�ip0
2

Y�0c0
2 . �35�

This expression reproduces exactly the scaling law found by
Bakharakh et al. �23� from a series of 2D numerical simula-
tions. As we will see later, the numerical simulations can be
very well fitted by taking �=0.335 ��M�=4.223� so that the
constant in Eq. �34� is �3 /2��2�M� /2��0.29.

For times t� tm it is �̇�0 and the material enters in the
elastic regime described by the second branch of Eq. �26�. In
such a case, the equation of motion reads �5�:

�
�

k
�̈ = − 2

k

�
G�� − �̄� . �36�

However, the numerical simulations show that the transi-
tion from the plastic to the elastic regimes does not happen
instantaneously at t= tm but instead, it requires a time of the
order of one oscillation period during which the perturbed
velocity field varies and adjusts to the new elastic regime. Of
course, the description of such a transition time is out of the
scope of our model but, nevertheless, the essential features of
the transition effects can be captured with the parameter �.
In fact, during this transient period the value of our param-
eter changes from �=0.335 in the plastic regime, up to its

final value �=�e=1.55 �5� in the later elastic phase. This
transition can be observed in the typical case shown in Fig. 3
�for times t� tm� as a variation in both, the oscillation ampli-
tude and frequency during a time of the order of one oscil-
lation period. After that time the interface remains oscillating
harmonically with a practically constant amplitude and fre-
quency as described by Eq. �36�.

Since the initial conditions for this oscillating elastic
phase are settled by the precedent plastic phase, we can ob-

tain the mean value �̄ around which the elastic oscillations
take place asymptotically:

�m − �̄ =�2

3

1

2�M�
Y

kG
, �37�

where �M� is calculated from Eq. �23� ��e=1.55, �M�=0.91,
�2 /3 /2�M��0.45�.

In a similar manner, we can get the oscillation period in
the asymptotic elastic regime from Eq. �36� �5,9�:

T = �e�� �

2G
. �38�

III. COMPARISON WITH 2D NUMERICAL
SIMULATIONS

In order to complete our study we have performed exten-
sive 2D numerical simulations using the explicit version of
the ABAQUS code. This code is based on the finite element
method and assumes a Lagrangian representation. The time
integration of the dynamic equilibrium equations is achieved
via a central difference scheme, that is an explicit second-
order accuracy algorithm and conditionally stable. To pro-
vide the computational efficiency associated with the explicit
dynamic procedure, diagonal element mass matrices are
used. The spatial discretization is performed by means of
four-node bilinear elements with reduced integration and
hourglass control.

For the numerical calculations we have taken a plate that
has periodic symmetry boundaries at the edges, so that, a
plate in plane strain of infinite lateral extent is modeled. Be-
sides, we consider that it has a thickness d, which is large
compared with the perturbation wavelength �kd�1�, so that,
the plate can be considered as a semispace. We have consid-
ered two different perturbation wavelengths �=5 and �
=10 mm with 80 elements per wavelength and we have
taken a fixed initial amplitude �i=20 �m. Moreover, for the
Mie-Grüneisen EOS we have taken the following parameter
values: �0=2.16, s=1.337, c0=5380 m /s, and �0
=2.7 g /cm3. Actually, these values correspond to an alumi-
num sample but here we have taken them just as a reference
case without intending the consideration of any particular
material.

On the other hand, we have assumed an elastic-perfectly
plastic model for the material. Of course, this model may not
be realistic but, however, it is more appropriate to elucidate
the effects of the various parameters. Therefore, the param-
eters of the constitutive model �namely, G and Y� have been
varied in order to consider the whole range of possible re-
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gimes even if they may not correspond to realistic values for
Al parameters. Besides, we have taken different values of the
constant pressure that launches the shock into the plate: p0
=10,40,80,100,200,400 GPa. For the highest pressures, we
get considerable compression factors ���0.5�, extending in
this way the range of parameters explored in Ref. �23� and
allowing us to check the more general scaling law given by
Eq. �31�. As we have already shown, the scaling obtained by
Bakharakh et al. �23� and given by Eq. �35� is a particular
case of Eq. �31�.

We have also considered several values of the shear
modulus G=3, 13, 26, and 80 GPa. Then, the yield strength
Y was varied taking into account that condition given by Eq.
�28� was satisfied, in such a way that the perturbation
evolves into the plastic regime immediately after the end of
the initial transient phase �that is, during the time interval
t0� t� tm�.

From the numerical simulations we have evaluated the
time t0 and the amplitude �0 when the effects of the plastic
constitutive properties start to be felt. For this, we have taken
into account that for t� t0 the perturbation grows classically

and then, it must be �̈�0 and that for t� t0, the perturbation

grows in the plastic regime and then, it must be �̈�0 �see
Eq. �25��. Therefore, the amplitude �0 is taken at the inflec-

tion point ��̈�t0�=0�. At this time �t= t0� we assume that the

asymptotic classical velocity �̇0 has been already reached and
so, it is given by Eq. �33�. We have checked this assumption

by comparing in Fig. 4 the value of �̇0 given by the numeri-
cal simulations with the result yielded by Eq. �33� where we
can see that an excellent agreement exists.

On the other hand, in Figs. 5 and 6, respectively, we com-
pare the maximum amplitude �m and the instant tm evaluated

from the numerical simulations, with Eqs. �31� and �32�, for
many different cases as indicated in the figures. We see that,
in order to fit the numerical calculations we can take �
=0.335 and thus, we have

�m − �0 � 0.29
��̇0

2

kY
, �39�

tm − t0 � 0.58
��̇0

kY
. �40�

Once the perturbation enters in the asymptotic elastic re-
gime, we have a constant oscillation period that can be
evaluated from the numerical simulations. The simulation
data are shown in Fig. 7 together with the values given by
Eq. �38� with �e=1.55 �5�.

In this regime we can also evaluate the asymptotic mean

value �̄ around which the elastic oscillations occur. As we
can see in Fig. 8, within the limits imposed by Eq. �28�, these
data are well fitted by Eq. �37� with a numerical coefficient
�2 /3 /2 �M � �0.68 which differs the value obtained with
�e=1.55 by 50%: �2 /3 /2 �M � �0.45 �by choosing a larger
value �e=1.9 the numerical factors in Eqs. �37� and �38�
differ less than 24% from the simulation results�. Beyond
such a limit, the transition to the plastic regime occurs at a
time tp �t0� tp� tm� and as tp approaches to t0, the transition
does not happens and then, the material remains into the
purely elastic regime �5,9�.

It may be worth to notice that in many cases of practical
interest, the amplitude of the elastic oscillations is much
smaller than the maximum perturbation amplitude �m ��m

− �̄��m−�0� and, therefore, it is �m� �̄:
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�̄ − �0 � 0.29
��̇0

2

kY
. �41�

Such a mean value of the amplitude can be used to mea-
sure the yield strength Y. At present the technique of induced
RT instability is currently used to experimentally evaluate

the material strength at high pressure �4,10,11�. In principle,
this technique allows for reaching driving pressures of the
order of 1000 GPa, provided that this pressure is applied
gently enough to avoid strong shocks and melting of the
sample. However, such a high level of loading could only be
reached in future on the biggest facilities as, for instance, the
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NIF laser �4,10,11�, but so far it has been limited to driving
pressures of the order of 200 GPa in Al. At the level of p0
�100 GPa in Al a single shock can be used without reaching
the melting point �10,38�. This is a very interesting regime
that is being currently explored with the RT instability tech-

nique but that could be studied alternatively by using a RM
based technique. Instead to measure the growth rate of RT
induced instability, Eq. �41� suggests that a unique measure-
ment of the perturbation amplitude can give an experimental
evaluation of the yield strength Y, provided that it is taken at
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relatively long times t� tm, once the material has reached the
elastic regime. This RM based technique may be easier to
implement than the presently used RT technique which re-
quires more measurements at different instants and it can
take advantage of relatively modest facilities more easily
available. In addition, since yield strength depends also on
the temperature and of the strain rate �for stresses below
10 GPa� �38�, it can allow us to explore the complementary
region of relatively higher temperatures. Thus, RT and RM
based techniques will determine the yield strength at differ-
ent regimes allowing for the better validation of existing
strength models.

IV. CONCLUDING REMARKS

We have used the relatively simple method presented in
Refs. �5,8� for developing an analytical model for the RM
instability of solids under extreme conditions of pressure.
The model yields simple formulas with character of scaling
laws for describing some essential features that are charac-
teristic of the instability perturbation growth in solids with
elastic-plastic constitutive properties. In agreement with a
previous numerical study, the model shows that as a conse-
quence of the shock interaction with the interface, the initial
perturbations grow up to a maximum amplitude that depends
on the yield strength of the medium. Then, the material en-
ters into a purely elastic regime and, after a transition time, it
remains oscillating with a constant amplitude and frequency.

We have performed a set of 2D numerical simulations that
agree very well with the analytical scaling laws and they
allow us to determine the numerical coefficients that the
model cannot yield because they are related to the actual
velocity field. Thus, we have presented an analytical model

that provides a physical picture of the RM instability in sol-
ids and that, with the fitting coefficients � and �e, it also
gives rather good quantitative results. Of course, a perfect
agreement between model and simulation cannot be expected
essentially because of the nature of the model approxima-
tions. In fact, the ignorance of the real perturbed velocity
field �which we have to impose instead to obtain it in a
self-consistent manner� has been packed in the parameters �
and �e. A self-consistent treatment similar to the one pre-
sented in Ref. �26� for ideal gases would be necessary for
nonideal media. Such a treatment has not been performed so
far. Nevertheless, the features of the present model make it
very suitable for the conceptual design of new experiments.
In particular, our results suggest the possibility to explore an
alternative regime of the constitutive properties of solids by
using a RM instability based technique instead of the one
currently used based on the RT instability. This can allow for
reaching similar levels of the driving pressures ��100 GPa
for Al in order to prevent melting� and relatively higher tem-
peratures. However, since pressure can be directly driven
without the requirement of a previous step of pressurizing a
reservoir �4,10,39�, more modest facilities could be used.
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