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Impact of conditions at start-up on thermovibrational convective flow
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The development of thermovibrational convection in a cubic cell filled with high Prandtl number liquid
(isopropanol) is studied. Direct nonlinear simulations are performed by solving three-dimensional Navier-
Stokes equations in the Boussinesq approximation. The cell is subjected to high frequency periodic oscillations
perpendicular to the applied temperature gradient under zero gravity. Two types of vibrations are imposed:
either as a sine or cosine function of time. It is shown that the initial vibrational phase plays a significant role
in the transient behavior of thermovibrational convective flow. Such knowledge is important to interpret
correctly short-duration experimental results performed in microgravity, among which the most accessible are
drop towers (~5 s) and parabolic flights (~20 s). It is obtained that under sine vibrations, the flow reaches
steady state within less than one thermal time. Under cosine acceleration, this time is 2 times longer. For cosine
excitations, the Nusselt number is approximately 10 times smaller in comparison with the sine case. Besides,
in the case of cosine, the Nusselt number oscillates with double frequency. However, at the steady state,
time-averaged and oscillatory characteristics of the flow are independent of the vibrational start-up. The only
feature that always differs the two cases is the phase difference between the velocity, temperature, and accel-
erations. We have found that due to nonlinear response of the system to the imposed vibrations, the phase shift
between velocity and temperature is never equal exactly to /2, at least in weightlessness. Thus, heat transport

always exists from the beginning of vibrations, although it might be weak.
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I. INTRODUCTION

Net convective heat and mass transfer exists in systems
with spatially nonuniform density which are subjected to ex-
ternal vibrations. This phenomenon is attributed to the effect
of inertia of the liquid and is more pronounced under micro-
gravity. Convection is stronger when the density gradient and
vibrations are perpendicular. The density gradient can be cre-
ated by temperature inhomogeneity and, consequently, the
phenomenon is called thermovibrational convection [1].

Thermovibrational convection is studied for decades.
Russian school, e.g., [1-3] has developed an averaging ap-
proach to study the flows under high-frequency vibrations.
Among the pioneer works should be mentioned the paper by
Zenkovskaya and Simonenko [2], in which a method of av-
eraging the Navier-Stokes equations was first successfully
applied for studying the convective stability of the mechani-
cal equilibrium of a horizontal fluid layer heated from below.
In this approach, the physical quantities are considered as a
superposition of slow (time-averaged) and rapid time-
dependent contributions. It makes possible to obtain a closed
system of differential equations for average velocity, tem-
perature, and pressure fields.

Parameter, which defines stability boundary of the slow
flow (also called mean flow), is the vibrational analogue of
Rayleigh number, Gs=(AQB;LAT)?/(2va). We suggest to
call it Gershuni number (instead of vibrational Rayleigh
number) to mark a significant contribution of Gershuni to the
theory of thermovibrational convection [1]. Here L, A, () are,
respectively, the enclosure size, the displacement amplitude,
and the frequency of vibrations; liquid properties B, v, and
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«a stand for the thermal expansion coefficient, kinematic vis-
cosity, and thermal diffusivity; AT is the imposed tempera-
ture difference.

The advantage of this method of averaging is that one can
obtain the final solution of the problem much faster than
considering the full nonaveraged equations. But it is appli-
cable only under some restrictions such as that the oscillation
period to be much smaller than all the characteristic times,
viscous 7,=L*/v and thermal 7,,=7, Pr (Prandtl number Pr
=v/«a), and that the displacement amplitude must be smaller
than the size of the domain L. In most situations where these
requirements are not met, an ordinary approach of solving
the full Navier-Stokes equations must be utilized, which
leads to much longer computations especially when tracking
high frequency accelerations.

Gershuni and Lyubimov in [1] summarized numerous the-
oretical studies. The possibility of a mechanical quasiequi-
librium state with zero mean flow (the oscillatory rapid com-
ponent does not generally vanish) in a plane infinite fluid
layer has been shown. It was obtained that in a layer the
stability boundary is invariant regardless the value of Pr,
while the steady mean flow can be different.

In a finite size system, the quasiequilibrium state is never
possible. Even under very weak vibrations and small AT, a
nonzero mean flow exists. Flow structure is defined by the
Gershuni and Prandtl numbers. In a square cavity under 0-g
a four-vortices structure sets in for the smallest Gershuni
numbers. The critical Gs can be determined depending on
thermal boundary conditions on lateral walls. This regime is
stable for Gs<Gs“, and the motion undergoes a transition
towards a single big diagonal vortex and a pair of corner
vortices with opposite direction of circulation for Gs > Gs“".

In the case with gravity field, there are two convection
excitation mechanisms, thermogravitational and thermovi-
brational. An inclined plane fluid layer in high frequency
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vibrational and static gravitational fields was studied in [3].
Regions of convective stability of the quasiequilibrium state
were determined by linear analysis for different orientations
of gravity and vibrations. Somewhat similar problem was
examined by Monti et al. [4], aimed at studying influence of
g-jitter on convective flows on the space station. They have
compared the direct numerical solution of the full Navier-
Stokes equations with those, obtained by solving the time-
averaged equations containing all of the g-jitter terms
grouped in a single parameter. The problem was studied un-
der the assumption of small amplitudes and large frequencies
of the oscillatory g-jitter. Both approaches showed similar
results. It was demonstrated that in the presence of both re-
sidual gravity and g-jitter a proper orientation of the experi-
mental cell can be beneficial to reduce convective
disturbances.

In the earlier days, the study of the effects of g-jitter on
fluid flow was related to the crystal growth in space. A cer-
tain amount of studies have been done to estimate additional
mass transport caused by vibrations. Alexander [5] has dem-
onstrated that oscillatory flow can affect the mean transport
of solute or dopant. Shevtsova et al. [6] have studied the
effects of residual accelerations on behavior of a liquid phase
by using three-dimensional modeling in a rectangular cavity
with differentially heated walls. Very slow vibrations with a
small amplitude were analyzed to meet the conditions en-
countered on-board spacecrafts. In a very wide range of the
applied temperature difference (between 10 and 60 K), they
found that as long as the accelerations oscillate around zero,
the Nusselt number pulsates with double frequency of the
g-jitter.

Gershuni et al. [7] performed a theoretical study on the
stability of a plane horizontal layer of a binary mixture with
Soret effect subject to static gravity and longitudinal high-
frequency vibrations. Considering both positive and negative
Soret effect, they analyzed contributions of different instabil-
ity modes in destabilizing the system. Later, Zebib [8] has
considered a double-diffusive system in a slot in a micro-
gravity environment, and by means of two-dimensional lin-
ear stability analysis the effect of high frequency gravity
modulation was investigated.

Recently, Shevtsova ef al. [9] have reported results of a
benchmark of numerical studies on the influence of slow
vibrations on separation due to thermodiffusion in binary
mixtures in a cubic enclosure. The impact of vibrations with
different frequencies on the temperature and concentration
fields was analyzed. They found that the heat and mass trans-
port increased with the decrease of the imposed frequency. In
the combined case of simultaneous static gravity and g-jitter,
the nonlinear interaction of static and vibrational actions re-
sulted in a larger amplitude of pulsations of the variables.

Laboratory experimental observations of the thermovibra-
tional convection [10] are in good agreement with the theo-
retical predictions and thus justify the behavior of mean
flows. However, until now, there is a lack of successful hy-
drodynamic experiments which systematically investigate
the effects of vibrations on flows in a microgravity environ-
ment. The only known series of experimental studies were
performed on board Mir space station using the ALICE-2
facility for supercritical fluids [11] and JUSTSAP experiment
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during the course of a Shuttle mission [12]. The study of
thermovibrational convection in parabolic flights has been
performed recently [13,14].

Presently the thermovibrational convection keeps on at-
tracting scientific interest. There are several open problems
related to this subject. One of them is how the accelerations
at the start-up of the thermovibrational convection could in-
fluence the heat and mass transport. The effect of single fre-
quency vibrations given as either sine or a cosine function
(7r/2 phase shifted) has received attention in a paper by Nau-
mann [15]. He studied it in a horizontal long channel in
weightlessness and indicated that the effect is highly depen-
dent on the phase of the acceleration at the zero time mo-
ment. Cosine vibrations give virtually no transport and the
average velocity is almost zero, while sine vibrations imme-
diately create a strong net transport.

Nowadays, there are not many opportunities to perform
long duration experiments under microgravity conditions.
Most of the experiments in physical science are performed in
drop towers (~35s), parabolic flights (~20s), and more
rarely in sounding rockets (~400 s), and even much more
seldom on satellites and ISS. To interpret correctly short-
duration experimental results, one should take into account a
lot of phenomena affecting the transient regime. The ques-
tion about the influence of start-ups on the development of
convection in the system under vibration has no obvious an-
swer. Our particular interests to this transient regime and to
the choice of parameters were motivated by microgravity
experiments on the onset of thermovibrational convection
performed during parabolic flights [13,14]. Even if
20 seconds of reduced gravity are enough to establish mean
flow, it is too short for reaching the steady state. The present
study is focused on the influence of the vibrations at start-up
on three-dimensional thermovibrational flow in a cube under
weightlessness in a transient regime.

II. FORMULATION OF THE PROBLEM

We analyze thermovibrational convection in a cubic cell
filled with isopropanol (Pr=40) heated from above. Figure 1
shows the geometry of the problem and the adopted coordi-
nates system. The cell is subjected to high frequency vibra-
tions, i.e., when the period of vibration, 7, is much smaller
than both viscous 7, and thermal 7, characteristic times. The
imposed external vibrations are perpendicular to the applied
temperature gradient, and thus they cause the largest changes
in the oscillatory flow field. The stationary gravity is absent,
and single-frequency acceleration is time dependent with
zero mean. If the cell’s displacement is x(7)=A cos(2ft
+ ¢), then the acceleration is

x"(1) == AQmf)? cos(2mft + p)e

=—g,F(t,p)e, where g,,=A(27f)>, (1)

where e=(1,0,0) is the unit vector along the axis of vibra-
tion, A is the displacement amplitude in the x direction and f
is the frequency. The phase ¢ is constant and defines the type
of vibrations applied at the start-up. F(¢, ¢p)=cos(2mft+ ¢p)
can be either cosine or sine function.
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FIG. 1. Geometry and coordinate system. Points P; and P,
show schematically the locations of data recordings versus time,
and the gray vertical cross section is the plane where both tempera-
ture and velocity fields are visualized.

All the thermophysical properties of the liquid are con-
stant, except the density p, which depends linearly on the
local temperature 7. The equation of state has the form

p(T) = po[1 = BHT - Ty)],

where T, is a reference temperature (we chose T)=T,.q
=20 °C), po=p(Ty) and B;=—1/pydp/IT>0 is the thermal
expansion coefficient. The horizontal walls at Z=0 and Z
=L are kept at constant and uniform temperatures 7,4 and
Thot (Thot™Teola), respectively. The vertical walls (at X
=0,L and Y=0,L) are thermally insulated. All the bound-
aries are assumed rigid, so nonslip conditions are valid for
the liquid velocity V.

The problem is governed by momentum, continuity, and
energy equations

av
E+vVv:—Vp+V2V+GrmF(t,cp)®e, (2)
V.v=0, 3)
0] 1
—+vVO=—V?0. (4)
ot Pr

The following nondimensional variables were introduced:

x=X/L, y=Y/L, z=ZIL, t=t'vI[*, o=27ufLv,

v=VL/v, O=(T-Ty)/AT, p=PL*py*,

here P is the pressure, ¢’ is time, and AT=T},—T.oq- The
corresponding dimensionless boundary conditions are

v=0, 0O(z=0)=0, O(z=1)=1, n-VO=0,

n is the normal vector to the vertical walls x=0,1 and y
=0,1.

At zero time moment, the liquid is motionless v(r=0)=0
and a linear temperature profile between the cold and the hot
walls is established inside the cell O(r=0)=z.
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TABLE 1. Phase ¢ and corresponding function F(z, p)=cos(wt
+¢).

0 T -0.57 0.57

~

cos(wt) —cos(wr) sin(w?) —sin(wt)

The amplitude A=7.5 cm and f=4 Hz are chosen as these
values of the parameters were used in experiments during
parabolic flights [13,14]. The cell’s size is L=5X 107 m.
The period of the oscillations is 37 times smaller than the
viscous time (7,=L?/v=9.36s), and the amplitude is 15
greater than the size of the system L. Thus, at the chosen
values, the averaging approach of governing Navier-Stokes
equations is not valid and the problem is considered by solv-
ing the system of full nonlinear equations (1)—(4). The mean
flow and temperature are calculated by averaging the appro-
priate variable over one oscillatory period,

® 27w . ® 27w
v(r) = —f v(t')dt', O(r) = —f O(")dt'.
2w, 2m),

)

The problem is characterized by Prandtl, oscillatory
Grashof numbers,

Pr=vla, Gr,,=g,SrL°AT/V?,

and the vibrational function F(z, ). The Gershuni number
does not appear in such formulation of the problem, but it is
related with Gr, in the following way:

Gs/Gr,,=Pr AB;AT/2L.

Calculations are performed for AT=7 K. Thus, the oscilla-
tory Grashof numbers and Prandtl number are fixed, Pr=40
and Gr,,=6159. The solution of the problem, Egs. (2)—(4), is
defined by the type of vibrational function F(z, ¢). For the
present study, we take four values of ¢: 0, w/2, &, and
—m/2, and their type is given in Table L.

III. NUMERICAL APPROACH

The governing equations (2)—(4) are discretized using the
finite volume technique on a staggered grid where pressure
and temperature nodes are placed at the center of control
volumes, and the velocity components are positioned at the
faces of these volumes. An equally spaced in each direction
regular mesh [32X 33X 32] covers the computational do-
main. Its uniformity allows second-order spatial accuracy of
the solution.

Integration in time was done with an explicit single for-
ward time step marching method. Computation of the veloc-
ity field at each time step is carried out with a projection
method (see Chorin [16]). The main idea of the method is
that the initial momentum equation may be splitted into two
independent ones. As first, a “provisional” velocity field cor-
responding to the correct vorticity, but not satisfying the con-
tinuity equation (3), is computed neglecting the pressure gra-
dient in the momentum equation. The equation defining the
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FIG. 2. Maximum absolute value of net liquid velocity within
the first 2 seconds. Comparison between cosine (solid line) and sine
(dotted line) start-ups.

velocity field on the next n+1 time level includes only the
pressure gradient term.

Poisson equation for pressure is discretized using a com-
bination of the fast Fourier transform (DFFT, 2"+ 1 points) in
the y direction and of an implicit alternating direction im-
plicit (ADI) method at two other directions. The discretized
Laplace equation for the pressure is solved by the iterative
Thomas algorithm (see [17]). Finally, knowing the “provi-
sional” velocity and the pressure, we advance in time getting
the values of the velocity at the next time level from Eq. (2).

The CFD code used in this work has been tested and
compared with other codes, which were independently de-
veloped by different research groups. Aiming at the codes
validation, a double-diffusive convection in a binary mixture
with negative Soret effect was benchmarked [9]. Three dif-
ferent groups have independently considered four problems
by solving full three-dimensional Navier-Stokes equations.
Good agreement of the results among the benchmark partici-
pants gave confidence to the developed CFD code.

IV. RESULTS AND DISCUSSION
A. Temporal evolution of mean flows

The phase of acceleration at =0 plays a significant role in
formation of the transient flow structure. Value of ¢ defines
both duration and sign of the initial vibrational acceleration.
If F=sin(wt), then during the first one-half of a period, vi-
brational forcing has the same sign (F>0). When F
=cos(wt), it is positive during one-quarter of a period and is
negative for the next one-half period, reversing the flow dur-
ing this half-cycle. Thus, in the case of cosine the flow,
which does not have enough time to get developed, should
turn back after one-quarter of a period and its velocity di-
minishes. It means that F=sin(wf) produces much higher
flow velocity after one oscillation period.

Figure 2 shows maximum absolute value of the flow
|V]max produced by F=cos(wt) (solid line) and F=sin(wt)
(dotted line) vibrations. Calculations confirm that at the very
beginning the flow velocity is larger when acceleration is a
sine function: The first pick is the highest in the case of F
=sin(wr) and the smallest under cosine vibrations. However,
this additional mass transport at start-up in the sine case de-
cays with time and the flow velocities become equal.
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FIG. 3. Mean flows (arrows) and mean temperature fields (grey
scale) in the vertical midplane of the cell after one period of oscil-
lations (0.25 s). Vibrations are imposed as (a) F=cos(wt); (b) F
=sin(wt).

Consequently, structure of both the time-averaged (mean)

flow v and of the mean temperature O [see Eq. (5) for their
definition] depend on values of ¢. The flow pattern Vv ob-
served in the cell after the first oscillation period is one big
vortex (Fig. 3) both under F=cos(wt) and F=sin(wr) accel-
erations. Sine vibrations rotate vortex in a clockwise direc-
tion corresponding to initial positive acceleration [see Fig.
3(b), where the direction of the velocity vector is shown by
arrows]. In the case of cosine, the direction of rotation re-
mains clockwise only for one-half of a period, due to the
positive value of F(t, ¢) at t=0. Even though the vibrational
acceleration was positive for the first one-quarter of a period,
the first oscillation period finishes with a counterclockwise
rotating vortex [Fig. 3(a)]. The fact that the average flow due
to sine vibrations is much stronger could be seen in Fig. 3.
The stronger flow produces stronger deformation of the tem-
perature field (isotherms shown by grey scale). The latter
stay almost straight when F=cos(wr).

The flow pattern with single large vortex exists only at the
start-up and later in time the mean flow undergoes transition
to the structure, shown in Fig. 4. Regardless the phase of
imposed vibrations, the mean flow very quickly converges to
the multiroll structure, which will be kept for a long time.
The convergence takes a couple of vibrational periods.

Direction of the acceleration at the beginning is respon-
sible for orientation of the convective flow. A difference be-
tween ¢=0 and 7 (the same is applied to ¢p=7/2 and —7r/2)
is that F(z,¢) in Eq. (2) has opposite signs, and thus the
convective roll gets different direction of rotation. It is easy
to show that the flow v’ and temperature 0’ resulted from
—F(t,¢) are the ones obtained via solving the governing
equations (2)—(4) with F(¢, ¢) after reversing the sign of the
velocity in the direction of acceleration together with the
appropriate transformation of coordinates,

vi=-v, X' =1-ux, (6)

where v,=v-e. This is also valid for the time-averaged flow
and temperature.

To check this, calculations were performed for four values
of the phase ¢ (see Table I for the relations between values
of the phase ¢ and type of vibrations). Figure 4 shows the
time-averaged flows and temperatures at 20 s after the
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FIG. 4. Mean flows (arrows) and temperature fields (gray scale) in the vertical midplane of the cell at =20 seconds. Vibrations are
imposed as (a) F=cos(w?); (b) F=—cos(w?); (¢) F=sin(wr); (d) F=-sin(wt).

start-up (approximately equal to two characteristic viscous
times). Since this study was closely related to preparation of
an experiment on thermovibrational convection under re-
duced gravity in parabolic flights, a 20-seconds interval is of
particular interest because it is about the duration of a pa-
rabola trajectory producing a microgravity period. Usually
vibrations start roughly at the beginning of the microgravity.
The visualizations are done at the vertical midplane shown in
grey in Fig. 1.

Figure 4 proves that the phase ¢ in Eq. (1) is a parameter
responsible for the structure of the mean flow v observed
during a long time in the cell. Changing the direction of
acceleration in one-quarter of a period results in a four-
vortices mean flow [Figs. 4(a) and 4(b)]. Sine vibrations give
the liquid an initial impulse of 2 times longer duration and,
as a result, the average flow has a different structure [Figs.
4(c) and 4(d)].

The four-vortices flow is an intermediate regime passed
by the system on its way to the final stable one-vortex flow
shown in Figs. 5(c) and 5(d). Within one thermal time 7, the
four-vortices flow loses stability and becomes a single-vortex
one [compare Figs. 4(a) and 5(a)]. The one-vortex flow,
quickly established in the bulk in case of sine vibrations, is
stable, and thus it does not change with time [see Figs. 4(c),
4(d), 5(c), and 5(d)].

Comparison between solutions at one thermal time with
¢=0 [Fig. 5(a)] and with ¢= [Fig. 5(b)] demonstrates that

1 1

the mean flows are oppositely rotating and their directions
are determined by the sign of F(z,¢) at the start-up. The
solution in Fig. 5(b) is indeed the one with ¢=0 [Fig. 5(a)]
transformed in accordance with Eq. (6). Note that the mean
flow in Fig. 5(a) rotates in clockwise direction while after
one oscillatory period it was oppositely oriented [see Fig.
3(a)].

In the framework of mean flows the Gershuni number Gs
is used as a governing parameter. It follows from previous
studies [1] that four-vortices mean flow regime is unstable
when Gs>8000 (in case of adiabatic lateral walls). The
present calculations were performed for Gs=13 705> Gs“,
and although the solutions are obtained via solving the full
three-dimensional Navier-Stokes equations, we clearly con-
firm that the four-vortices structure is time unstable. How-
ever, our results show that it is possible to generate the four-
vortices mean unsteady flow during the transients via
imposing appropriate vibrations with a correctly chosen
phase ¢.

Indeed, the four-vortices mean flow exists during a few
viscous times and within one thermal time evolves towards
the stable one-vortex structure. The exact lifetime of this
regime will be analyzed below. It is interesting to compare
our results with those by Naumann [15]. He obtained that, in
the case of sine accelerations, the velocity oscillates around
nonzero mean value while if the vibrations are a cosine func-
tion the mean flow is zero. The former is not confirmed by

1

(b) *

FIG. 5. Mean flows (arrows) and temperature fields (gray scale) in the vertical midplane of the cell at one thermal time (375 s).
Vibrations are imposed as (a) F=cos(wt); (b) F=—cos(wi); (c) F=sin(wt); (d) F=-sin(wr).
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FIG. 6. Maximum absolute value of mean flow within the first
20 seconds. Comparison between cosine (solid line) and sine (dot-
ted line) start ups.

the present results [see Figs. 4(a) and 6]. Obviously, the dif-
ference with [15] can be attributed to the variation in geom-
etries and three dimensionality of the present problem. It was
shown [1] that, even in a two-dimensional problem with fi-
nite aspect ratio, the presence of lateral walls in the direction
of imposed vibrations always give a nonzero mean flow.
Maximal absolute values of the mean flow in the cell

|V|,ae for different initial phases are shown in Fig. 6. This
function is time and coordinate dependent. In both cases the
mean flows are nonzero and the maximal velocities of the
mean flows have the same order of magnitude. Time-

dependent evolution of |V, within the first 20 seconds is
shown for ¢=0 (solid line) and —7/2 (dotted line). The
mean flow reaches large values during the first vibrational

period, [V|,,=0.42X 107 m/s and 1.52 X 1073 m/s for co-
sine and sine, respectively (these values are out of the scaling
in Fig. 6). They rapidly diminish to the end of the first sec-
ond, as the flow pattern changes from one-roll to multiroll
structure [compare Fig. 3 and Figs. 4(a) and 4(c)]. Although

the values of V at =0.25 s are large, they are much less than

the corresponding values of the full flow V=\A7+V0s (see Fig.
2 for comparison). The mean flow continuously grows, and
the growth rate is slightly higher in the case of cosine
accelerations.

B. Behavior of the oscillatory component of the flows

Although the value of V is close to 10~ m/s, which is
very small, the velocity itself-oscillates with a much larger
amplitude A, [Fig. 7(a)]. Figure 7 shows time evolution of
the amplitudes of velocity and temperature recorded near the
hot boundary at the point P;=(0.45,0.5,0.83). Strongest
growth of the velocity amplitudes occurs during the first vi-
brational period and then rapidly decreases in both cases.
The peak values reach 3.5X 107> m/s and 2.9 X 1073 m/s
for cosine and sine profiles, respectively. (There is no con-
tradiction with Fig. 2 as here the quantities are analyzed at
fixed point.) After initial 20 seconds (characteristic viscous
time is L?/v,=9.36 s), the flow could be influenced only by
the temperature field, the latter needs at least one thermal
time 7,;,=375 to get stabilized. In the case of cosine accel-
eration Ay is always slightly larger (3.0 versus 2.93
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FIG. 7. Amplitude of velocity V, (a) and of temperature (b)
oscillations. Vertical dashed line shows one thermal time (375 s).

X 1073 m/s). Another difference in response of the system to
the imposed vibrations is that when F=cos(wt) then for ¢
<300 s, the velocity amplitude is growing and after ¢
~300 s it diminishes approaching at the long time scale to
the same value as in the case of sine acceleration. In the sine
case, Ay is a monotonously decreasing function of time, and
reaches stationary value at about one thermal time. To con-
clude, in the steady state the amplitude A, of both vibrational
functions have the same values regardless of the start-up.

Pulsations of the temperature field also depend on the
start-up [Fig. 7(b)]. The difference with respect to the veloc-
ity oscillations is that the amplitude of temperature pulsa-
tions A7 is much larger in the case of sine acceleration. This
difference is about a factor of 3, while Ay varies only by a
small percentage of about 3%. The temperature is influenced
by the thermovibrational convection but, due to the relatively
large thermal time (7, ~ 15007,,), response of the tempera-
ture to the vibrations is very weak. In both cases the ampli-
tude of the temperature oscillations is very small with respect
to the temperature scale, which is only 0.15% of AT. Similar
to the velocity, in the case of sine vibrations A; reaches its
steady value much faster compared to cosine acceleration.
Under sine vibrations, the amplitude of oscillations achieves
steady state in roughly 2 times shorter time compared to the
cosine vibration. The pulsations of the temperature (as of the
velocity) become sustained at approximately 500 seconds
(Fig. 7).

C. Analysis of phase differences

Hereafter, the phase difference between the velocity in the
direction of vibration, V,, temperature and driving force are
examined. Results are summarized in Fig. 8 where they are
shown versus time. The phase shifts were calculated by com-
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FIG. 8. Phase difference between velocity and acceleration ¢y_g
(a) and between temperature and acceleration ¢r_p (b). Vertical
dashed line shows one thermal time.

paring the consequent maxima of the corresponding time se-
ries. Negative value means that the maximum of acceleration
occurred first. Analysis shows that the phase shift between
velocity and imposed forcing, ¢y_r, behaves differently with
time depending on ¢. If the acceleration is a sine function,
¢y_r 18 very slowly changing with time:

by_p =~ —0.5017 - 0.000371", (7)

where ¢’ is time in seconds. Its value is continuously decreas-
ing by 0.117 within one thermal time. Even on a long time
scale, this small additive is almost negligible.

But if the driving force is a cosine function, the phase lag
between velocity and vibrations is growing 10 times faster
[Fig. 8(a)] and again as a linear function of time,

by_p =~ —0.39587 + 0.003327t". (8)

The solid line in Fig. 8 shows that at 20 s, the velocity and
acceleration are almost out of phase, i.e., =7/2 (@y_p is
normalized by 27 on the plot). At each thermal time, its
value is growing at around 0.627. Note that initial values of
¢y_r for sine and cosine are different.

In the case of cosine vibrations after one thermal time,
i.e., t=375 s, the maximum V, and maximum acceleration,
F, are almost in the counterphase, meaning ¢y._r increases up
to a close to 7 value. In the case of sine function, ¢y_r does
not change with time as rapidly as in the case of cosine
[compare Figs. 9(b) and 9(f)].

Behavior of the temperature pulsations repeats the one of
the velocity with the only difference being the values at ¢
=0 and slightly different growth rates. In the case of sine
accelerations,

br_p ~ 0.07387 — 0.00027¢" 9)

When it is cosine,
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FIG. 9. Phase planes (velocity V, versus temperature 7) at 20 s
and at one thermal time (375 s). Vibrations are imposed as F
=cos(wt), (a) t=20s, (b) t=375s; F=sin(wt); (c) t=20s, (d) ¢
=375 s.

br_p = 0.05741 +0.003307". (10)

The growth rates of the phase shifts between the variables
and the accelerations are different: Negative in the case of
sine vibrations and positive when the start-up is cosine
function.

The analysis of the phases points out that the phase lags
between V,, T and external forcing are not constant in time.
Because of the time-dependent lag, velocity and temperature
oscillate with frequencies slightly different than the accelera-
tion. The difference is subtle and the distinction is not usu-
ally noticed, but this effect accumulates and becomes impor-
tant after a long time of integration. Let us consider a
function (e.g., velocity) which oscillates with a frequency w
and has a time-dependent phase shift, v~ cos[wi+ @(7)].
Then the frequency of oscillations is equal to
(w+dg/dt)/2m, which gives an approximate value of
4.0016 Hz for the temperature and velocity pulsations in the
case of cosine vibrations and leaving it almost unchanged at
4 Hz when F=sin(wt).

Let us examine the phase shift between velocity and tem-
perature. In Fig. 9 we present the phase planes (V, vs T) at
different times and for different vibrational functions. The
velocity and temperature are recorded near the hot boundary
(at the point P;). The plots are made at r=20 s and at one
thermal time 7= 7, aiming at comparing the solutions for F
=cos(wt) and F=sin(w?).

When driving force is cosine, the velocity-temperature
phase shift is closer to 0.57 and trajectory on the phase plane
is almost a cycle, see Fig. 9. Being approximately 0.4532 7 at
t=0, it is linearly decreasing and after 1000 s is equal to
0.43327r. When the driving force is sine function, ¢y_r
~(.57487, and after 1000 s it gets a larger value 0.67487.
According to estimations by Alexander in [5], the heat trans-
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FIG. 10. Heat flux at the cold wall at =20 s for different start-
ups: (a) F=cos(wt), (b) F=sin(wr). Solid and dashed lines show,
respectively, positive and negative heat flux ¢.

port (i.e., mean flow) does not arise when the phase shift
between velocity and temperature is equal to 77/2. On the
other side, in the frame-of-averaging approach developed by
Gershuni and Lyubimov [1] the mean flow always exists in
the finite system in weightlessness for arbitrary small vibra-
tions. Our time-dependent calculations resolve this contra-
diction: due to nonlinear response of the system on imposed
vibrations, the phase shift between velocity and temperature
¢@y_r is never equal to /2. For cosine vibrations it is smaller
than 7/2, being a decreasing function, and the maximal
value over time is ¢y_py=0.45<w/2. For sine function the
phase shift is larger than /2, being a slowly growing func-
tion, and the minimal value over time is ¢y_r=~0.58.

Following the idea that mean flow does not exist when
@y_r=1/2, one may assume that the heat transport (mean
flow) should be weaker when the system is in the vicinity of
this point. However, the examination of the heat transport via
Nusselt number does not support this idea.

D. Heat transfer by vibrations

Due to the imposed vibrations, the temperature field os-
cillates everywhere in the bulk and its time mean value de-
viates from the initially linear profile. The structure of the

temperature field is defined by the mean flow \7, which is
slowly varying with time. The four-vortices symmetric flow
[see Figs. 4(a) and 4(b)] shifts the isotherms in the central
part of the cell towards the horizontal walls increasing the
heat transfer at the middle of these walls. The dimensionless
convective heat flux g=(d6/dz—1) near the cold wall is
shown in Fig. 10(a) at =20 s. Indeed, at the central part heat
flux achieves its maximal value. At the same time, moving
away from the center (at x direction) the flow transports the
colder liquid, decreasing the heat flux, and finally on the
half-way to the lateral walls it becomes negative. Since the
four vortices are almost symmetrical, the net convective heat
transfer is weak. In the case of F=sin(wt), the powerful di-
agonal vortex generates stronger flow and the deviation of
the isotherms from linear profile is larger, see Figs. 4(c) and
4(d). In addition, this flow is not symmetrical and, conse-
quently, the maximum of heat flux is achieved closer to the
right-hand lateral wall, see Fig. 10(b). Relatively weak nega-
tive flux is caused by the small corner vortex with the oppo-
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FIG. 11. Time evolution of Nusselt number on the cold wall.
Vertical dashed line shows one thermal time.

site direction of circulation. Thus, in the latter case the net
heat flux will be larger.

To describe the integral heat transfer (conductive and con-
vective) the Nusselt number, Nu, is introduced as

Nu=f@(z=0)dxdy. (11)
dz

Figure 11 shows time evolution of the Nusselt number on the
cold boundary. Starting with a sine function of acceleration
causes significant increase in initial transport. This is not the
case if the acceleration is a cosine function. Evolution of the
heat transport during the first one-half of viscous time is
shown in Fig. 11(a). Our results for the transient regime are
in good agreement with those by Naumann [15], who plotted
Nu(#) during one-half of the viscous time, which was 7,/2
~300 s. When t=7,/2 the convective heat transfer in the
case of the cosine function is one order of magnitude smaller
than for the sine function.

Besides, in the case of cosine, the Nusselt number oscil-
lates with double frequency [see Fig. 12(b)]. This frequency
doubling of oscillations of Nu has been observed earlier in
[6] where a three-dimensional thermovibrational convection
in a rectangular cell was studied. An influence of a very slow
g-jitter of a frequency 1.67X 107> Hz on a fluid flow was
studied in the case of lateral heating. In the case when steady
component of gravity g, in the direction of vibrations was
absent, the Nusselt number oscillated with a double fre-
quency because such vibrations should produce a four-
vortices mean flow. It was shown that in the presence of an
even very small g, Nu oscillated with the frequency of the
external vibrations.

It can be explained in the following way. Velocity of the
four-vortices flow is small meaning that the terms vVyv,
vV® in Egs. (2)-(4) can be neglected, and the governing
equations can be linearized. The response temperature to the
external perturbation does not have pure sinusoidal form and
contains a whole spectrum of harmonics ® ~ 6, e.g.,
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FIG. 12. Amplitude (a) and frequency (b) of oscillations of Nus-
selt number [Eq. (11)] on the cold wall. Vertical dashed line shows
one thermal time.

0, cos(wt)+ 0, cos(2wt)+.... This nonlinear component of
the flow and temperature fields are symmetrical with respect
to the cell center, but of opposite signs; look at Fig. 10(a)
where temperature deviates in the opposite directions from
the linear profile at the left- and right-hand parts. As the
Nusselt number is an integral value, input from the different
components with the main frequency [~cos(wt)] is annihi-
lated. The first super harmonics will in turn provide the input
to the Nusselt number. Since the amplitude of the first har-
monic is much smaller than the amplitude of the main fre-
quency, deviation of the Nu number from unity due to the
convective heat transport is approximately one order of mag-
nitude smaller with respect to the sine case. Correspondingly,
Nu oscillates with a frequency of 2w.

In the case of F=sin(wt) the velocity is still small and the
same expansion will be valid. But the components with the
main frequency will not result in zero input as the flow is not
symmetrical, see Fig. 10(b).

Despite the small value, the heat transfer in the four-
vortex transient regime is increasing approximately during
the time until this regime develops r<27,. The growth rate
of the Nusselt number decelerates during the next transition,
when the one-vortex stable regime bifurcates from four-
vortices to one, see Fig. 11(b). During this transition, the
vibrational part of the flow also gets modified. The amplitude
of the Nusselt number and its frequency are shown in Fig.
12. Until =140 s it oscillates with a double frequency and
with a negligible amplitude. Perhaps at t=140 s the recently
appeared one-vortex flow becomes strong enough to turn the
frequency to the value, equal to the frequency of the external
forcing. Later in time, the heat transfer (i.e., mean tempera-
ture field) rapidly increases and reaches the same value as for
the sine start-up. Besides, the oscillatory part of the flow
starts to behave similar to the case of the sine acceleration.
Inherently, the amplitude of Nu and the one of the tempera-
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ture behave very similar in both cases [compare Figs. 7(b)
and 12(a)]. Interestingly, in the case of the cosine accelera-
tions after one thermal time, the temperature field still did
not approach its steady final state.

If the acceleration is a sine function, the one large vortex
flow gradually increases intensity with time, reaching the
steady state within an interval shorter than thermal time.
Consequently, the Nusselt number has stronger growth rate,
and from the very beginning it oscillates with a large ampli-
tude and with a frequency of the imposed vibrations [upper
dotted line in Fig. 11(a)].

V. CONCLUSIONS

The effect of vibrational accelerations on the behavior of
a liquid with Pr=40 in a cubic cavity with differentially
heated horizontal walls have been studied using three-
dimensional modeling. The phase of vibrational impact at the
start-up plays a significant role in the development of ther-
movibrational convection. The temporal dynamics of the sys-
tem at the initial stage are investigated when the acceleration
is represented by a sine or a cosine function. The structure of
time-averaged (mean) fields was examined on a long time
scale, i.e., during a few thermal times. For vibrational stimuli
F=cos(wr), the following sequence of mean flow regimes
have been observed: One big central vortex with counter-
clockwise direction of circulation (1<0.25 s)= four-vortex
regime = one big diagonal vortex with clockwise direction of
circulation and two small corner vortices. For vibrational
stimuli F=sin(wt), the mean flow dynamics is different: one
big central vortex with clockwise direction of circulation
(r=0.25 s)=one big diagonal vortex with clockwise direc-
tion of circulation and two small corner vortices. The exis-
tence of the four-vortices intermediate regime in the cosine
case affects local and integral characteristics, such as tem-
perature and velocity pulsations, Nusselt number and time
lags between physical quantities. However, after two thermal
times the system approaches the same final steady state re-
gardless of the start-up.

Starting with sine accelerations causes significantly larger
initial transport, than if the accelerations start as a cosine
function. Four-vortices structure existing under cosine vibra-
tions produces very weak mean flow and, correspondingly,
weak heat transfer. Besides, in this case, the Nusselt number
on the cold and hot walls oscillates with double frequency.
One may find an explanation of this behavior in Sec. IV D of
the paper. Transition from four-vortex structure to one big
diagonal roll occurs rapidly; after that the heat transfer is
quickly increased and reaches the same value as for sine
start-up.

The transient behavior of oscillatory parts of the flow is
rather curious. In both cases the amplitude of temperature
oscillations is tiny with respect to its characteristic value.
Velocity amplitude has the same order of magnitude (or
larger) as the mean flow. Moreover, the amplitude of velocity
oscillations is larger for cosine acceleration while amplitude
of temperature oscillations is larger for sine acceleration.

Phase shift between velocity and temperature and/or con-
centration has been examined by several authors when peri-
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odic oscillations are normal to the density gradient [6,15,5].
Alexander [5] has evaluated that the heat-mass transport (i.e.,
mean flow) does not arise when the phase shift between ve-
locity and temperature is equal to 7/2. On the other hand,
the averaging approach developed by Gershuni and Lyubi-
mov [1] always predicts a nonzero mean flow in a finite
system in weightlessness. Our time-dependent calculations
resolve this contradiction: due to nonlinear response of the
system on the imposed vibrations, the phase shift between
velocity and temperature ¢y_z is never equal to /2, at least
in weightlessness. For cosine vibrations, it is smaller than
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/2, being a decreasing function, and its maximal value over
time is ¢y_7=0.457<<1r/2. For sine function, the phase shift
is larger than 7/2, being a slowly growing function and its
minimal value over time is ¢y_y=~0.587.
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