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We study the dynamics of a reaction-diffusion system comprising two mutually coupled excitable fibers. We
consider a case in which the dynamical properties of the two fibers are nonidentical due to the parameter
mismatch between them. By using the spatially one-dimensional FitzHugh-Nagumo equations as a model of a
single excitable fiber, synchronized pulses are found to be stable in some parameter regime. Furthermore, there
exists a critical coupling strength beyond which the synchronized pulses are stable for any amount of parameter
mismatch. We show the bifurcation structures of the synchronized and solitary pulses and identify a
codimension-2 cusp singularity as the source of the destabilization of synchronized pulses. When stable
solitary pulses in both fibers disappear via a saddle-node bifurcation on increasing the coupling strength, a
reentrant wave is formed. The parameter region, where a stable reentrant wave is observed in direct numerical
simulation, is consistent with that obtained by bifurcation analysis.
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I. INTRODUCTION

Synchronization is a ubiquitous dynamical property en-
countered in many fields of science, and it plays an important
role in the functional aspects of many living systems [1].
Most pioneering studies on these living systems have fo-
cused on the synchronization between rhythmic phenomena
[2]. Recently, synchronization via interaction between spa-
tiotemporal patterns has attracted considerable interest. Then,
it is well known that excitability plays an important role in
various systems in nature, such as heart tissues [3—6], neu-
rons [7-9], aggregating amoebae [10,11], the catalytic CO
oxidation reactions on a Pt surface [12—15], chemical reac-
tions [16,17], and lasers [18-20]. In this study, we investi-
gate the bifurcation structure of pulse solutions emanating
from the interaction between spatiotemporal patterns, i.e.,
propagating pulses in coupled excitable media.

In the case of simple excitable elements, a small but finite
perturbation to the rest state leads to a large excursion (an
excitation). When a system is spatially extended, it is known
that a localized stimulus of a finite amplitude forms stable
propagating pulses. These large pulses or excited spikes have
a proper shape, which is usually dictated by a low-
dimensional phase space. In systems such as a bundle of
nerve fibers or heart tissues, the large pulses are associated
with an action potential (AP).

Spatially extended excitable media are usually modeled
within the framework of reaction-diffusion systems, and they
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show a rich variety of dynamical behaviors, including propa-
gating pulses and target waves [21], spiral waves [22], and
spatiotemporal chaos [23]. Recently, reaction-diffusion sys-
tems in excitable media and the interaction between these
systems have attracted considerable interest, as stated above.
For example, in [24], it has been reported that the mutual
interaction between the stationary Turing patterns existing in
one layer and the oscillatory waves existing in another layer,
which is brought about by the layer-coupling method, yields
a large variety of oscillatory Turing patterns. Complete syn-
chronization of spiral waves was experimentally demon-
strated for two mutually coupled Belouzov-Zhabotinsky
chemical reaction media [25]. Later, the time-lag synchroni-
zation of spatiotemporal disorders was also observed in a
pair of unidirectionally coupled nonlinear optical systems
[26]. From the engineering viewpoint, spatially synchronized
chaos in optical systems has potential applications in com-
munication [27].

Furthermore, mutually coupled excitable media are exten-
sively used as models of heart tissues and bundles of nerve
fibers. A short review of these models is given below.

As a bundle of nerve fibers. Most neurons have compli-
cated shapes; the bifurcation patterns in dendrites and axon
terminals are particularly complex. Further, dendrites tend to
bifurcate repeatedly and create a (often several) large and
complicated tree. A particular dendritic morphology behaves
like a complex dynamical device with potentially rich reper-
tories of input-output capabilities [28-32]. The above ex-
amples suggest that pulse-pulse interactions might play a
crucial role in determining the dynamical behavior and infor-
mation processing in a neuronal system. However, these
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pulse-pulse interactions exist not only in specific spatial re-
gions but also along myelinated nerve fibers that are parallel
and relatively close together through mutually propagated
pulses. Such parallel fiber interactions have been known to
electrophysiologists since the 1940s [33,34] and are termed
ephaptic, derived from a Greek word meaning “to touch”
[35].

As a model of heart tissues. Laterally coupled excitable
media can be used to study cardiac tachycardias, which are
abnormal cardiac rhythms in which the heartbeat is very
rapid [36,37]. The interaction between pulses propagating in
a fiber is important in a cardiac system; this interaction in-
duces instabilities and entrainment of pulse propagation
[4,5,38,39]. However, the real heart with its several different
structures and inhomogeneities is an inhomogeneous system.
Heart cells are cylindrical and are structurally arranged in
parallel arrays in local regions, although the axis of fiber
orientation varies from one region of the heart to the other
[40]. For example, the Purkinje fibers form a network struc-
ture. The excitation pulse propagates several times faster in
the Purkinje fibers than in the normal ventricular tissues. The
assumption that a cardiac tissue is a two-phase medium con-
sisting of intracellular and extracellular spaces leads to later-
ally coupled excitable equations called the bidomain model
[41,42]. A pair of continuous one-dimensional fibers coupled
electrotonically in the lateral direction is used as a simple
example of a two-dimensional medium [43].

In laterally coupled excitable fibers, synchronization be-
tween two pulses, each propagating along an identical fiber,
and repeated excitation in a specific region, called the reen-
trant wave, have been observed. Such pattern dynamics are
related to many biological problems. For example, the reen-
trant wave is considered to be the cause of heart condition
such as tachycardias and fibrillation [44,45]. Further, later-
ally coupled fibers can also be used to study the ephaptic
(nonsynaptic) interactions between the impulses in parallel
fibers since the myelinated nerve fibers are often arranged in
bundles [46,47]. The conduction velocities in neighboring
fibers might be combined due to the ephaptic interaction be-
tween adjacent axons, thereby causing the synchronizing ac-
tivity in a bundle of axons, which may play a functional role
in neural processing [48,49].

It is also shown that various types of pulse dynamics such
as solitonlike collisions between two pulses, recombination
of synchronized pulses, and phase locking between two
pulses are found in the spatially one-dimensional FitzHugh-
Nagumo (FHN) equations when the intradiffusion coeffi-
cients of two media are nonidentical [50]. Solitary waves are
also found in excitable systems with cross diffusion [51,52].

In this paper, by using the spatially one-dimensional FHN
equations as a simple model of an excitable fiber, we focus
our attention on synchronized pulses and reentrant waves
when parallel fibers are laterally coupled. A detailed bifurca-
tion structure for these pattern dynamics is revealed in this

paper.
II. MODEL

Spatially extended excitable media are usually modeled
within the framework of reaction-diffusion systems. In this
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paper, we consider mutually coupled excitable fibers.

For simplicity, we assume that the dynamics of the fibers
is represented by the same model equation. We consider a
two-layer model of the FHN equations. The system consists
of the following equations:

U =U(Uy = a)(1 = Uy) =V, + VU + (U, - Uy),
Vi=1U,-yV),
U, =Us(Uy— ) (1 = Uy) = Vo + 1,V U + (U, = U,),

aVy=mUy = yVo). (1)

Subscripts 1 and 2 denote fiber 1 and fiber 2, respectively.
The state variables U; ,=U| »(x,7) and V| ,=V| »(x,?) are the
activators (the membrane potentials) and the inhibitors (the
recovery variables), respectively; in this case, x € [0,L] and
te[0,) are the space and time coordinates, respectively.

The coupling between the fibers is assumed to be electro-
tonic, so that the current flow between them is proportional
to the potential difference across them. Thus, for the activa-
tors, the mutual interaction between two excitable fibers can
be introduced as the linear coupling terms (U, ,—U, ;). The
coupling coefficient € is inversely proportional to the resis-
tance between the fibers.

One physiological setting where this model may be rel-
evant is in the bundle of His. It has been suggested that in a
bundle of parallel fibers, an AP may travel along some but
not all fibers, and in this manner, a bundle of Purkinje fibers
can support multiple dissociated pathways. For example, cer-
tain reciprocating rthythms may result from an impulse that
travels in one direction along one fiber or a bundle of fibers
and then “crosses over” to another fiber and propagates in the
retrograde direction. These rhythms may be the cause of con-
tinuously circulating excitation waves that are considered to
exist in the Purkinje fibers. Another possible physiological
implication of this two-layer model is that one layer repre-
sents a ventricular tissue and the other layer represents the
Purkinje fibers, assuming that the Purkinje fiber network
covers the ventricular tissue.

The parameters of the reaction kinetics are set as «
=10"!,7=2 %1073, and y=2.5, so that the local kinetics
shows an excitable property, i.e., a small but finite perturba-
tion to the resting state (u,v)=(0,0) leads to a large excur-
sion. The terms V2U, ,=d?U, ,/ dx* represent intrafiber diffu-
sions with coefficients «; and k,. The value of «; is set to
0.25 throughout this paper.

Because the system is spatially one dimensional and has
simple reaction kinetics (monostable rest state), the traveling
pulse is only a nontrivial solution without any coupling be-
tween the fibers.

In numerical simulations, we use the Euler integration
scheme with a time step Ar=1072 and a spatial step Ax=5
X 107!, The diffusion terms at a spatial point x; (=iAx) are
approximated as VU, ,(x;)=[1/(Ax)*][U, 5(x;1) —2U, 5(x;)
+Uj 5(x;41)]. The following periodic boundary condition is
employed for both the fibers: U, ,(0,1)=U, (L, 1).
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FIG. 1. (Color online) Spatial pattern of (a) solitary pulse, €
=0.001 and (b) synchronized pulses, e=0.1. The solid and broken
lines are the pulses in fiber 1 (U,) and in fiber 2 (U,), respectively.
For synchronized pulses, the U,—0.1 value is plotted. The param-
eters are 7=0.02, =0.1, and x;=k,=0.25.

III. NUMERICAL SIMULATIONS OF SYNCHRONIZED
PULSES AND REENTRANT WAVES

In numerical simulations, we use the following initial
conditions:

0 forO0=x=<048L,
U,(x,0)=11 for 0.48L <x < 0.52L, (2)
0 for0.52L=x<L,

0.1 for0=x=<048L,

V,(x,0) = 3
1(x.0) {0 for 0.48L < x <L ®

for fiber 1, and
U,(x,0)=V,(x,00=0 Vxe[0,L] (4)

for fiber 2. On applying these initial conditions, we can ob-
tain a state in which a right-propagating pulse is initiated in
fiber 1, while fiber 2 is set to the global resting state.

When the diffusion coefficients x; and «, of the two fi-
bers are identical, we observe the following four different
phases after an initial transient dies out with an increase in
the interfiber coupling e: (i) a solitary pulse propagating
along fiber 1, (ii) formation of a reentrant wave, (iii) the
global resting state after a finite repetition of reentrant waves,
and (iv) synchronized pulses propagating in both the fibers.
Further, when the intradiffusion coefficients of the two fibers
are nonidentical, i.e., x| # 2, the following interesting pulse
dynamics are observed: one-way excitation, solitonlike col-
lision, and recombination of pulses [50].

In this paper, we analyze three basic phases: a solitary
pulse, a reentrant wave, and synchronized pulses. As shown
in Fig. 1(a), for a sufficiently small value of €, a propagating
pulse in fiber 1 cannot induce a suprathreshold excitation;
however, a subthreshold excitation typically appears as a
small-amplitude pulse in fiber 2. For sufficiently large values
of €>7.2X 1072, the pulse initially generated in fiber 1 at
time r=0 generates a new excitation in fiber 2. A right-
propagating pulse emerges in fiber 2 from this excitation and
immediately becomes synchronized with the pulse initially
generated in fiber 1 [Fig. 1(b)]. For intermediate values of e,
reexcitation is observed in the following manner (Fig. 2
shows a series of spatial profiles with €=0.007). The new
excitation in fiber 2 splits into two pulses, one moving left-
ward and the other rightward (r=100). The right-propagating
pulse in fiber 2 immediately becomes synchronized with that
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FIG. 2. (Color online) Successive images of the spatial profiles
of U; and U,—-0.1 of the reentrant wave. The solid and broken lines
represent U; and U,-0.1, respectively. For the waves in fiber 2,
U,-0.1 is plotted. The value of € is 0.007, and the other parameters
are the same as those in Fig. 1.

in fiber 1 (¢=150), whereas the left-propagating pulse in fiber
2 remains solitary. Because of a refractory region behind the
right-propagating pulse in fiber 1, this solitary pulse requires
some time to induce the next excitation in fiber 1 (r=250).
Then, two pulses propagating in opposite directions emerge
from the excitation induced in fiber 1; due to the solitary
pulse, the left-propagating pulse in fiber 1 is synchronized
with the previously generated pulse in fiber 2, while the
right-propagating pulse in fiber 1 remains solitary for some
time. This right-propagating pulse again will be able to cause
an excitation in fiber 2 in the course of time. These processes
occur repetitively in a specific region. The dynamical pattern
associated with such repetition is called the reentrant wave
[53-56]. The spatiotemporal patterns of the three phases—
solitary pulse, reentrant wave, and synchronized pulses—are
shown in Fig. 3.

IV. BIFURCATION ANALYSIS

For full partial differential equations (PDEs) (1), we study
the stationary solutions in which the pulses propagate with a
constant velocity c¢. On transforming to a comoving frame
é=x—ct, Eq. (1) becomes

Fuy = uy (uy — @) (1 —uy) + cdauy + K dgaty + €(uy — uy),

vy =mu; - yy),

61142 = uz(uz - a/)(l - Mz) + C(?§M2 + Kz(?gguz + E(ul - Mz),

9y = T(uy = yY0,). (5)

A stationary solution propagating with a velocity ¢ corre-
sponds to the condition du;=d,v;=0. In this case, the prob-
lem can be reduced to a traveling wave ordinary differential
equation (ODE) for the spatial profile in the following form:

du,

dé

=wy,
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FIG. 3. (Color online) Spatiotemporal patterns for U, (left) and U, (right). (a) Solitary pulse: e=0.001, (b) reentrant waves, €=0.009, and
(c) synchronized pulses, €=0.08. The other parameters are the same as those in Fig. 1.

dwy  —ewi—uy(u; - a)(1 —uy) — eluy —uy)
d¢ Ki ’
dv T
d—£=—;(u1 - 1),
dl/l2
&
% _ W2 up(uy = @) (1 = up) — €y — uy)
d¢ K ’
dv T
ag = Gl (6)

We immediately see that if (u;,v,;)=(0,0) is a fixed point of
the kinetics, then (u;,w;,v;)=(0,0,0) is also a fixed point in
Eq. (6).

Solutions of traveling wave ODEs such as fixed points,
periodic orbits, and homoclinic and heteroclinic connections,
correspond to homogeneous solutions, traveling waves,
pulses in a homogeneous state, and fronts connecting two
different homogeneous solutions, respectively, for the PDE
(see [57] for a general review). The above considerations
allow us to study the properties of nonlinear waves by using
well-established dynamical systems methods such as bifur-
cation analysis and the continuation of a solution in param-
eter space [58]. In this approach, a solitary excited pulse,
which travels on a spatially homogeneous background
(U;,V;)=(0,0), corresponds to a homoclinic orbit to the
equilibrium point (u;,w;,v;)=(0,0,0) in Eq. (6). A solution
of a periodic wave train in the reaction-diffusion equations
(1) is presented by a limit cycle in the traveling wave ODEs.
Both types of solutions can be successfully tracked with the
continuation software AUTO [59] along the parameters of the
local reaction kinetics, the velocity ¢, and the wavelength L.

In the following sections, we consider a traveling wave,
which is given by a periodic orbit with period 7=300 and a
certain velocity parameter ¢ in Eq. (6) (the bifurcation struc-
ture does not significantly depend on the period 7' for T
>150).

A. Solitary pulse

First, we consider the propagation of a solitary pulse on a
ring. The dependence of the propagation speed ¢ on the pe-
riod T (the period of the periodic orbit of Eq. (6) corresponds
to the length of the ring in Eq. (1)) is called the dispersion
curve. Figure 4(a) shows the dispersion curve of a solitary
pulse. The wave speed asymptotically approaches its maxi-
mum for a sufficiently large wavelength. The speed of the
pulse gradually decreases with a decrease in the wavelength,
and there is a finite minimum wavelength. A saddle-node
(SN) bifurcation occurs at the end point, where the stable and
unstable solution branches meet. The profiles of these stable
and unstable pulses are shown in Fig. 4(b). The amplitude
and propagation speed of the unstable solution are smaller
and slower than those of the stable one, respectively.

Next, we consider the dependence of the pulse velocity on
€ by performing the continuation of the corresponding peri-
odic solution of equation (6). In numerical simulations, the
reaction-diffusion equation (1) support the propagation of the
solitary excitation pulses in the parameter region 0.0<<e
<7.2058% 1073, In Fig. 5(a), the bifurcation diagram of a
solitary pulse is plotted. The lower branch corresponds to a
stable solitary pulse in fiber 1. When the coupling strength €
increases, the maximum of U, gradually increases along the
branch by increasing the subthreshold excitation in fiber 2.
The typical spatial profile of a solitary pulse in fiber 1 indi-
cated by (i) is illustrated in Fig. 5(c). As € is further in-
creased, the stable solitary pulse disappears through a SN
bifurcation at the critical value €gy,, and the solution branch
turns back slightly in the negative direction of €. The solu-
tion branch maxat,(§) increases suddenly near gy, where a
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FIG. 4. (a) Dispersion curve of the solitary pulse train in fiber 1. SN denotes the saddle-node bifurcation. The upper figure shows the
magnification in the vicinity of the turning point. The upper branch (the solid line) and the lower branch (the dotted line) correspond to the
stable and unstable traveling wave solutions, respectively. The SN threshold is given by T=11.5166. (b) The corresponding solutions on the
branch [indicated by the open crosses in (a)] are shown. The periodic solution: (i) the stable solution at =100, (ii) the solution at the SN
point, and (iii) the unstable periodic solution at 7=100. The solid line represents u;(£), while the broken line represents u,(&).

new suprathreshold excitation emerges behind the original tion does not oscillate. A sequence of images of this bifurca-
pulse in fiber 1. This emergence is related to canards, that is, tion process along the branch is shown in Fig. 5(c). It can be
a steep increase in the amplitude of oscillation in relaxation clearly observed that the amplitude of the new pulse in fiber
systems [9]. However, in this case, the bifurcation is not the 2 increases rapidly and the new suprathreshold excitation
Hopf type, but the SN type [9], and the amplitude of excita-
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FIG. 5. (a) Bifurcation diagram of the solitary pulse in fiber 1. SN denotes the saddle-node bifurcation. The solid and broken lines
correspond to stable and unstable solutions, respectively. The SN1 (SN2) threshold is given by egn; = 0.003 342 64 (egn, =0.007 130 27) for
K,=0.24. (b) Magnifications of small regions near SN1 and SN2. (c) Spatial profiles at each of the locations indicated by open crosses in (a).
The emergence of a new excitation in fiber 2 near the SN2 point is clearly shown.
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FIG. 6. (a) A magnified view of the bifurcation diagram in Fig. 5. There exist several turnback points where SN bifurcations occur. The
bulge structure grows as k, approaches k;=0.25. (b) The bulges near SN2 are plotted for x,=0.15, 0.24, and 0.245. The emergence and

development of the bulge structure are clearly shown.

appears to form an unstable phase-locked solution [see (iii)
and (iv) in Fig. 5(c)].

After the increase, the solution branch suddenly turns
back in the negative direction of € and another SN bifurca-
tion occurs at €gy;, the meeting point of the unstable phase-
locked pulses and the stable synchronized pulses. At this
point, the branch again turns back in the positive direction of
€. The upper branch [the upper solid line in Fig. 5(a)] corre-
sponds to stable synchronized pulses. Synchronized pulses
exist above egy;, but there is a time delay between the
pulses. For a given value in egy;==0.003 342 64 < e< egnp
=0.007 130 27, there simultaneously exist two stable sta-
tionary solutions, one solitary and one synchronized. The
region in which the two solutions coexist expands as «, ap-
proaches to «;=0.25.

Figure 6(a) shows a magnified view of Fig. 5(a) near the
region in which solitary and synchronized pulses coexist
(emergence of new excitation in fiber 2). The bifurcation
diagram clearly shows that there are several turnback points
where SN bifurcations occur. It is known that complex SN
bifurcation structures exist in coupled excitable elements
(ODEs) [60,61]. In Fig. 6(b), the development of the bulge at
SN2 is plotted for «,=0.15, 0.24, and 0.245. These bulges
grow as k, approaches x;=0.25, and the region in which
solitary and synchronized pulses coexist expands. As k, de-
creases, the bulge shrinks and disappears with the merging of
the SN points. However, one of the SN points, indicated by
SN3 in Fig. 6(a), exists for 0 <k, <0.25.

We investigate the bifurcation structure of a solitary pulse
propagating in fiber 2. Because the intradiffusion coefficients
are nonidentical, the bifurcation structure is different from
that of a solitary pulse in fiber 1. A solitary pulse propagating
in fiber 2 is stable for smaller interfiber coupling. As shown
in Fig. 7(a), the solution disappears via a SN bifurcation at
the critical coupling strength €gy;=0.008 116 09. After this

SN point, the solution branch turns back slightly and succes-
sive SN bifurcations follow. Here, we use the L2 norm,
which is defined as

T 2
\/ f > 1 (€) + v (€) + wié)dE;
0 i=1

a sudden increase in the L? norm is observed along the
branch after several turning points. This sudden increase in-
dicates the emergence of a new suprathreshold excitation. In
the inset of Fig. 7(a), a sequence of spatial patterns along the
solution branch is shown.

In the case of a solitary pulse in fiber 1, when we increase
€, the original pulse and a new excitation in fiber 2 form
stable synchronized pulses, as shown in Fig. 5. However, in
the case of a solitary pulse in fiber 2, the original solitary
pulse in fiber 2 and a new excitation in fiber 1 do not form
stable synchronized pulses. Instead, the successive genera-
tion of supraexcitation behind the original solitary pulse in
fiber 2 is observed though a cascade of SN bifurcations. A
sequence of images of the new excitation is shown in the
insets of Fig. 7(a). As shown in the next subsection, the SN4
bifurcation point is related to the emergence of a reentrant
wave.

B. Synchronized pulses

In this section, we investigate the bifurcation of synchro-
nized pulses. In numerical simulations, when the difference
between the intradiffusion coefficients Ax=«;—k, is small,
we find that the synchronized pulses can be in the stable state
for any € if a pair of synchronized pulses is initiated as the
initial condition [50]. Further, we observe that, beyond the
critical value of Ak, the synchronized pulses become un-
stable and split into two solitary pulses with different propa-
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FIG. 7. (a) Bifurcation diagram of a solitary pulse propagating in fiber 2. The stable solution of the solitary pulse disappears at e
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with successive turning points.

gating speeds. In order to detect whether the synchronization
is stable or not, we use the following numerical procedure:
we measure the velocities ¢; and ¢, of two pulses propagat-
ing in fibers 1 and 2, respectively. The result of ¢;=c, for
any Ak indicates that the two propagating pulses remain syn-
chronized, although their velocities decrease with an increase
in Ax. In contrast, on decreasing € gradually, we observe a
sudden dip in ¢, at a critical difference Ax,, whereas c¢; does
not change significantly. This result indicates that the syn-
chronization can no longer be sustained for Ax beyond the
threshold value Ak,. Indeed, even if synchronized pulses are
initially prepared, they become desynchronized and propa-
gate with different velocities. More precisely, after the syn-
chronized pulses are desynchronized, the propagation speeds
are no longer constant, and they oscillate quasi-periodically
in time because periodic boundary conditions are imposed.
The dependence of the critical difference Ak, on € is shown
by the filled circles in Fig. 10 below.

For a more precise observation, we compute the bifurca-
tion diagram of synchronized pulses as a function of Ak for
€=0.007 033 and 0.0071 in Fig. 8(a). The broken line in Fig.
8(a) shows the solution branch of synchronized pulses for
€=0.0071. When the coupling strength is sufficiently large,
the synchronized pulses are stable for any amount of param-
eter mismatch, i.e., they are stable for 0 <Ax=<0.25. When
the coupling strength is small, the synchronized solution dis-
appears at a certain value of Ax through a SN bifurcation.
Let us explain the change in the synchronized pulses along
the solution branch [see the thick line in Fig. 8(a)]. The
pulses on the upper solution branch near Ak=0 are almost
completely synchronized. The delay between them gradually
increases with Ak [see pulse profiles (i) in Fig. 8(b)]. When
Ak increases further, the stable synchronized state suddenly
disappears through a SN bifurcation at Ax=Axgy

=(.144 642. It is clearly observed in the bifurcation diagram
that the solution branch turns back and that the synchronized
solution does not exist for Ak> Akgy, for a small coupling
strength €=0.007033. This limiting point corresponds to the
SN1 bifurcation point in Fig. 5, where the stable synchro-
nized solution meets the unstable phase-locked solution. The
critical value Akgy; depends on the interfiber coupling
strength €, and it increases gradually with e. However, the
SN1 bifurcation point does not exist for larger values of €
>€*=0.007 033 678. This implies that beyond the critical
coupling strength €*, synchronized pulses become stable for
any 0= k,=0.25, while there is a phase delay.

The local stability properties of the periodic solutions are
described by Floquet theory [58,62]. In order to verify
whether or not there are any bifurcations associated with the
continuous spectrum, spatial discrete approximation is em-
ployed for synchronized pulses.

The time-dependent variation of the local perturbations of
the limit cycle after the evolution of each period along the
orbit is governed by the monodromy matrix, which can be
obtained as a by-product from the solution of the variational
equations after each successful convergence of a continua-
tion step. The eigenvalues of the monodromy matrix are the
Floquet multipliers and describe the growth or decay of per-
turbations of our limit cycle (the synchronized pulses). It
should be note that for a spatial domain discretized into n
grid points, the integration of the variational equations re-
quires solving a system of 8n(8n+1) coupled ODEs, which
for the problem discussed here is typically the order of
160 000.

For a given set of parameters, the condition |[\|=1 desig-
nates the bifurcation points where the synchronized pulses
change stability. For limit-cycle solutions of systems of au-
tonomous ODEs, one multiplier will always satisfy A=1 due
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FIG. 8. Bifurcation diagram for the synchronized pulses, with the thick and dotted lines representing €=0.007 033 and 0.0071, respec-
tively. SN1 denotes the saddle-node bifurcation (the collision of stable synchronized pulses and unstable phase-locked pulses solutions),
which is the same SN bifurcation labeled SN1 in Fig. 5. Axgy is 0.1446 42 for €=0.007 033. The critical value of Ax increases gradually
with €. The SN1 bifurcation point disappears at €*=0.007 033 75. The lower branches correspond to unstable phase-locked solutions, while
the upper branches correspond to stable solutions with a very small phase delay. (i)—(iii) in (b) show the images of the stable and unstable

solutions at the open crosses on the branch shown in (a).

to the time translational invariance of the periodic orbit.

Figure 9 shows that typical spectra of the stable and un-
stable synchronized solutions for e=0.015. The details of the
spectrum transformation are as follows. Initially, the spec-
trum of stable synchronized pulses contains six isolated dis-
crete complex conjugate eigenvalues, which does not affect
the stability of the synchronized pulses, as observed in the
bifurcation diagram. On decreasing Ae, we observe that
stable synchronized pulses are destabilized via SN bifurca-
tion, which corresponds to the bifurcation indicated by SN1
in Fig. 8. In the course of the SN1 bifurcation, the value of
an isolated real multiplier increases gradually, and the asso-
ciated Poincaré map has a Floquet multiplier 1 at the bifur-
cation point [see Fig. 9(b)]. Finally, the multiplier crosses the
unit circle, that is, the synchronized pulses are destabilized
through the SN bifurcations.

On (e,Ak) plane, we trace the SN1 (SN2) bifurcation
point, which corresponds to the merging of the stable solitary
pulse and the unstable phase-locked pulses (the merging of

pulses). The solid line (dashed line) in Fig. 10 is the bifur-
cation curve corresponding to SN1 (SN2) in Fig. 5. It can be
seen that a pair of SN bifurcation curves emerges through a
codimension-2 cusp singularity. When the coupling strength
€ increases beyond the value where the cusp singularity oc-
curs, the synchronized pulses are stable for all 0<Ax
=<(.25. Although SN1 and SN2 bifurcations do not exist
beyond Ax*=0.147786 because they disappear via the
codimension-2 cusp singularity, SN3 bifurcation exists for all
Ak, as shown by the thin broken line in Fig. 10. These results
are consistent with those obtained in direct numerical simu-
lations.

We also trace the SN4 bifurcation point on the (€,Ax)
plane. The dot-dashed line in Fig. 10 shows the SN4 bifur-
cation curve, where a stable solitary pulse in fiber 2 disap-
pears via an SN bifurcation. When we increase € across the
SN4 bifurcation curve, the solitary pulse propagating in fiber
2 is destabilized and a reentrant wave is formed in numerical
simulations. The dotted region in Fig. 10 shows the param-

unstable phase-locked pulses and stable synchronized eter region where a stable reentrant wave is observed. Al-
(a) (b) ()
1 P 1 U N 1 —
/ N\ / N\ / N\
/ o \ / x \ / * \
= / \ ~ [ x \ - [ * \
= . | = ) | = [ 2 |
£ O B ] g0 / g 0 \ ]
= \ ; ) = \ / = \ ; /
\ ’/ \\ < /// \\ x //
. S AN / . S/
-1 S~ -1 ~— -1 —~—
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FIG. 9. (Color online) Floquet multipliers for the synchronized pulses with €=0.015. The pictures show the typical change in the
spectrum along the solution branch. (a) Ax=0.05, stable synchronized pulses; (b) Ax=0.14, stable synchronized pulses in the vicinity of the
SN bifurcation; and (c) Ax=0.144 552, unstable synchronized pulses.
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FIG. 10. (Color online) SN bifurcation curves are plotted on
(€,Ak). The thick solid line represents the SN2 bifurcation curve
corresponding to the merging of the stable solitary pulse and the
unstable phase-locked pulses (SN2 in Fig. 5). The thick broken line
shows the SN1 curve corresponding to the merging of the unstable
phase-locked pulses and stable synchronized pulses (SN1 in Fig. 5).
These curves emerge through a codimension-2 cusp singularity
(e*,Ax*)=(0.007 033 678,0.147 786) involving a pair of two SN
bifurcation curves. The circles show numerically obtained critical
differences between intradiffusion coefficients Ax. The thin broken
line shows the SN3 curve (see Fig. 6). The dot-dashed line repre-
sents the SN4 curve, at which the solitary pulse in fiber 2 disap-
pears. The parameter space is divided into the following four re-
gions by the existence of solution types: (S1, S2) solitary pulses in
fiber 1 (S1) and in fiber 2 (S2) exist; (S1, S2, Sync) S1, S2, and
synchronized pulses (Sync) exist; (S2, Sync) S2 and Sync solutions
exist; (RW, Sync) reentrant wave (RW) and synchronized-pulse so-
lutions exist. The reentrant waves are numerically stable in the dot-
ted region.

though the dotted area and the SN4 curve represent different
bifurcation structures, i.e., the former corresponds to a reen-
trant wave and the later corresponds to a solitary pulse in
fiber 2, the two curves are indistinguishable. This agreement
of these bifurcation structures comes from the necessary con-
ditions that a reentrant wave is stable, i.e., both solitary
pulses propagating in fibers 1 and 2 are unstable and syn-
chronized pulses are stable. In Fig. 7, we see that successive
generations of new supraexcitations are observed along the
solution branch beyond the SN4 point. This cascade of new
excitations might be related to a reentrant-wave solution.
However, because a reentrant wave is not a periodic solution
of the traveling wave ODEs, further study of the direct bi-
furcation analysis of a reentrant wave is required to reveal
the relation.

In the reentrant-wave phase, pulses are generated with a
characteristic period Trw. The characteristic period of a re-
entrant wave is calculated as a function of €, and it is found
to follow a power law with an exponent of 1/2, i.e., Trwy
~ | €= €sna| ™" near the transition point egy,. This result im-
plies that SN bifurcation is the onset mechanism of the reen-

PHYSICAL REVIEW E 78, 056208 (2008)

trant wave. On the other hand, stable synchronized pulses are
desynchronize across the SN1 and SN3 bifurcation curves on
decreasing € gradually. In numerical simulations, these de-
synchronized pulses propagate with different speeds, and the
distance between them increases. However, because periodic
boundary conditions are employed, these desynchronized
pulses finally form phase-locked pulses. This type of phase-
locked pulse was not investigated in this study.

V. SUMMARY

We have investigated the dynamics and bifurcation struc-
tures in mutually coupled excitable fibers. Solitary, synchro-
nized, and reentrant waves have been analyzed.

With an increase in the coupling strength €, a solitary
pulse propagating in fiber 1 becomes unstable through a SN
bifurcation (SN2). At the SN2 bifurcation point, the solution
branch turns back, and a new excitation in fiber 2 is suddenly
formed. This type of bifurcation is similar to a “canard solu-
tion,” i.e., a steep increase in the amplitude of oscillation in
relaxation systems. However, in this case, the bifurcation is
not the Hopf type, but the SN type [9]. A canard excitation
emerges in fiber 2 and becomes phase locked with the origi-
nal solitary pulse in fiber 1. This phase locked solution is
unstable, but it becomes stable via a SN bifurcation (SN1)
after several turnback points near the SN3 bifurcation point
(see Figs. 5 and 6). At the SN1 point, the branch turns in the
positive direction of e. The phase difference between the
stable pulse-locked pulses continues to decrease until they
become completely synchronized as e increases. In other
words, by decreasing the coupling strength between fibers,
the phase difference between the pulses gradually increases
and the synchronized solution disappears through a SN bi-
furcation (SN1). Further, when the coupling coefficient be-
tween these SN bifurcation points is egy; < €< €y, hyster-
esis is observed, i.e., both a solitary pulse and synchronized
pulses coexist.

The solution of a solitary pulse propagating in fiber 2
disappears via a SN bifurcation (SN4) when € reaches the
critical coupling strength egy4. The solution branch turns
back in the negative direction of € at the SN4 point, and
successive SN bifurcations occur. The L? norm of the solu-
tion suddenly increases with successive SN bifurcations.
This sudden increase indicates the generation of supraexcita-
tion in fiber 1. Although this bifurcation structure, i.e., the
successive generations of supraexcitation, is obtained by
analyzing traveling wave ODEs, the Ax dependence of the
critical coupling strength, beyond which a reentrant wave
appears, is almost identical to the SN4 curve. This agreement
comes from the fact that the SN4 curve is the critical curve
on which the necessary conditions for the existence of a
stable reentrant wave hold, i.e., a reentrant wave can be
stable only when the solitary pulses in fiber 1 and fiber 2 are
unstable and the synchronized pulses are stable. A bifurca-
tion structure such as a cascade of excitations obtained by the
analysis of traveling wave ODEs might be related to a
reentrant-wave solution.

Synchronized pulses are also destabilized through a SN
bifurcation by increasing the difference between the intrafi-
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ber diffusion coefficients when the coupling between the fi-
bers is weak. However, synchronized pulses are stable for
0=k,=<0.25 beyond the critical coupling strength €*
=(.007 033 678. The critical coupling strength originates
from the emergence of two SN curves in the (e,Ax) param-
eter space via a codimension-2 cusp singularity.

These complex bifurcation structures arise from the inter-
action between fibers with different intradiffusion coeffi-
cients, while only a traveling-pulse solution exists in a single
excitable fiber. Simple excitable fibers, which have FHN-
type reaction kinetics, exhibit a different, varied dynamics
via a mutual interaction between pulses in laterally coupled

PHYSICAL REVIEW E 78, 056208 (2008)

fibers since one fiber acts as “hidden variables” for the other
fiber.

ACKNOWLEDGMENTS

This study has been partially supported by Grant-in-Aid
No. 17022012 for Scientific Research on Priority Areas:
“System Study on Higher-Order Brain Functions” from the
Ministry of Education, Culture, Sports, Science and Technol-
ogy of Japan, and by the Ministry of Education, Science,
Sports and Culture, Grant-in-Aid for Scientific Research No.
(19540390).

[1] Synchronization: A Universal Concept in Nonlinear Sciences,
edited by J. Kurths, A. Pikovsky, and M. Rosenblum (Cam-
bridge University Press, Cambridge, U.K., 2001).

[2] S. H. Strogatz, Physica D 143, 1 (2000).

[3] G. Bub, A. Shrier, and L. Glass, Phys. Rev. Lett. 88, 058101
(2002).

[4] M. Courtemanche, L. Glass, and J. P. Keener, Phys. Rev. Lett.
70, 2182 (1993).

[5] T. Nomura and L. Glass, Phys. Rev. E 53, 6353 (1996).

[6] L. Glass and M. E. Josephson, Phys. Rev. Lett. 75, 2059
(1995).

[7] A. L. Hodgkin and A. F. Huxley, J. Physiol. (London) 117,
500 (1952).

[8] I. Segev and W. Rall, Trends Neurosci. 21, 453 (1998).

[9] E. M. Izhikevich, Int. J. Bifurcation Chaos Appl. Sci. Eng. 10,
1171 (2000).

[10] F. Siegert and C. Weijer, J. Cell. Sci. 93, 325 (1989).

[11] E. Pélsson and E. C. Cox, Proc. Natl. Acad. Sci. U.S.A. 93,
1151 (1996).

[12] J. Christoph, M. Eiswirth, N. Hartmann, R. Imbihl, 1. Kevreki-
dis, and M. Bir, Phys. Rev. Lett. 82, 1586 (1999).

[13] M. P. Cox, G. Ertl, and R. Imbihl, Phys. Rev. Lett. 54, 1725
(1985).

[14] H. H. Rotermund, W. Engel, M. Kordesch, and G. Ertl, Nature
(London) 343, 355 (1990).

[15] S. Jakubith, H. H. Rotermund, W. Engel, A. von Oertzen, and
G. Ertl, Phys. Rev. Lett. 65, 3013 (1990).

[16] N. Manz, S. Muller, and O. Steinbock, J. Phys. Chem. A 104,
5895 (2000).

[17] C. T. Hamik and O. Steinbock, Phys. Rev. E 65, 046224
(2002).

[18] M. Giudici, C. Green, G. Giacomelli, U. Nespolo, and J. R.
Tredicce, Phys. Rev. E 55, 6414 (1997).

[19] M. C. Eguia and G. B. Mindlin, Phys. Rev. E 60, 1551 (1999).

[20] J. M. Méndez, J. Aliaga, and G. B. Mindlin, Phys. Rev. E 71,
026231 (2005).

[21] A. Zaikin and A. M. Zhabotinsky, Nature (London) 225, 535
(1970).

[22] A. T. Winfree, Science 175, 634 (1972).

[23] G. Extl, Science 254, 1750 (1991).

[24] L. Yang and 1. R. Epstein, Phys. Rev. Lett. 90, 178303 (2003).

[25] M. Hildebrand, J. Cui, E. Mihaliuk, J. Wang, and K. Show-
alter, Phys. Rev. E 68, 026205 (2003).

[26] R. Neubecker and B. Giitlich, Phys. Rev. Lett. 92, 154101
(2004).

[27] J. Garcia-Ojalvo and R. Roy, Phys. Rev. Lett. 86, 5204 (2001).

[28] H. Agmon-Snir, C. E. Carr, and J. Rinzel, Nature (London)
393, 268 (1998).

[29] C. Koch and 1. Segev, Nat. Neurosci. Suppl. 3, 1171 (2000).

[30] I. Segev and E. Schneidman, J. Physiol. (Paris) 93, 263
(1999).

[31] I. Segev and M. London, Science 290, 744 (2000).

[32] T. Yanagita, Phys. Rev. E 76, 056215 (2007).

[33] A. Arvanitaki, J. Neurophysiol. 5, 89 (1942).

[34] B. Katz and O. Schmitt, J. Physiol. (London) 97, 471 (1940).

[35] J. Jefferys, Physiol. Rev. 75, 689 (1995).

[36] Clinical Cardiac Electrophysiology: Techniques and Interpre-
tation, edited by M. E. Josephson, 2nd ed. (Lea & Febiger,
Philadelphia, 1993).

[37] Cardiac Arrhythmias: An Integrated Approach for the Clini-
cian, edited by E. N. Prystowsky and G. J. Klein, (McGraw-
Hill, New York, 1994).

[38] Y. Nagai, H. Gonzdlez, A. Shrier, and L. Glass, Phys. Rev.
Lett. 84, 4248 (2000).

[39] T. Yanagita, Y. Nishiura, and R. Kobayashi, Phys. Rev. E 71,
036226 (2005).

[40] D. D. Streeter, Jr., H. M. Spotnitz, D. P. Patel, J. Ross, Jr., and
E. H. Sonnenblick, Circ. Res. 24, 339 (1969).

[41] A. T. Winfree, Chaos 8, 1 (1998).

[42]]. C. Neu and W. Krassowska, Crit. Rev. Biomed. Eng. 21,
137 (1993).

[43] J. P. Keener, SIAM J. Appl. Math. 49, 210 (1989).

[44] M. A. Allessie, F. I. M. Bonke, and F. J. G. Schopman, Circ.
Res. 33, 54 (1973).

[45] V. 1. Krinsky, Pharmacol. Ther. [B] 3, 539 (1978).

[46] D. Debanne, Nat. Rev. Neurosci. 5, 304 (2004).

[47] G. Sohl, S. Maxeiner, and K. Willecke, Nat. Rev. Neurosci. 6,
191 (2005).

[48] B. Katz and O. H. Schmitt, J. Physiol. (London) 100, 369
(1942).

[49] J. Kocsis, J. Ruiz, and K. Cummins, Exp. Brain Res. 100, 151
(1982).

[50] H. Suetani, T. Yanagita, and K. Aihara, Int. J. Bifurcation
Chaos Appl. Sci. Eng. 18, 2289 (2008).

[51] V. N. Biktashev and M. A. Tsyganov, Proc. R. Soc. London,
Ser. A 461, 3711 (2005).

056208-10



BIFURCATION ANALYSIS OF SOLITARY AND...

[52] J. H. E. Cartwright, E. Hernandez-Garcia, and O. Piro, Phys.
Rev. Lett. 79, 527 (1997).

[53] A. Panfilov and A. Holden, Phys. Lett. A 147, 463 (1990).

[54] A. Panfilov and B. Basiev, Chaos, Solitons Fractals 1, 119
(1991).

[55] A. Palmer, J. Brindley, and A. Holden, Bull. Math. Biol. 54,
1039 (1992).

[56] I. P. Marifio, M. de Castro Rodriguez, V. Pérez-Muiiuzuri, M.
Goémez-Gesteira, L. O. Chua, and V. Pérez-Villar, IEEE Trans.
Circuits Syst., I: Fundam. Theory Appl. 42, 665 (1995).

[57] M. Cross and P. Hohenberg, Rev. Mod. Phys. 65, 851 (1993).

PHYSICAL REVIEW E 78, 056208 (2008)

[58] R. Seydel, Practical Bifurcation and Stability Analysis
(Springer, New York, 1994).

[59] E. J. Doedel, R. C. Paffenroth, A. R. Champneys, T. F. Fair-
grieve, Y. A. Kuznetsov, B. Sandstede, and X. Wang, Caltech
Technical Report, 2001 (unpublished).

[60] T. Yanagita, T. Ichinomiya, and Y. Oyama, Phys. Rev. E 72,
056218 (2005).

[61] Y. Oyama, T. Yanagita, and T. Ichinomiya, Prog. Theor. Phys.
Suppl. 161, 389 (2006).

[62] Elementary Stability and Bifurcation Theory, edited by G.
Tooss and D. Joseph, 2nd ed. (Springer, New York, 1997).

056208-11



