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Brownian demixing and wall effects in sedimenting suspensions of orientable particles

Brendan D. Hoffman' and Eric S. G. Shaqfeh]’z’*
1Department of Chemical Engineering, Stanford University, Stanford, California 94035, USA
2De‘z)an‘mem‘ of Mechanical Engineering, Stanford University, Stanford, California 94305, USA
(Received 14 July 2008; published 3 November 2008)

We describe the Brownian demixing of sedimenting suspensions, a recently discovered phenomenon in
which increases in the thermal energy can destabilize a system of orientable particles subjected to a torque to
fluctuations in concentration. Through use of Brownian dynamics simulation and a mean-field analysis, we
demonstrate that demixing occurs in a model system composed of slender rigid rods sedimenting between
no-slip walls. Additionally, we describe the effects of wall separation distance on suspension stability.
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The recent demand for microfluidic technologies for bio-
medical purposes, such as bioassays using nano-barcodes or
the processing of complex fluids for medical diagnostics, has
led to an interest in the behavior of Brownian suspensions in
confined geometries [1-4]. Often a suspension’s microstruc-
ture is determined by a device’s operating environment,
which may include the presence of externally applied fields,
concentration gradients driving “swimming” particles, or a
mean flow in laboratory-on-a-chip applications, to name a
few. The suspension microstructure directly determines its
dynamic properties; one such property which may affect de-
vice performance is the instability of sedimenting orientable
particles to density fluctuations. As particles sediment, hy-
drodynamic interactions between regions of varying density
result in a net migration of particles into the denser region
via orientational changes. The instability is characterized by
the formation of particle streamers which settle, on average,
faster than the maximum settling velocity of an isolated par-
ticle in Stokes flow. This Rapid Communication will exam-
ine the instability formation as it applies to rigid slender
rods; it should be noted, however, that it has been demon-
strated for orientable and deformable particles in general [5].

Experiments [6] have confirmed the existence of the in-
stability, and theoretical models have been reasonably suc-
cessful at predicting its formation [7-9]. When no particle
torques are present, the stability of a suspension of sediment-
ing rigid rods of length 2L is determined by a gravitational
Peclet number,
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which relates a particle’s net gravitational force |Fg| to the
thermal energy. At Pe~O(1), the hydrodynamic torques
driven by gravity are approximately balanced by the Brown-
ian forces which randomize particle orientation. Thus, at suf-
ficiently low Peclet numbers, the tendency of thermal motion
to restore the suspension’s isotropic orientation offsets the
driving force of the instability formation, stabilizing the sus-
pension. Additionally, center-of-mass diffusive motion tends
to disperse regions of high concentrations, disrupting density
perturbations. Brownian stabilization of unbound suspen-
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sions was recently analyzed in detail by Hoffman and
Shagfeh [7], where they found that the longest wavelength
concentration fluctuations are the least stable.

Hoffman and Shaqfeh also examined the effect of Brown-
ian motion on the stability of polarizable rod suspensions in
electric fields. In an electrolyte, the rod polarization results in
the formation of a double layer which, when coupled with
the resulting disturbance flow, drives a slip velocity which
forces the particle to orient with the field, a phenomenon
known as induced-charge electrophoresis (ICEP) [1]. Previ-
ous work by Saintillan ef al. [10] demonstrated that for non-
Brownian suspensions, particles undergoing ICEP in strong
electric fields are more stable than those without field effects.
This is due to a preferential particle alignment with the elec-
tric field, which, much like the effects of Brownian motion,
allows the particles to resist the hydrodynamic torque caused
by density fluctuations. Somewhat counterintuitively, Hoff-
man and Shaqfeh [7] found a region of Peclet number at
which, keeping the strength of the electric field relative to
gravity constant, the effects of increased Brownian motion
were to destabilize the suspension.

In this Rapid Communication, we show that this phenom-
enon of Brownian demixing is universal in suspension me-
chanics and will occur whenever sedimentation occurs in the

presence of a particle torque B. Example systems include, in
addition to ICEP, the alignment of particles in magnetic or
electric fields, self-locomoting bacteria that seek preferential
alignment, or particles sedimenting against a shear flow.
When no Brownian motion is present, the stability of a sus-
pension will be governed by a dimensionless torque F, which
describes the balance between the externally imposed align-
ment and gravity, which drives the instability: F

=[B|/([F,|L). As the particle size becomes smaller and ther-
mal effects become increasingly important, both Pe, and/or
F will mutually determine the suspension stability, resulting
in a rich phase behavior.

Brownian demixing occurs in a transition region between
a stable, aligned suspension (Pe,— ) and a stable, isotropi-
cally oriented suspension (Pe,—0) as the Peclet number is
decreased at constant F. The essential feature of this phe-
nomenon is that the increased effects of Brownian motion
alter the orientation distribution of suspended particles via a
random torque, allowing particles to sample orientations
away from the aligned state which promote instability
through gravity driven hydrodynamic interactions. In other
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words, the Brownian motion sufficiently disrupts the align-
ing effect of the torque, driving the orientation distribution
into an “intermediate” state between isotropic and aligned
that is more unstable to concentration perturbations than ei-
ther of the two extreme cases. As the Peclet number ap-
proaches 0, stability is restored through a complete random-
ization of particle orientation, dominating both gravitational
and external torque effects. There has been some evidence in
a paper by Saintillan ef al. [9] that certain orientation distri-
butions calculated from Onsager theory yield a relative
maximum in instability growth rate vs alignment parameter.
Their analysis, however, only applied to the initial orienta-
tion distribution and neglected the effects of Brownian mo-
tion.

Wall effects become particularly important in microfluidic
devices, as the channel width is often only a few particle
lengths. To study Brownian demixing in confined channels,
we have examined the effects of Brownian motion on the
stability of a suspension of sedimenting slender fibers in a
channel of width & (measured in particle 1/2 lengths, with
the suspension periodic in the remaining two dimensions)
through a mean-field analysis and Brownian dynamics simu-
lation (BDS), described below.

The kinematic equations describing the motion of slender
particles with orientation vector p suspended in a fluid of
viscosity w and subject to a body force F are given to
O[1/In(2A)] as
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where u is the disturbance velocity caused by all other par-
ticles in the suspension (or walls).

In the mean-field theory, we represent the suspension by a
particle concentration field ¢(x,p) and evaluate its stability
using a linear stability analysis of the particle conservation
equation,

dc . .
E+Vp-(pc)+Vx~(Xc)—d,Vlz)c—Vx~D~ch=O, (4)

where D and d, are the center-of-mass and rotational diffu-
sivity of an isolated particle, respectively, and are given by
d,=3kgTIn(2A)/8mul? and D=kzT In(2A)/8wuL(1+pp).
The Stokes equations couple the hydrodynamic disturbance
with the particle density field through an orientationally av-
eraged body force:

-uV?u+Vp=F, f cdp. (5)

For simplicity, we assume that a particle’s center-of-mass
moves like a fluid element, and that the disturbance field may
be linearized on the scale of the particle length to evaluate its
rotational motion. As boundary conditions, we impose a no-
slip condition and no mean particle flux at each of the walls:
u=0 and [(Ug,c—D,c,)dp=0 at x=0,h [U; is the particle
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FIG. 1. (a) Concentration distributions at equilibrium using BDS
and from the concentration equation solution. (b) The velocity dis-
turbance in the direction of gravity for the most unstable eigen-
mode. (c) The first few unstable eigenmodes, in increasing order of
stability for h=12 particle half lengths. All panels use 8nL3=1 and
A=20.

sedimentation velocity, the second term on the right-hand
side of Eq. (2)]. To evaluate the stability of the above equa-
tions, we introduce a density perturbation in the wall-normal
direction of the form c=nW(p)+ndc(x,t,p), where W is the
orientational distribution function for a spatially homoge-
neous suspension (assuming negligible alignment effects
near the wall). ¥ satisfies Eq. (4) for u=0, and is given for a

suspension with particle torque T=p X B as
FP g
_ eeg_eF Pe,B/[Bl-p_ 6)
47 sinh(F Pe,)

Figure 1 shows the base state orientation distributions ob-
tained from solving Eq. (4) for a homogeneous suspension
compared to the distribution obtained from Brownian dy-
namics simulation of individual particles. BDS were per-
formed at a dimensionless concentration of 8nL3=0.6, where
n is the particle number density. The close agreement sug-
gests the mean field yields a reasonable approximation to the
real particle distributions.

To solve for the unknown perturbation function ¢(x,z,p)
to O(9) and at different values of Pe, and F, we expand ¢ in
the spherical harmonics, which form a complete basis on the
unit sphere: ¢=33b,(t,x)Y,(p) (g=0---%, s=—g---q). It
can be shown that to satisfy the no net particle flux boundary
condition, the coefficients b, ; and b, _; may be expanded in
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a sine series, while the remaining coefficients may be ex-
panded in a cosine series, i.e., b, =2b,,(t)cos(mmx/h) (m
=1---). The disturbance flow, obtained by substituting the
expansion in Eq. (5), only has contributions from the ¢=0,
s=0 harmonic modes, and can be shown to be simply a su-
perposition of cosines:

— |F |n? mm
u,=2nov 77%‘, bo’o,mm 1 —cos 7)6

+ 3(%)2[1 +cos(mm)] - 2(%)[2 +cos(mm)] |

Substituting the perturbation function into the particle
conservation equation (4), multiplying by Y/, cos(m’ mx/h),
and integrating in x and p yields a linear system of differen-
tial equations describing the time evolution of the expansion
coefficients: b ,=Ab. The solutions to this equation set are
written b ~exp(wt), where w is an eigenvalue of the expan-
sion matrix A. The sign of the real part of each eigenvalue,
w, therefore determines the stability of each solution (one
corresponding to each index ¢, s, and m), and the largest
such eigenvalue determines the overall suspension stability.

To evaluate the results of the mean-field analysis, we have
performed BDS on sedimenting suspensions as described by
Hoffman and Shagfeh [7]. Our simulations resolve individual
fiber dynamics, hydrodynamic interactions between fibers,
and near-field lubrication interactions. In addition, we have
included the effect of no-slip side walls through the use of a
two-wall Greens function as derived by Liron [11] to evalu-
ate the fluid velocity disturbance between particles. In all

cases, we have taken the direction of B to be parallel to the
direction of gravity.

In Fig. 2, we analyze the effect of particle torque at con-
stant container width 4=25. In the left panel, two instability
growth rates vs dimensionless particle torque F curves are
shown at Pe, =200 and 100. It is clear that for a given Peclet
number, the effect of increasing the field strength is to mono-
tonically decrease the growth rate of the instability by alter-
ing the particle orientation distribution to a more aligned
state which has a lower growth rate. Additionally, increasing
F increases the torques responsible for alignment relative to
the instability driving force, retarding the destabilization
mechanism. The remarkable feature of this plot is that the
curves intersect at F'~0.01, which represents the crossover
region of Brownian demixing. For F>0.01, decreasing the
Peclet number from 200 to 100, which represents an increase
in thermal energy, destabilizes the suspension relative to the
Pe,=200 case; that is, the suspension with a higher thermal
energy has a higher perturbation growth rate. This is a some-
what counterintuitive result because, as we have described
above, decreases in the Peclet number and increases in F
both stabilize the suspension when evaluated separately. It is
precisely because the stabilization mechanisms of Brownian
motion and particle torque counteract one another that a re-
gion of demixing is found. We therefore expect a destabili-
zation to occur when the rotational velocity induced by the
external field approximately balances the rotation velocity
induced by thermal motion [p*|~ [p¥], or F Pe,~O(1).
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FIG. 2. (a) Mean-field analysis growth rates vs dimensionless
torque. (b) Mean sedimentation velocity from BDS. (c) Cross-
channel concentration profiles for a stable and unstable suspension.
(d) BDS orientation distributions for a stable and unstable suspen-
sion. All panels at 8nL3=0.25.

Figures 2(b) and 2(c) show BDS results at constant F and
two different Peclet numbers. After 400 sedimentation times,
proportional to the time required for a rod to sediment its
length [#,=87uL?/|F,|In(2A)], an instability develops in the
suspension with Peg=100, while that at Peg=200 remains
stable (defining stability as a moving average of the mean
sedimentation velocity which remains below the maximum
value for an isolated particle). The stable suspension remains
uniformly distributed in space [Fig. 2(c)] along the channel
width and a dense streamer forms near x//2=0.3 in the un-
stable case. In the stable suspension, concentration perturba-
tions are insufficient to overcome the aligning effects of the
field and are dissipated by center-of-mass Brownian motion
before they can amplify. After the instability forms at Pe,
=100, the orientation distribution distorts significantly from
that of the stable suspension [Fig. 2(d), Eq. (6)]. Apparently,
hydrodynamic torques overwhelm the field effects and create
significant alignment antiparallel to the torque, a metastable
state in which the particles experience no orientational
change. The strength of the field is sufficient, however, to
prevent particles from aligning perpendicular to gravity for
long time periods.

Next, we examine the case of the sedimenting suspension
without a particle torque to isolate the effects of no-slip walls
on stability. From the mean-field analysis we find that long
wavelength perturbations which span the entire container are
the most unstable. In the bottom panel of Fig. 1 we show the
first three unstable eigenmodes in increasing order of stabil-
ity. The wave forms found in the no torque case are nearly
identical to those found over the range of F' examined above.
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FIG. 3. (a) Growth rate of the longest wavelength concentration
perturbation vs effective container wave number. (b) Mean sedi-
mentation velocity as measured by BDS for =4 and 10. (c) Mean
cross-channel concentration profiles between 200 and 250 sedimen-
tation times. (d) Cross-channel concentration profiles for a non-
Brownian suspension. In all panels 8nL3=1.

In Fig. 1(b), the velocity disturbance in the direction of grav-
ity is shown as a function of the channel width for the N
=1 eigenmode and various /. The velocity field is character-
ized by alternating regions of downflow and backflow so as
to give no mean flow. It is clear that a decrease in wall
separation leads to a subsequent decrease in the magnitude
(although not the wave form) of the resulting velocity distur-
bance. The no-slip walls essentially bound the container ve-
locity fluctuations, resulting in a decrease in the hydrody-
namic forces driving the instability and thus its growth rate.

We present in Fig. 3 combined results from the mean-field
analysis and BDS for the case of no particle torque. In the
top-left panel, the eigenvalue corresponding to the longest
wavelength ¢ is plotted vs an “effective wave number.” The
results are essentially identical to those from the periodic
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analysis [7], the smallest wave number (largest /) suspen-
sions are the least stable and the instability growth rate
monotonically decreases as the space separating the con-
tainer walls decreases (keeping particle concentration con-
stant). Decreasing the Peclet number also retards the insta-
bility growth rate as described above. In the remaining
panels of Fig. 3, the mean sedimentation velocity (b) is plot-
ted vs time as measured by BDS, as well as the concentration
in the wall normal direction averaged between =200 and
250. Clearly, decreasing the spacing between walls sup-
presses the growth rate. The suspension with #=4 remains
stable (by our definition) over the course of the simulation,
while that with 2=10 forms a dense streamer centered ap-
proximately at x/h=0.4.

There is, however, a contrast in the wave form of the
instability as compared to the mean-field analysis. Instead of
a single streamer forming along a side wall, the streamer
forms 4 particle lengths away; additionally, a second
streamer forms near the right wall [Fig. 3(c)]. As the first
streamer develops, the particles farthest away from the per-
turbation are trapped by the resulting backflow. Because they
are unable to pass through the wall, a secondary streamer is
formed. This concentration profile most resembles the N=2
concentration perturbation eigenfunction from Fig. 1, sug-
gesting that the nonpenetrable walls may provide a wave-
number selection mechanism. The results are also apparent
when considering non-Brownian suspensions [Fig. 3(d)],
where the N=3 wave form appears. A key feature from the
BDS missing from the mean-field theory is the presence of a
hydrodynamic wall drift [12], which may provide a wave-
number selection mechanism. Although it is outside of the
scope of this Rapid Communication, the effect of no-slip
walls on wave-number selection deserves further study.

In summary, we have demonstrated that the phenomenon
of Brownian demixing can occur in suspensions where par-
ticle orientations are influenced by a general torque and may
be found in a wide variety of systems. Additionally, we find
that no slip walls effectively bound velocity fluctuations and
influence the growth rate of instability, a result especially
important for microfluidic applications.
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