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Multifractality of random walks in the theory of vehicular traffic
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We investigate the origin of the experimentally observed multifractal scaling of vehicular traffic flows by
studying a hydrodynamic model of traffic. We first extend and apply the formalism of generalized Hurst
exponents H(g) to the case of random walkers that not only diffuse but rather also undergo nonlinear convec-
tion due to interactions with other walkers. We recover analytically, as expected, that H(g) equals 1/2 for a
single random walker starting at the origin whose probability density function satisfies Burger’s equation.
Despite this result for a single walker, we find that for a collection of nonlinearly convecting diffusive particles,
transient effects can give rise to multiscaling at given time scales for many initial conditions. In the Lighthill-
Whitham-Richards hydrodynamic model of traffic, this multiscaling effect becomes more prominent for
smaller diffusion constants and larger speed limits. We discuss the relevance of these findings for the realistic
scenario of traffic that flows from small roads to large highways and vice versa, where transient effects can be

expected to play a significant role.
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I. INTRODUCTION

Numerous studies designed to understand traffic problems
[1-9] have led to significant advances in the quantitative
description of self-propelled particles [10]. As is well known,
the kinematics of particles can be approached on the one
hand from the perspective of Langevin equations for the tra-
jectories and on the other hand in terms of hydrodynamic
equations for the density of particles. Generalized Hurst ex-
ponents and local Holder exponents quantify the scaling
properties of random walks [11-17]. Empirical studies of
traffic flow [6-9] have shown multifractal rather than monof-
ractal scaling, i.e., a single scaling exponent does not suffice
for quantifying the scaling. The physical origin of this mul-
tifractal scaling is interesting to explore. Here we investigate
multifractality and multiscaling from the perspective of the
Lighthill-Whitham-Richards hydrodynamic model of traffic
flow [3].

Our approach involves investigating the “bridge” linking
the microscopic description of traffic in terms of particle tra-
jectories with the macroscopic description in terms of vis-
cous fluid flows. Given the trajectory of a particle, we note
that the “roughness” or degree of differentiability of the mi-
croscopic trajectories bears a well-understood relation to the
spread or evolution of the probability density function for the
corresponding partial differential equation. The scaling of the
mean squared displacement (x?) with time ¢ of a fractal tra-
jectory defines the Hurst exponent H via the relation (x%)
~1*1 [11-13,16,17]. The exponent H uniquely defines the
scaling of higher moments of the displacement for monof-
ractal random walks. In contrast, multifractal [12,13,15-17]
random walks have nonunique scaling exponents. Specifi-
cally, one Hurst exponent does not suffice to characterize the
scaling of other moments of the displacement of the walker,
e.g., the kurtosis. Holder exponents quantify the number of
continuous derivatives that exist along a trajectory and bear a
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well-known relation to Hurst exponents [12,13,15-17]. Since
Hurst exponents depend on averaged quantities, hence only
on the probability density function for the random walker,
this fact motivates us to study the generalized Hurst and
local Holder exponents in the context of nonlinear
convective-diffusive hydrodynamic equations governing ve-
hicle densities in traffic flows. The term “multifractal” refers
usually to trajectories, so we also use the more general term
“multiscaling” in other contexts.

Hydrodynamic models of traffic describe the vehicle ki-
nematics in terms of a spatial vehicle density field p(x,#) and
a velocity field v(x,7). The conservation of the number of
vehicles may be expressed by a continuity equation

%» + g =0, (1)
ot ox

with flux j=pv—-DVp. The Fickian term is introduced to
account for external noise, i.e., the resultant of all random
fluctuations in road conditions, drivers’ response to stimuli,
changes in wind, engine power, braking variability, etc. In
independent pioneering studies, Lighthill and Whitham on
the one hand and Richards on the other proposed a model of
traffic flow [3] that assumes that the velocity v depends only
on the local traffic density:

v(x,1) =v(p(x,1)). (2)

We refer to this model henceforth as the Lighthill-Whitham-
Richards (LWR) model. The model can be linearly mapped
onto Burger’s equation [18] under certain conditions. Being
continuity equations, the Burger’s and LWR equations con-
serve the convected-diffused quantity. This model was the
first macroscopic (i.e., hydrodynamic) traffic model of the
behavior of microscopic self-propelled particles. Although
the model has since been considerably improved, it is still
used in on-line control applications. It is particularly suited
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for the purpose of our investigation due to its relationship
with Burger’s equation.

We briefly review Burger’s equation [18], since it plays a
fundamental role in nonlinear convective problems ranging
from gas dynamics [19,20] and fluid mechanics [18,21-23]
to traffic flow [1,3-5]. It appears naturally whenever the ve-
locity of a convected quantity itself depends linearly on the
convected quantity. Shocks and discontinuities are often de-
scribed in terms of the so-called inviscid Burger’s equation,
as the prototypical nonlinear hyperbolic partial differential
equation [18]. For example, the close relation of the ubiqui-
tous Kardar-Parisi-Zhang (KPZ) equation to the Burger’s
equation is clear from the fact that, if noise is omitted from
the former, the spatial derivative of the KPZ observable
obeys, exactly, the Burger’s equation [16,24]. Similarly,
Burger’s turbulence [22,23] has become a benchmark for nu-
merical studies of hydrodynamics.

The standard (parabolic viscous) Burger’s equation is a
nonlinear convection-diffusion equation, the nonlinearity re-
siding in the convective term. In one dimension this field
equation takes the form

u ou FPu
= 4+u==D=, (3)
ot ox ox

for the field u(x,), where D is the diffusion constant. One of
the advantages of the viscous Burger’s equation is that it can
be mapped via the Cole-Hopf transformation [25],

u(x,t)=— 2Di In ¢(x,1), (4)
ox

onto the well-known and exactly solvable linear diffusion
equation,

a® = ®
The Cole-Hopf transformation leads to the general solution
oo ! 2 ’
— — 1 x
J dx' exp —be=x) —— | dx"uy(x")
d —o 4Dt 2D J,
u=-2D—1In

ox V4Dt

(6)

where ug(x)=u(x,0) is the initial condition.

In this investigation, we apply the formalism of Hurst and
Holder exponents to study solutions of Burger’s equation and
the LWR model. In Sec. II we briefly review the formalism
of the Hurst and Holder exponents. The application of these
concepts and methods to study random walks governed by
linear Fokker-Planck equations is straightforward; however,
for nonlinear equations the formalism must be carefully gen-
eralized. Because the principle of superposition breaks down
for nonlinear systems, initial conditions become important;
propagators or Green’s functions do not exist. In Sec. III we
consider J-function initial conditions for Burger’s equation.
We show that a random walker starting at the origin whose
probability density satisfies an equation that can be linearly
mapped onto Burger’s equation leads to normal monofractal
diffusion with H=1/2 (but with a non-Gaussian probability
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density). The diffusion part of Burger’s equation ensures this
behavior. In Sec. IV we consider Burger’s equation with
other initial conditions and show that they can lead to tran-
sient multiscaling. In Sec. V we study the Lighthill-
Whitham-Richards hydrodynamic model of traffic. The dif-
fusion constant, the speed limit, and even drivers’ reaction
time affect the multiscaling. Our results lead to an empiri-
cally verifiable prediction: traffic moving from small to large
roads becomes locally and temporarily more multifractal
near the junction.

II. FORMALISM
A. Local Holder and generalized Hurst exponents

A number of methods can be applied to quantify different
aspects of anomalous diffusion. They include continuous-
time random walks [26,27], generalized master equations
[28], and a variety of other non-Markovian as well as Mar-
kovian (subdiffusive and superdiffusive) stochastic ap-
proaches, e.g., those with time-dependent diffusion con-
stants, exponential memory, power law memory, and
nonlocal effects in space and time [29]. Another formalism,
viz. fractional partial differential equations [30,31], can de-
scribe anomalous diffusion [31] in the large-time limit.

The particular approach we choose in this paper is the
empirically motivated formalism of generalized Hurst expo-
nents. Hurst exponents calculated from the propagator for a
random walker not only quantify the type of diffusion, but in
their generalized form they allow the estimation via a Leg-
endre transformation of the Holder exponents [15,17] for the
trajectories. The local Holder exponent for a random walk
describes the degree of differentiability along the trajectories.
Moreover, this formalism allows us to study the multifractal
singularity spectra, i.e., the fractal or Hausdorff dimension
f(a@) of the subset of the trajectories with Holder exponent «
[12,13,16,17].

We briefly describe the formalism and methodology. Fol-
lowing convention [5,16,17], we define the generalized Hurst
exponent H(g) for a stationary stochastic process in terms of
the scaling of the absolute moments of the density:

x=(x), (7)

M (1) = (|x—x]) ~ 199, (8)

where the averages are taken over the propagator or the prob-
ability density function for a single random walker. Normal
diffusion corresponds to H(g)=H=1/2, whereas anomalous
diffusion corresponds to all other cases.

Moreover, we can further generalize the concept to allow
a time or scale dependence [32-34], such that H=H(q,1):

<|x _ﬂq> ~ 1aH(q.0) 9)

This generalization allows the treatment of phenomena
whose behavior depends on the time scale being studied.
Consider, as an illustrative example, the telegrapher’s equa-
tion [35]. The mean squared displacement grows quadrati-
cally for small times and then becomes linear for larger
times. So the behavior is ballistic at small times, H(qg,1)= 1.
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However, it is diffusive at large times, i.e., H(g,t)—1/2.
Hence, this time (or scale) dependence is a restatement of the
well-known fact that the diffusive properties (or equivalently,
the roughness) of the trajectories do in fact depend on the
scale at which one studies them.

The generalized Hurst exponent H(g) bears a relation to
the local Holder exponent « via the following Legendre
transform:

a=lgHlg) - 1], (10)
q

fla)=qa-[qH(q) - 1]. (11)

Here, f gives the Hausdorff or fractal dimension of the subset
of the series characterized by the Holder exponent «. The
literature also refers to «a as the singularity strength
[5,15,17]. The value of « represents a measure of the number
of continuous derivatives that the underlying trajectory pos-
sesses. The singularity spectrum of monofractal random
walks will show a unique Holder exponent, while a multi-
fractal series will show a range of values for a.

Here we use a further generalization of the concept of the
singularity spectrum that relaxes the condition of taking the
small scale limit to compute a. Instead, we follow an empiri-
cally motivated approach that takes into account the fact that
one cannot experimentally observe arbitrarily small or large
scales of time or space. Empirically estimated multifractal
spectra, Hurst exponents and Holder exponents do in fact all
depend on the range of scales being investigated [32-34].

Finally, note that monofractality does not imply H=1/2;
for example, fractional Brownian motion is monofractal with
H(g)=H, but the diffusion is anomalous, i.e., H# 1/2 [12].

B. Langevin, Fokker-Planck and hydrodynamic
perspectives

In this work we estimate the Hurst exponents not from
actual trajectories but rather by inferring them from the be-
havior of the density distribution p(x,7). Realizing that the
nonlinearity of hydrodynamic traffic models precludes
propagators, we briefly discuss, in a larger context [36], the
passage from the Langevin to the Fokker-Planck descrip-
tions.

If the nonstochastic forces that act on N identical interact-
ing random walkers depend only on the positions of the other
walkers, then we can always express the trajectories via
coupled Langevin equations:

X=F{x}) + &), (12)

where F; represent smooth forces (which can depend on the
positions) and & the noise. The N-particle probability density
function P(x;) will then satisfy a linear Fokker-Planck equa-
tion of the form

P(xi) =LP(xi), (13)

which is linear in that the operator L does not depend on P.
This is a crucial point: the standard methods of deriving
Fokker-Planck equations from Langevin equations lead al-
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ways to linear equations. In this context, Burger’s equation,
if interpreted similarly to a Fokker-Planck equation, is differ-
ent since its L does depend on P.

The situation can be understood through a comparison to
the Boltzmann equation for gases, obeyed by the one-
molecule distribution function, which is nonlinear, in con-
trast to the underlying linear Liouville equation for the
N-molecule Liouville density. In the absence of intermolecu-
lar interactions, the Boltzmann equation would be trivially
linear. If the gas molecules were to interact with a fixed
system of random scatterers, the Boltzmann equation would
be nontrivial but still linear. The standard manner of applying
Hurst and Holder exponents would work here. If intermo-
lecular interactions were turned on, however, nonlinearity
would enter immediately, making unavailable superposition
and propagator analysis.

This means that we need here a method that generalizes
and extends the formalism of Hurst exponents to nonlinear
convective-diffusive equations. We recall the standard man-
ner in which the Hurst exponent H=H(2) is usually obtained
from the behavior of the mean squared displacement for lin-
ear equations. In terms of the propagator or the Green func-
tion ¢(x,xy,t), the Hurst exponent is given by the scaling
behavior of

f f dx dxg(x = x0) 2 (x,x0,1) p(x0),

which, for a translationally invariant (homogeneous) system
such as the one under consideration in this paper, reduces to

<x2>5=fdxx21//(x,t) (14)

because the propagator is a function of the difference x—x,.
We use the suffix & in the left-hand side of Eq. (14) to em-
phasize that the (x?) used here can be considered to be the
one calculated for an initially localized initial condition
po(xg) = 8(x). This can also be used for a collection of many
random walkers provided they are noninteracting among
themselves: the initial density p is irrelevant in a linear sys-
tem of noninteracting particles.

However, when the particles interact such that the density
p satisfies a nonlinear equation, the nonlinearity prevents us
from making use of

©

dxopo(xo) Y(x = xo,1),

—o0

plx,1) =

which is no longer valid. The most natural generalization to
be used for an extended approach of Hurst exponents is to
compute (x?),, by substituting x, with the center x, of the
distribution at time #=0:

<x2>p0 = J dx(x - -x_O)zp(x’ts pO)’ (15)

where p now depends nonlinearly on p,. The crucial point to
notice is that we can no longer expect (x?) o0 (0 remain inde-
pendent of p,. The same holds true for other moments {|x|%).
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In this context, multiscaling of solutions to nonlinear
convective-diffusive equations has a clear interpretation. If p
“widens” but retains the same functional form (under rescal-
ings), then the variance (x*)—(x)? alone suffices to describe
the diffusion, i.e., H(g)=H. On the other hand, if the shape
or functional form of p changes, then a single Hurst exponent
is not sufficient to describe the scaling. The interpretation is
thus identical to what is well known for propagators of linear
equations. The main difference is that we can no longer ig-
nore initial conditions.

III. RANDOM WALK STARTING AT THE ORIGIN
SATISFYING BURGER’S EQUATION

Consider a single random walker starting at the origin
whose probability density function p(x,?) evolves according
to Burger’s equation, i.e., p(x,f)=u(x,). The solution of Eq.
(1) when the initial condition is a & function centered around
the origin i.e., u(x,t=0)=A8x), is

4D ( ("2~ 1) X 1ADI )
u(x,r)=\/— )
t 1+eA/2D+(l—eA/ZD)qb(x/\r@)

(16)

Here ¢ is the error function.

Noting that u(x,?) is of the form u(x,t)=n(t)g(x*/t), we
can easily show that (x*")~"; hence H(q)=1/2 for all q.
Similarly, we can show straightforwardly that this result ex-
tends to all cases where p(x,t)=F[u(x,r)] where F is some
function. In all such cases the underlying random walk tra-
jectory is monofractal with H=1/2 [despite p(x,t) not being
Gaussian].

Notice that if we interpret u(x,7) not as the probability
density function, but rather as the density p(x,) for a collec-
tion of particles, we obtain the same result, H(g)=1/2, for
the S-function initial condition py(x)=4&(x). In this context,
the LWR model does not provide information about the
single-particle probability density function, rendering impos-
sible the investigation of trajectories of a single vehicle. Yet
we can still reach the conclusion that H(g)=1/2 for the in-
dividual trajectories, due to the special nature of the
S-function initial condition. Although u(x,7) in Eq. (16) is
not a propagator, it shares certain similarities.

This monofractal normal diffusion for the S-function ini-
tial condition is due to the relation, via the Cole-Hopf trans-
formation, to the diffusion equation and to the fact that, in
multifractal random walks, the probability density function
changes shape (i.e., its functional form), rather than just wid-
ening as time evolves. An important point to note is that, for
large enough times, solutions with any initial condition with
compact support will converge asymptotically to an identical
functional form. This limiting functional form is none other
than Eq. (16). This convergence guarantees H(g)=1/2 for
large enough times. Another way of stating the same fact is
that the diffusion term in the Burger’s equation containing
the Laplacian operator dominates over the nonlinear convec-
tion. As the particles diffuse, the peak local densities
decrease—thereby weakening the nonlinear convection that
is proportional to the local densities.
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FIG. 1. (Color online) Illustrative examples of solutions of the
Burger’s equation at successive times where the initial condition is
(a) a & function at the origin and (b) a square pulse of unit width.

IV. BURGER’S EQUATION: DEPENDENCE ON INITIAL
CONDITIONS

We can expect that for different initial conditions the time
necessary to dissipate (initial) structures may be sufficiently
large so as to allow multiscaling at given time scales. To
illustrate this point we study the solution of the Burger’s
equation when the initial condition corresponds to a square
pulse function of the form

0, .X<Ll,
M(X,IZO) = f’ Ll <x< LZ» (17)
O, L2<X.

The solution is found to be

fx o (Ly=x+f12)/2D
M) = L) + ST (1 — (L) 4 x I
(18)
where
Li—x
P(L) = ¢( VT;»)’ (19)
B (L x+ft _ Li—x+ft
x=x(x,1)= ¢< JaD: ) ¢< JaDr )7 (20)

and ¢(x) is the well-known error function erf(x).

Figure 1 shows the time evolution of solutions to the
Burger’s equation for two initial conditions: in Fig. 1(a) a &
function centered at the origin and in Fig. 1(b) a square pulse
also centered at the origin. Figure 2 shows the Hurst expo-
nents calculated from Eq. (9). For the & function, we find that
H(g)=1/2 for all ¢, as expected from Eq. (16). In contrast,
we see multiscaling behavior for the square pulse. Figure
2(b) shows this multiscaling more clearly: for the square
pulse, H(g) increases with g.

Figure 3 shows how the solutions corresponding to the
two initial conditions behave under rescalings of the form
u— /Uy (f), x— N\x, where \ is some dilation factor and
Upax 1 the maximum or peak value of u. We can see in Fig.
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FIG. 2. Generalized Hurst exponents H(g) estimated for
S-function and square pulse initial conditions. They are shown in
(a) directly and in (b) after subtracting the initial value H(g=1/2).
The Hurst exponents for the 5-function initial condition not only are
closer to the theoretical value for random walks, H=1/2, but they
do not vary with g. In contrast, (b) shows multiscaling behavior for
the square pulse initial condition. We have used a value of the
diffusion constant D=0.04 (here and elsewhere in the paper we
express D in arbitrary units) and estimated H(g) for 3<In¢=<3.2.

04 X
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FIG. 3. (Color online) Rescaled plots of the data shown in Fig.
1 (see text). Notice that the S-function initial condition leads to a
solution that maintains the same functional shape (a). In contrast,
the square pulse deforms and does not retain the same functional
form (b). The data collapse seen for the & function does not happens
for the square pulse initial condition except for relatively large time
scales. These shape deformation effects lead to multiscaling at small
enough time scales.
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FIG. 4. (Color online) Illustrative examples of solutions of the
LWR model of traffic flow using Eq. (21). Plots show the vehicle
density at successive times for (a) smaller diffusion constant D
=0.04 and (b) larger diffusion constant D=0.2, for identical Gauss-
ian initial conditions (dashed line) with p;=1, vy=1. For small dif-
fusion constants, the nonlinear effects of velocity-dependent con-
vection become more prominent and hence more important.

3(a) that the solutions corresponding to the initial & function
rescale, whereas we find no data collapse for the solutions
corresponding to the initial square pulse, Fig. 3(b). As men-
tioned earlier, a prerequisite for multifractality and multiscal-
ing is that the density should not merely rescale (or widen)
but must deform and change its functional form, as seen for
the square pulse.

The above findings demonstrate that nonlinear convection
can lead to transient multiscaling. In what follows, we study
this phenomenon in a specific physical system of self-
propelled particles that in certain circumstances can be
mapped to a Burger’s equation.

V. MULTISCALING ANALYSIS OF THE LWR MODEL

In this section we analyze the scaling of the solutions of
LWR model. A popular choice [37] for v, based on experi-
mental observations is

p(x,t)), e

v(x,f) = v0<1 -

Pj
where v is the maximum or free flow speed and p; repre-
sents the critical jam density. The free flow speed is the
speed at which a single vehicle moves in an otherwise empty
road. The jam density is the density at which the traffic stops
completely. For a Gaussian initial condition, it is much easier
to find the solutions numerically in practice. In all subse-
quent figures, the solutions are numerically evolved with a
time discretization step (i.e., increment) of Ar=0.005. Figure
4 shows how the LWR model behaves, with more dense
regions of traffic moving more slowly than lower-density
regions.

A. Dependence on the diffusion constant

One can show that the LWR model yields a Burger’s
equation,
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FIG. 5. (Color online) Generalized Hurst exponents H(gq) for
identical Gaussian initial conditions with p;=2, v,=0.1 for various
diffusion constants in the order indicated by the arrow: D=0.004,
0.008,0.012, 0.016, 0.02, 0.024, 0.028, 0.032, 0.036, 0.04, 0.044,
0.048,0.052,0.056, and 0.2 (filled circles). The values H(g) were
estimated for 4<Inr<6. Note how the curves become essentially
flat for large D, with H(q)— H=1/2 (dashed line).

or  or Pr (22)
= =Dp>,
aax Xt

with r(x,)=vo(1-2p/p;). We solve numerically the LWR
model for the case in which the initial density p, is a Gauss-
ian centered in the origin. The dependence of the degree of
inferred multifractality with the diffusion constant D is sum-
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FIG. 6. (Color online) Fractal dimension f(«) for subset with
Holder exponents « estimated from the data shown in Fig. 5. Here
the Hurst exponents have been interpreted as if they were estimated
from actual trajectories. The spectra are shown in two panels with
the same scale to avoid clutter. The inset shows a zoom of the
second panel. For small diffusion constants, the velocity-dependent
advection effects lead to transient multiscaling.
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FIG. 7. (a) Degree of multifractality m and (b) central Holder
exponent @ for the data shown in Fig. 6. The value of m is calcu-
lated as the inverse of the quadratic coefficient of the parabolic fits
for f(a), while @ is the value of the maximum of f(a@). As D in-
creases, the inferred multifractality clearly decreases, and the & ap-
proaches H=1/2 as expected.

marized in Fig. 5, showing how the Hurst exponents depend
on D. Figure 6 shows inferred singularity spectra estimated
from the Hurst exponent. The width of the singularity spectra
indicates the degree of multifractality. A wide curve shows
multifractality, whereas a very narrow curve shows approxi-
mate monofractal scaling. The maximum in f(«) shows the
dominant «. Figure 7 shows how the degree or strength of
the multifractality depends on the D. The degree of inferred
multifractality decreases as the diffusion constant D in-
creases.

B. Dependence on the free flow velocity

Figure 8 shows H(g) and Fig. 9 shows the inferred singu-
larity spectra estimated from the generalized Hurst expo-
nents. On the one hand, a larger free flow velocity v leads to
Hurst exponents closer to 1/2. This can be seen from the fact
that the centers of the spectra shift toward a=1/2 for larger
vo- On the other hand, the degree of multifractality (i.e., the
width of the spectra) actually increases.

The likely explanation for this unexpected result is that a
larger v, leads to a more rapid deformation of the “shape”

i
P
0.49- 014
<&
- 0.485 E—EI—EI—EI—H\B\B\E _
=)
N—’
s L
0.48 i
0.475} o -
W . | | | \
0 1 2 3 4 5

FIG. 8. (Color online) H(q) for vy=0.1,0.3,0.5,0.7,0.9,1.1 for
identical initial conditions (D=0.02).
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FIG. 9. (Color online) Fractal dimension f(a) for subset with
Holder exponents « for v(=0.1,0.3,0.5,0.7,0.9,1.1 for identical
initial conditions. On the one hand, the inferred singularity spectra
become wider, i.e., more multifractal, for larger vy. On the other
hand, the centers of the spectra approach a=1/2. Hence, increasing
the nonlinear convection via larger free flow velocities leads to
unexpected phenomena.

(the functional form) of the density function for fixed initial
condition, jam density, and diffusion constant. This more
rapid nonlinear convection leads to greater multiscaling
(hence, to inferred multifractality). However, this more rapid
nonlinear convection leads to greater excitation of higher-
spatial-frequency modes in the Fourier domain, which are

(a)

T T
041

0.3

p(x.t)

0.1

by

fast i

|
I
|
I
|
|
I
| slow !
|
I
|
I
|

o 10

FIG. 10. (Color online) Illustrative example of a traffic wave
that moves from a region of (a) larger to smaller diffusion constant
(D;=0.5, D,=0.05, vy=2), and (b) smaller to larger free flow ve-
locity (vg;=1, vgr=2, D=0.05). In both cases the change occurs at
x=X=19.
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damped at a rate proportional to the square of the spatial
frequency. Hence, the convergence to H=1/2 also proceeds
more quickly.

These findings clearly demonstrate the nontrivial nature
of the interaction between the diffusive and convective as-
pects of the LWR model. Nonlinear convective-diffusive
phenomena can give rise to remarkably rich phenomenology.

C. Traffic flow from dirt roads to highways

In general, minor roads have lower-quality pavement and
more traffic lights than highways. This means that they can
be represented by larger diffusion constants. For similar rea-
sons, the speed limit is smaller than the one on a major
highway. In this section we investigate how these factors
affect the behavior of traffic moving from minor to major
roads. This is done by assuming that in the LWR model the
diffusion constant, or the free flow velocity, changes at some
point along the road i.e., D for x<X and D, for x> X, and
similarly for v,. Figure 10 shows how the traffic density is
affected by changes in D [Fig. 10(a)] and v, [Fig. 10(b)]
along the road.

Figure 11 shows the behavior of a traffic wave moving
from a region of large diffusion constant to one with a
smaller diffusion constant. The main finding is that there is a
sudden local spike in the degree of multiscaling (or inferred
multifractality). Figure 12 shows the analogous result for
free flow velocity. Both effects can increase multiscaling
near the junction of the two regions. We find that as the
traffic moves into the highway, there is a local, temporary

3.6
32

”s 55 6 6.5 7
Int

FIG. 11. (Color online) (a) Double logarithmic plot of the ¢ root
of the moments versus time for the case where the traffic wave
propagates from a region of high to low diffusion constant, such as
might happen when vehicles move from back alleys to major high-
ways. (b) H(q) estimated as the local slope of the curves shown in
(a). Inset shows the standard deviation of H(g,?) over nine values of
q (g=i/2, i=1-9). There is a sudden spike in multiscaling that
occurs when the traffic wave goes from one region to the other,
which subsequently decays. D;=0.5, D,=0.05, vy=2.
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H(q,t)

FIG. 12. (Color online) (a) Double logarithmic plot of the mo-
ments and (b) Hurst exponents corresponding to the ones in Fig. 11,
for the case where the traffic wave propagates from a region of low
to high free flow velocity, such as might happen when vehicles
move from back alleys to major highways. Inset shows the standard
deviation of H(g), as in Fig. 11. There is again a similar sudden
spike in the apparent multiscaling near the junction (vg;=1, vg,
=2, D=0.05).

increase in anomalous diffusion effects, due to the increase
in vy and decrease in D.

D. Time delays due to reaction time

A driver’s reaction time is an important factor to be con-
sidered in any realistic model of traffic. A simple way to
incorporate such time-delay effects in the LWR model is by
assuming that the velocity reaches equilibrium within some
relaxation time, such that v(x,f)=v(p(x,r—7)). Then the
LWR equation for the density takes the form

J, "\ g, ap’ &+
—p+uo<1—p—)—p—voﬁi—1) P (23)

ox pj ox o’

where p=p(x,?) and p’'=p(x,1—7)

We have solved numerically the above equation with the
same initial conditions selected to study the standard LWR
model. The first interesting result that we find is that the
density (and therefore the velocity) show distinctive spatial
patterns that disappear at large times (Fig. 13).

An analysis of the results indicates that the time delay
leads to deviations from monofractal behavior. The change in
the functional form of the density as time evolves guarantees
that the moments grow in a nontrivial manner, hence multi-
scaling is expected (Fig. 14). So, in addition to the effects of
vo and D, yet another potential source of multifractality is the
reaction time of the driver. However, we have yet to uncover
the systematic effects of such time delays; this issue merits
further investigation.
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0.08

T T T T T
0.081 B
b
0.3r ( )
0.041 B
4,:3\ O 2 |
e 0 AVAVANING
‘6_ 120 140 160 180]
0.1F -
ol / | % e ! AN
0 10 20 30 40

X

FIG. 13. (Color online) Density function for the LWR model
with time delay for different times. The insets indicates the behavior
of p at longer times. 7=(a) 3 and (b) 6. The data were obtained for
D=0.02, p;=2, vy=0.5; the time intervals are the same in (a) and
(b). At =0 the density is a Gaussian centered around the origin.
Notice that in both cases the spatial patterns disappear at longer
times, but take much longer to disappear for the larger 7.

VI. CONCLUDING REMARKS

With the aim of studying multifractality in traffic, we have
extended the formalism of Hurst exponents to the study of
diffusion governed by nonlinear partial differential equa-

0.48F
0.475}~
—~ 047}
3 | @0 1=10, D=0.004
o == =3, D=0.004
0.465|~ -
0.46 - -
0.455 | | | | | | | | |
2205 1 L5 2 25 3 35 4 45
q

FIG. 14. (Color online) H(g) for two different time delays and
identical parameters D and v, and initial conditions. The multiscal-
ing is due to the evolution of spatial patterns (Fig. 13). The nature
of these patterns and their systematic effect merit further
investigation.
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tions. We have shown that all initial conditions with compact
support for Burger’s equations and the LWR model lead to
monofractal normal diffusion (i.e., H=1/2) in the large-time
limit. However, due to the nonlinearity, initial conditions be-
come non-negligible due to the breakdown of the principle of
superposition and the consequent nonexistence of propaga-
tors. For many initial conditions, a transient multiscaling re-
gime precedes the asymptotic approach to the large time
monofractal behavior.

Subsequent to the original interest in Burger’s equation
arising from the LWR model, some authors have focussed on
the noisy Burger’s equation [38,39]. A detailed account of
this equation can be found in a study by Fogedby [40]. Noise
can enter Burger’s equation in a non-unique manner. The
diffusion term in the viscous Burger’s equation accounts for
fluctuations that generate Fickian transport. In contrast, the
noisy Burger’s equation contains an additional input of
space- and time-dependent noise which introduces stochas-
ticity directly into the dynamics. For traffic, this extra term
adds fluctuations to the flux j of vehicles. The noisy Burger’s
equation bears a relation to the Nagel-Schreckenberg
(NaSch) cellular automata (CA) model of traffic [39]. Simi-
lar CA models appear in surface growth [16,24,41], whose
relation to the noisy Burger’s equation is well known. The
connection between traffic and surface growth is that local
particle movement along the road in the NaSch model corre-
sponds to local forward growth of the surface via particle
deposition (e.g., see Ref. [2]).

PHYSICAL REVIEW E 78, 056110 (2008)

In the context of nonlinear evolution equations for the
density, the noisy Burger’s equation would correspond to a
“noisy” Fokker-Planck equation. Our viewpoint in the
present investigation has been to incorporate noise only at
the basic Langevin level of the traffic description. With such
a viewpoint, in the passage to the Burger’s (Fokker-Planck)
description, the noise disappears as a random term and ap-
pears only as the diffusive term. For this reason, we do not
consider here the noisy Burger’s equation. However, this
topic certainly merits further study in future investigations.

In summary, we have explored how multiscaling and mul-
tifractality might arise at given spatial and temporal scales in
traffic governed by the LWR model. We have investigated
multiscaling in the context of nonlinear waves in traffic and
the results reported here suggest that a traffic wave packet
that propagates from a slow, high-viscosity region (e.g., mi-
nor roads) to a fast, low-viscosity region (e.g., major high-
way) may appear locally and temporarily more multifractal.
This prediction can be empirically tested using data consist-
ing of actual trajectories in traffic.
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