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Method to control the coupling function using multilinear feedback
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Methods to control the dynamics of coupled oscillators have been developed owing to various medical and
technological demands. In this study, we develop a method to control coupled oscillators in which the coupling
function expressed in a phase model is regulated by the multilinear feedback. The present method has wide
applicability because we do not need to measure an individual output from each oscillator, but only measure
the sum of the outputs from all the oscillators. Moreover, it allows us to easily control the coupling function up
to higher harmonics. The validity of the present method is confirmed through a simulation.
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I. INTRODUCTION

The spontaneous synchronization of mutually interacting
elements exhibiting regular rhythms is a well-known phe-
nomenon in nature, and has been extensively studied from
physical, biological, medical, and technological viewpoints
[1-12]. It is well known that this synchronization often plays
a functional role in either a plausible [4-8] or unplausible
manner [9-12]. For example, the synchronous flashing of
male fireflies plays the role of attracting the attention of fe-
males [4], whereas the pathological synchronization of neu-
rons in patients of Parkinson’s disease or essential tremors
causes unplausible involuntary movements [9-12].

It has recently been suggested in a variety of fields that
controlling the dynamics of coupled-oscillator systems is es-
sential to attain their desirable functions [5-7,9—15]. For ex-
ample, the use of electrical stimulation techniques [9—13] has
been known to be therapeutic for several neural diseases
such as Parkinson’s disease, essential tremor, and the dys-
function of central pattern generators (CPGs) which are neu-
ral networks that allow us to perform movements such as
walking, running, and swimming by their synchronization
[8]. These therapies have been developed such that the elec-
trical stimulation desynchronizes or locally synchronizes the
pathological activities of neurons effectively [9—13]. Another
example is found in the field of technology. Many tasks in
robotics require cyclic actions to be coordinated, such as
walking, juggling, and factory automation. Hence, devising a
method for stabilizing a desired phase relationship of cyclic
units will be a challenging problem [5-7].

It is well known that signal transmissions among elements
constituting a system with different time delays often play an
essential role for its dynamical behavior, such as polychroni-
zation in neuronal networks [16]. Quite recently, a method
for controlling the dynamics of coupled oscillators through
several feedback signals with different time delays, which is
based on the phase model [1-3], has been proposed [14,15].
In this method, the Fourier coefficients of the coupling func-
tion, which determine the dynamics of the system, are con-
trolled by measuring a certain observable of each oscillator
and applying several nonlinear time-delayed feedback sig-
nals to the entire system. This method has an advantage that
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it is applicable regardless of the detailed mechanisms of in-
dividual oscillators, and that various dynamics can be ob-
tained accurately, such as slow switching [17] and phase
clustering [21]. However, because of the nonlinearity of the
feedback signals, an individual output from each oscillator
should be measured independently, which is often difficult in
actual systems; moreover, the calculation becomes extremely
complex when the Fourier coefficients are controlled up to
higher harmonics.

In this study, we aim to derive a tractable and practical
method to control the behaviors of coupled oscillators by
regulating the Fourier coefficients of the coupling function
up to higher harmonics, which is applicable even in the case
where only the sum of the outputs from all the oscillators can
be measured. We will consider a multilinear feedback
method in which only the delays and strengths of the feed-
back signals are regulated. We will show how these param-
eters are determined, and we will also confirm the validity of
this method through a simulation based on Bonhoeffer—van
der Pol model.

II. METHOD TO CONTROL THE COUPLING FUNCTION
We consider globally coupled oscillators described by

N
%= F(x) + %E P.(x,(1).,(1)), (1)
j=1

where N is the number of oscillators and P.(x,(1),x;(#)) de-
notes the coupling between the oscillators. €. is a nondimen-
sional parameter expressing the coupling strength, which is
assumed to be sufficiently smaller than unity. F,(x;) denotes a
set of functions describing a limit cycle. We assume that the
frequencies of the oscillators are slightly different from each
other in nature with the magnitude of the difference being
characterized by €, that is smaller than €.. Then, F,(x;) is
divided into a part common to all the oscillators and the
deviation from it as F,(x;)=F(x,)+¢,f(x;) [we assume that
F(x,), f(x;), and P.(x;(r),x;(z)) are the functions of O(1)].
Equation (1) is generally reduced to a phase model as [1]

bi= o+ eL(P) - £(x0())
N
+ L) Plx(B)xo(S). (@)
j=1
where x,(¢) denotes a point on the limit cycle at a phase ¢
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and @ denotes the increasing rate of the phase when the
inhomogeneity €,f;(x;) and the coupling between oscillators
are absent. Here, the limit cycle constitutes a closed orbit and
hence xy(@)=xq(p+27) is naturally satisfied. Z(¢)
= (grad, ¢)x:x0(¢) is called the phase response function, and
it is assumed that |Z(¢)| does not take an extremely large
value for any ¢ such that the contributions of the second and
third terms in the right-hand side of Eq. (2) are always suf-
ficiently smaller than &. Then, we find from Eq. (2) that ¢;
— ot evolves slowly as compared to ¢;, and thus we can
approximate that ¢;—or is maintained constant during an
oscillation period.

Under this approximation, the second and third terms in
the right-hand side of Eq. (2) are phase averaged over an
oscillation period as

N
b=+ e+ S al40-40).  ©)
j=1
where
2T
w;= LJ dOL(¢p; + 0) - £,(xo(h; + 6)) (4)
2m)y
and

1 2
q.(pi— ) = ;Tf dOL(; + 6) - P(xo(; + 0),x0(h; + 0)).
0
()

q(¢,(t)— (1)) is called the coupling function, whose func-
tional form can be experimentally derived either by specify-
ing the phase response function Z(¢) [if the interaction
P.(x,(1),x;(1)) is already known] [19] or by analyzing the
period of one of two-coupled oscillators when they are not
completely synchronized [20].

In the following, we aim to find appropriate feedback sig-
nals applied to the system described by Eq. (1) so that a
purpose-designed coupling function g(i), which we deter-
mine in advance, is obtained. Namely, we will find feedback
signals that make Eq. (3) substantially change into

N
b=+ qur LD UG- 0. (©
j=1

where € is the coupling strength under the feedback, which
we also determine in advance. €; should be sufficiently small
such that the phase description is valid, but also sufficiently
large such that the oscillators can be synchronized by the
feedback even in the presence of the frequency distribution
€,0;. For convenience, let q.(¢(1)—¢;(1)) and (1)
—¢;(1)) be expanded to Fourier series as q.(¢(1)— (1))
=a exp[ik(¢i(t) - ¢,(1)] and q(pi(1)— (1)
=EkM=_Mﬁk explik(¢(1) - ¢;(1))], where a(_”k)=al(:)* and a_,
:Zi;: should be satisfied. Here, since we aim to control the
coupled oscillators with a finite number of such harmonics,
M is defined as the highest harmonic of g(¢,(t) - ¢,(1)), up to
which the coupling function will be controlled.

PHYSICAL REVIEW E 78, 056210 (2008)

We consider the case where the observable in the system
is only one, which is expressed as Py(t) = Ej-V:lp(Xj(t)), where
p(x;(1)) is the output from the jth oscillator. Here, p(x;(t)) is
arbitrary; however, it should be a single-valued function of
x;() and contain non-negligible Fourier components at least
in the harmonics where a,(f or a; has a moderate value. Let
the feedback signal be applied to the system of Eq. (1) using

this output as

¢ N E 2M+1
%, =F(x) + =2 Pu(x,(0),x,(t)) + £ > T, Py(t—1,)r,
Nj;] N m=1

)

where 7,, and T',, are the time delay and strength of the mth
signal, respectively, whose values will be specified later. The
number of feedback signals is set at 2M + 1, which is plau-
sible for determining the values of 7,, and I',, [see Eq. (13)].
r is a unit vector whose dimension is equal to that of x;, and
it can be selected in an arbitrary manner. Note that the feed-
back signal can be attained only through a term Py(¢) and
hence any information on each output p(x;(r)) is not re-
quired. This is an excellent and most characteristic point of
the present method.

By reducing Eq. (7) to the phase model and phase aver-
aging over an oscillation period [1], we obtain

N
b= 6+ e+ = g (1) — (1))
N

2M+1 N

+f]§ S T2 g b -dt-1),  (8)
j=1

m=1

where

N 1 21
> ad () - ¢t -1,)) = Z—J dOL(¢(1) + 0)
j=1 mJ0

N
- 2 p(xo(@(t = 7,) + O)r.
Jj=1
9)

Here, the contributions of the second to fourth terms in the
right-hand side of Eq. (8) should be sufficiently smaller than
o so that this phase reduction is valid, because it is assumed
in the phase-averaging process that ¢;— ot is maintained con-
stant during the oscillation period.

The functional form of gA(¢,(t)—¢,(1)) can be derived in
the actual system either by specifying the function Z(¢)-r
[19] or by using the method described in Ref. [20], where the
details of the latter method are shown in Appendix. The ob-
tained coupling function is expanded to a Fourier series as
qf(zﬁ):Eka,(f) explikys], where aEf,}:a,ﬁf’* should be satisfied.

Next, we will find the values of 7,, and I',, so that the
desired coupling function g(¢;(1)—¢;(1)) is obtained. When
T,, i1s comparable to or shorter than the natural oscillation
period, we can use the following approximation since qﬁ, is
nearly equal to @ [see Eq. (8)]:
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¢J(Z - Tm) =~ ¢](t) - ‘BTm' (10)

Thus, since Eq. (8) is consistent with Eq. (6), the following
relation holds:

TA0) = B(0) = a0 = 80)
f
2M+1

+ 2 Tagdéi(0) - ¢(1) + 67,,).

m=1

(11)

A 1 1

A, cos(wr)  cos(wmy)
A, cosQwT;) cos(QwT)
Ay | = cos(MwT) cos(MmT,)
B, sin(wT)) sin(@m,)
B, sinor)  sin(2om,)
By sin(Mar,) sin(M@ry)

where Ak:Re[{c’ik—(eC/ef)a,(f)}/a,(f)] and  B,=Im[{a,
—(ec/ef)aic)}/a,((ﬁ]. Thus, when the values of 7,,7,,..., and
Toy41 are determined, the corresponding values of I'},T',,. ..,
and I'y,,; can be derived by solving Eq. (13).

Although there is no specified method of selecting the
values of 7, 7,..., and 7,,,;, we should select them consid-
ering the following two points. First, 7,, should be selected
such that it is comparable to or smaller than (277/@)~!, oth-
erwise the validity of the approximation given in Eq. (10)
will be lost. Second, =2MH!|T", |, which we will hereafter de-
note as G, should not have a large value for the validity of
the phase model, the reason for which will be described in
Sec. IV.

In order to find the values of 7,, and T, satisfying these
requirements, we have selected 7,,’s such that the following
relation is satisfied:

2m ( am (T)TO>
T,, = — - frac -— |+ 7,
2M+1 27

(14)

where frac[am/(2M +1)—w7y/(27)] indicates the fractional
part of am/(2M+1)- w7,/ (27), and 7, is the time required
to process the sum of the outputs from all the oscillators.
Then, I';,I'5,..., and Iy, are calculated from Eq. (13) with
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By comparing each Fourier coefficient of Eq. (11) up to the
Mth harmonic, we obtain

2M+1
TSP+ S Tl
€f m=1

(12)

Although the Fourier coefficients of the harmonics higher
than M in ¢.() and /) generally have nonzero values, we
can minimize their contributions by taking M sufficiently
larger than the number of harmonics in which ¢.(¢) and
gA4) have non-negligible Fourier components. Equation
(12) is rewritten in a matrix form as

1 r,
cos(®Typ141) I,
cos(20Typ141) :
cos(M&Typ,1) : , (13)

Sin(@7p741)

sin(2@7yp741)

Py

sin(M®Ty,1) Popar

changing «. Here, it is sufficient to change a within the
range of 0< o <2M+1 because the values of 7,, do not vary
when « is added by multiples of 2M +1. Thus, 7;,7,..., and
Try+1 are systematically determined only by selecting a such
that G does not have a large value. In fact, we can find the
appropriate values of 7,, and hence I',, rapidly by using this
scheme. It is noted that even when this scheme is used, G
cannot take a smaller value than the maximum value of |A;]
and |B,|, which can be easily proved from Eq. (13) such that
Al=1200 cos(kam, )T, <230 T, =G, Hence,  g(y)
should be determined so that Max[|A,|,|B;|] does not take a
large value.

s

III. SIMULATION

Now, let us confirm the validity of this method through a
simulation. Here, we employ the Bonhoeffer—van der Pol
model, which is known as a representative model describing
limit-cycle oscillations [18]. We consider a case where the
oscillators are coupled to each other by the same coupling
strength, and then the model is described as
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. 3 N
(hu,) _ <—bivi+ u;—u;/3 ) . %FEI () — Mﬁ))(é),

U; up+cv;+d
(15)

where the first term in the right-hand side denotes a set of
functions describing a limit cycle, while the second term
denotes the coupling between the oscillators. Here, we have
assumed that the oscillators are coupled only through the
variable u by its difference. The parameters h, ¢, and d are
set at 0.2, 0, and 0.8, respectively. b; is set at b;=1.0005
—0.0001i, where i is an index, so that the natural periods of
the oscillators are slightly distributed. Actually, the natural
periods are found to range from 4.51 to 4.54 under these
conditions. The natural coupling strength €, is set at 0.05,
whereas the total number of the oscillators N is set at 100.
We assume that E;\iluj(t) is the only observable, and apply
the feedback signals as

. 3 X
(L) s ol

vi ui+CUi+d
¢ 2M+1 N
+L > T, ur-1,)r. (16)
N ™

i-1

The coupling strength under the feedback signals € is set at
0.07, which is sufficiently small so that the phase description
is valid, but sufficiently large so that the oscillators can be
well synchronized under the feedback. r is a two-
dimensional unit vector and here, the cases of r=(1,0)7 and
(0,1)7 are investigated. In the following simulations, as a
target state, we will select a symmetric n-cluster state (n=2,
3, and 4) [21] in which the population of the oscillators is
split into n equally populated clusters with the phase differ-
ence between adjacent clusters being 27/n, or a desynchro-
nized state in which the oscillators are not synchronized and
their phases are distributed uniformly [14].

First, the coupling functions ¢.(#), g{#), and g(+) should
be determined. ¢.(i) is derived by applying the method de-
scribed in Ref. [20] to the present model, while gq(¢) is
derived by performing the procedures shown in Appendix
with 7, set at 0.5. The obtained functional forms of ¢.(#) and
q/(4p) for r=(1,0)" and (0,1)”, and their absolute values
of the Fourier coefficients Laff)| and |a{”)| are shown in Fig. 1.
We find that |a{)| and |a{| decrease rapidly as k increases.
Hence, we select M, the number of the highest harmonic of
q(#), as 10, so that it is sufficiently larger than the number of
harmonics in which ¢.(¢) and g/) have nonnegligible Fou-
rier components.

On the other hand, the functional form of (i) is deter-
mined using the result of the linear stability analysis of sym-
metric cluster states reported previously [21]. Namely, g()
is selected such that the real parts of the eigenvalues are all
sufficiently negative only for the target state when the target
state is a symmetric n-cluster state, whereas eigenvalues hav-
ing non-negative real parts exist for all symmetric cluster
states when the target state is a desynchronized state. Here,
G(1) should be determined carefully so that Max[|A,|,|B|]
does not have a large value, because otherwise, G becomes

bl
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FIG. 1. Functional forms of (a) g.(#), (b) g{#) for r=(1 ,0)7,
and (c) g/() for r=(0, 1)T (graphs on the left-hand side). The data
are obtained by using the method described in Ref. [20] (black
dots), and they are fitted by a function y0+E,Z|(,Bk sin(k)
+ 7y, cos(kip)) with the fitting parameters B, and 7, (solid lines).
In the graphs on the right-hand side, the absolute values of the
complex Fourier coefficients \a,(f) and |a,(€ﬁ| are shown. Note
that |a\| and |a\| are given as VB2 +v;/2 for k=1 and 1, for k
=0.

large. The functional forms of g(i) thus obtained for desyn-
chronized, two-cluster, three-cluster, and four-cluster states
are shown in Fig. 2.

Next, we will determine the values of 7,, and I',,, and
perform simulations using them. In the simulations, the
Runge-Kutta method will be employed with time intervals of
0.02 and with the initial condition of u;=v;=1.5 for all i.
First, we show the case where the target state is three-cluster
state with r=(1,0)”. Figure 3 shows the relation between a
and G. It is found that G varies significantly with a and takes
a minimum value 4.08 at «=1.030, based on which we de-
rive 7,, and I',, using Eqgs. (14) and (13), respectively.

Figure 4 shows the temporal evolutions of the relative
phases of the oscillators, where the feedback signal is applied
during 500 < ¢= 1500. We define the relative phase of the ith
oscillator ¢; (i=2) as l/fi(l(lK))=2’7T(ll(-K,)—l(1K))/(t(1K+1)—l(1K)),
where t(lK) and tEK’) denote the time when the first and ith
oscillators take maximum values of v at the Kth and K’'th
cycles, respectively, with K and K’ satisfying t(lK)st,(-K’)
<t(1K+1). It is evident that the oscillators are synchronized
with an in-phase before the feedback signal is applied. When
the feedback signal is switched on, the phases become dis-
tributed transiently, and then gradually divide into three clus-
ters. The phase difference between the adjacent clusters is
found to be approximately 27/3, and the numbers of oscil-
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FIG. 2. Functional forms of (i) for (a) desynchronized,
(b) two-cluster, (c) three-cluster, and (d) four-cluster states, which
are given as g(¢)=sin +0.4 sin 2¢/+0.2 sin 31+0.08 sin 4y
+0.04 sin 5¢+0.02 sin 64+0.01 sin 7p+0.01 sin 84+0.07, ()
=sin )—0.3 sin 2¢+0.07, () =sin +0.3 sin 2¢4—0.2 sin 3¢
+0.07, and g(¢)=sin +0.3 sin 2¢+0.2 sin 3¢y—0.1 sin 4¢+0.07,
respectively (solid lines). Note that a; and a_; are set at zero when
q() does not have a Fourier component in the kth harmonic for
k<M, where M is taken as 10. The coupling functions under the
feedback in the cases of r=(1,0)" (open circles) and r=(0,1)"
(filled squares) are also shown, which are derived by using the
method described in Ref. [20].

lators that belong to the three clusters are 38, 30, and 32.
When the feedback signal is switched off, the three clusters
converge, which leads to in-phase synchronization again.

Figure 5 shows the temporal evolutions of u;. Here, the
data of three oscillators belonging to different clusters are
shown separately. It is evident that each oscillator oscillates
with an amplitude of ~4, and its waveform does not differ
significantly with or without the feedback signal. When the
feedback signal is switched on, only the phase relationship
changes. Figure 6 shows the magnitude of the feedback sig-
nal described as efN‘lEanffll“mE im1uj(t=,). We find that the
magnitude of the feedback signal is found to be smaller than
~0.3, which is sufficiently smaller than the oscillation am-
plitude of u;. These results do not contradict the validity of
the phase description, where the contribution of the feedback
term is sufficiently smaller than that of the term associated
with the limit cycle [see Eq. (8)]. On the other hand, the
coupling function under the feedback signal, which is de-
rived by using the method described in Ref. [20], is shown in
Fig. 2(c) (open circles). It is found that the obtained coupling
function is surprisingly in good agreement with g(i). Thus,
the functional form of the coupling function is actually well-
controlled by the feedback.

The cases where 7,, and T',, are derived from different
values of a are also investigated. Here, « is selected as
1.152, 0.939, and 1.276, so that G takes values of 21.50,
34.84, and 49.92, respectively (see Fig. 3). Figures 7 and 8
show the relative phases and the magnitude of the feedback
signal in these cases, respectively. In the cases of a=1.152
and «=0.939, a three-cluster state is obtained under the feed-
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FIG. 3. a dependence of G in the case where the target state is
a symmetric three-cluster state and r=(1,0)7. « is changed from 0
to 21 with a step of 0.001. The lower graph shows a magnified view
of the upper graph. Note that G in the upper graph is described in a
log scale, whereas that in the lower one is described in a linear
scale. The values of « used in the simulations are indicated by
arrows.

back, with the magnitude of the feedback signal being even
smaller than ~0.3. However, in the case of a=1.276, in-
phase state is found to appear even under the feedback, al-
though the target state is set at a three-cluster state. In this
case, the magnitude of the feedback signal is extremely large
so that it is comparable to the oscillation amplitude [Fig.
8(c)], which suggests that the phase description is no longer

Relative phase

== ,“ ]
o] 00 1QOO 1500 2000
Time

FIG. 4. Temporal evolutions of the relative phases ¢; with i
=2,3,..., and 100 (solid lines) when the target state is a three-
cluster state with r=(1,0)". 7,, and I,, are derived using the value
of @=1.030. The feedback signal is applied during 500 <7< 1500
(left-right arrow).
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FIG. 5. Temporal evolutions of u; when the target state is a
three-cluster state with r=(1,0)”. The data of three oscillators be-
longing to different clusters [i=1 (solid line), 40 (dashed line), and
70 (dotted line)] are shown. The feedback signal is applied for ¢
=500 (arrow). 7, and I',, are derived using the value of a=1.030.
The left- and right-lower graphs show the magnified views before
and after the onset of the feedback signal. Note that the three oscil-
latory curves are overlapped in the left-lower graph.

valid. Thus, G is an important quantity for the applicability
of the present method, and « should be selected such that G
does not have a large value.

Next, we show the results when the target state is changed
in sequence from desynchronized to two-cluster to three-
cluster to four-cluster state. We consider the cases for r
=(1,0)7 and r=(0,1)7 separately. For each target state, 7,
and I',, are derived from the value of « in which G takes its
minimum value. Then, G is generally found to be smaller
than ~20, which is at most ~8 times larger than
Max[|A|,|B|] (see tables in Fig. 9). The distribution densi-
ties of the relative phases in the cases of r=(1,0)" and r
=(0,1)7 are shown in Figs. 9(a) and 9(b), respectively. In

0.1
E gn a0
107 27 1
= Q
55 02
3
o S 051 S 03
5 g 500 590 600
) .20 Time
v-o 175
B X 00—
B
3 o
> 8
_1 O T T T 1
0 b0 1000 1500 2000

Time

FIG. 6. Temporal evolution of the magnitude of the feedback
signal (Ef/N)Eifo'Fijy:,uj(t— 7,,) When the target state is a three-
cluster state with r=(1,0)7. 7,, and I",, are derived using the value
of a=1.030. The feedback signal is applied during 500=<7=<1500.
The inset shows a magnified view at the onset of the feedback

signal.
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FIG. 7. Temporal evolutions of the relative phases ¢; with i
=2,3,..., and 100 (solid lines), when the target state is a three-
cluster state and r=(1,0)7. The cases of (a) a=1.152 (G=21.50),
(b) @=0.939 (G=34.84), and (c) a=1.276 (G=49.92) are shown.
The feedback signal is applied during 500<¢=<1500 (left-right
arrows).

both cases, the target states are excellently reproduced by the
feedback. Furthermore, these behaviors are still obtained
even when a finite amount of noise is introduced in the
model, as far as it is not too large (data not shown). The
coupling functions obtained under the feedback signals are
shown in Fig. 2. It is evident that the obtained coupling
functions are generally in good agreement with the target
coupling function g(#). Thus, it is confirmed that various
dynamical behaviors are obtainable by controlling coupling
functions using the present method.

IV. DISCUSSION

We have proposed a method to control the dynamics of
coupled oscillators by regulating the coupling function
through multilinear feedback, and have confirmed its validity
through simulations. Although a previously reported study
[14,15] suggested that the coupling function is well regulated
by nonlinear feedback, it has a problem for practical use in
that an individual output from each oscillator has to be mea-
sured. On the contrary, in our method, control is possible as
far as we can measure the sum of the outputs from all the
oscillators. This fact is extremely advantageous because it is
often practically difficult to measure individual outputs from
all oscillators and to process them rapidly, particularly when
the number of oscillators becomes large, e.g., neuronal sys-
tems. Thus, the present method will eventually be applied to
various systems without practical restrictions.

By using the present method, the coupling function can be
controlled up to the Mth harmonic. Although the harmonics
higher than M are not controlled, we can minimize their
contribution by taking M larger than the number of harmon-
ics in which ¢.(¢) and g(¢)) have nonnegligible Fourier
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FIG. 8. Temporal evolutions of the magnitude of the feedback signals (e;/ N)Z2MHE SN u (t—7,,) when the target state is a three-cluster

m=1

state with r=(1,0)7. The cases of (a) a=1.152 (G=21.50), (b) ®=0.939 (G=34.84), and (c) a=1.276 (G=49.92) are shown. The feedback
signal is applied during 500=<¢= 1500. The insets show magnified views at the onset of the feedback signal.

components. Although the higher harmonics could also be
controlled also in the previous study [14,15], this calculation
was extremely complex when the number of harmonics be-
came large because of the nonlinearity of the feedback. In
contrast, in the present method, it is quite easy to derive 7,
and I',, even when M is large. Thus, it is expected that vari-
ous behaviors that require higher harmonics of coupling
function can be easily obtained by employing a large value
of M in the present method.

We have shown in the simulation that the control fails for
a large value of G [Fig. 7(c)]. The reason why G should not
be large is qualitatively explained in the following manner.
When we derive Eq. (13), gd¢(t)—¢,(t—,)) appearing in
Eq. (8) is approximated to g/ ¢,(t)— ¢;(t)+@r,), using Eq.
(10). However, when G is extremely large, the discrepancy
between g/ (1) ¢;(1—17,)) and gApi(1)— (1) + w7,) will
be amplified by the large I',,’s. Then, the contribution of the
feedback term becomes large, and as a consequence, the va-

lidity of the phase description given in Eq. (8) is completely
lost.

Thus, we need to determine 7,, and I',, so that G does not
have a large value. In this respect, the present method has an
advantage in that we can arbitrarily select 7,,’s so that G does
not become large, in contrast to the previous study, where the
delays and strengths of the feedback signals were uniquely
determined once the target coupling function was determined
[14,15]. In fact, by using the present method, we can easily
find the parameter sets of 7,, that can be used to avoid mak-
ing G so large.

We note that the present method is not applicable when
Max[|A|,|B;|] is large because G cannot have a value
smaller than Max[|A,|,|B;|]. Nevertheless, it will often be
possible to make Max[|A,|,|B,|] small by selecting the vector
r and the observable Ejyzlp(xj) properly. Thus, the arbitrary
property of r and p(x;) will be beneficial for expanding the
applicability of the present method.
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FIG. 9. Temporal evolutions of the distribution density of rela-
tive phases in the cases of (a) r=(1,0)" and (b) r=(0,1)". The
distribution density is shown as gray shaded region. The target state
is changed in sequence from (ii) desynchronized to (iii) three-
cluster to (iv) three-cluster to (v) four-cluster state. In a state (i), the
feedback signal is not applied. The values of G, Max[|A,|,|B/], and
G/Max[|A;],|B,|] for each target state are listed in tables.

When multiple stable states exist in a system described by
Eq. (6), the state obtained through the feedback should de-
pend on initial conditions or noises, and thus, the target state
is not necessarily obtained. In fact, we have found that the
number of oscillators in each cluster is not completely iden-
tical (38, 30, and 32; see Fig. 4), which is due to the presence
of stable points for several three-cluster states with different
sizes of clusters other than symmetric three-cluster state [3].

PHYSICAL REVIEW E 78, 056210 (2008)

Thus, it is desirable, if possible, to set g(i) so that stable
states other than the target state do not exist, or at least, have
small basins of attractions.

In the present method, we have assumed that the oscilla-
tors are coupled to each other by the same coupling strength
€. and that the observable is measured uniformly from all of
the oscillators, with the feedback signals uniformly applied
to all of the oscillators. However, we expect that the present
method can be extended to a system where these assump-
tions are not necessary. The generalization of the present
model is now in progress, which will lead to various practi-
cal applications, such as the desynchronization of pathologi-
cally synchronized neurons and the stabilization of phase
relationships in robots performing cyclic actions.

APPENDIX: DERIVATION OF g«(t)

Consider a couple of oscillators that are separated from
the system, and that artificially couple with each other as

X, =F(x)) + € p(x,(t = 7))r, (A1)

X, = Fy(xp) + €' p(x,(t = 7))r, (A2)

where 7, is here defined as the time required to process the
output from an oscillator, which is preferably shorter than the
natural oscillation period. The coupling strength €’ is ad-
justed such that the oscillation periods will be affected by the
coupling under the condition that synchronization does not
occur. When the period of one of the oscillators is obtained
as a function of the phase difference i, = ¢,(t)— h,(1), we
can derive the coupling function under this artificial interac-
tion §(i,) up to the first order of AT, as [20]

277AT1(¢12)

, , (A3)
€ T%

C?(‘/’lz) ==

where T is the natural period of the first oscillator and
AT, (¢,,) is the deviation from it when the phase difference
is ¢, On the other hand, by considering the phase-reduction
process of Eq. (A1), §(i,) is found to be described as

2

q(hyp) = ZLJ dOZ(p,(1) + 0) - p(Xo(hy(t — 1) + O))r.
™J0

(Ad)

Then, by comparing Eq. (A4) with Eq. (9) for an individual
coupling between two oscillators, we find

G(h12) = g1 (1) = ho(t — 7)) = qih1, + 7). (AS)
Here, we have used the approximation ¢;(t—7y)= ¢;(7)
-7, because ¢; is nearly equal to @. From Egs. (A3) and
(A5), we obtain
2mAT (1, = o7)

e’T% ’

qlih) = - (A6)

056210-8



METHOD TO CONTROL THE COUPLING FUNCTION USING ...

[1] Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence
(Springer-Verlag, Berlin, 1984).

[2] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A
Universal Concept in Nonlinear Sciences (Cambridge Univer-
sity Press, Cambridge, England, 2001).

[3] S. C. Manrubia, A. S. Mikhailov, and D. H. Zanette, Emer-
gence of Dynamical order: Synchronization Phenomena in
Complex Systems (World Scientific, Singapore, 2004).

[4] J. Buck and E. Buck, Nature (London) 211, 562 (1966).

[5] E. Klavins and D. E. Koditschek, Int. J. Robot. Res. 21, 257
(2002).

[6] A. Calvitti and R. D. Beer, Biol. Cybern. 82, 197 (2000).

[7]R. D. Beer, R. D. Quinn, H. J. Chiel, and R. E. Ritzmann,
Commun. ACM 40, 30 (1997).

[8] E. Marder and R. Calabrese, Physiol. Rev. 76, 687 (1996).

[9] P. A. Tass, Phase Resetting in Medicine and Biology: Stochas-
tic Modelling and Data Analysis (Springer-Verlag, Berlin,
1999).

[10] C. Hauptmann, O. Popovych, and P. A. Tass, Neurocomputing
65, 759 (2005); Biol. Cybern. 93, 463 (2005); C. Hauptmann,
0. Omel‘chenko, O. V. Popovych, Y. Maistrenko, and P. A.

PHYSICAL REVIEW E 78, 056210 (2008)

Tass, Phys. Rev. E 76, 066209 (2007).

[11] O. V. Popovych, C. Hauptmann, and P. A. Tass, Phys. Rev.
Lett. 94, 164102 (2005); Biol. Cybern. 95, 69 (2006).

[12] K. Pyragas, O. V. Popovych, and P. A. Tass, Europhys. Lett.
80, 40002 (2007).

[13] M. Rosenblum and A. Pikovsky, Phys. Rev. E 70, 041904
(2004); Phys. Rev. Lett. 92, 114102 (2004).

[14] 1. Z. Kiss, C. G. Rusin, H. Kori, and J. L. Hudson, Science
316, 1886 (2007).

[15] H. Kori, C. G. Rusin, I. Z. Kiss, and J. L. Hudson, Chaos 18,
026111 (2008).

[16] E. M. Izhikevich, Neural Comput. 18, 245 (2006).

[17] D. Hansel, G. Mato, and C. Meunier, Phys. Rev. E 48, 3470
(1993).

[18] P. S. Landa, Nonlinear Oscillations and Waves in Dynamical
Systems (Kluwer Academic, Dordrecht, 1996).

[19] 1. Z. Kiss, Y. Zhai, and J. L. Hudson, Phys. Rev. Lett. 94,
248301 (2005).

[20] J. Miyazaki and S. Kinoshita, Phys. Rev. Lett. 96, 194101
(2006); Phys. Rev. E 74, 056209 (2006).

[21] K. Okuda, Physica D 63, 424 (1993).

056210-9



