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Missing levels in acoustic resonators
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It is shown that the deviations of the experimental statistics of six chaotic acoustic resonators from Wigner-
Dyson random matrix theory predictions are explained by a recent model of random missing levels. In these
resonatorsa made of aluminum plates a the larger deviations occur in the spectral rigidity (SRs) while the
nearest-neighbor distributions (NNDs) are still close to the Wigner surmise. Good fits to the experimental
NNDs and SRs are obtained by adjusting only one parameter, which is the fraction of remaining levels of the
complete spectra. For two Sinai stadiums, one Sinai stadium without planar symmetry, two triangles, and a
sixth of the three-leaf clover shapes, was found that 7%, 4%, 7%, and 2%, respectively, of eigenfrequencies

were not detected.
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Wigner’s statistical theory of spectra based on random
matrix ensembles has become, since its introduction in the
1950s, an important theoretical and experimental tool to un-
derstand physical phenomena in many different areas, such
as atomic nuclei, atoms, molecules, microwave cavities,
acoustic resonators, quantum dots, quantum gravity, etc. [1].
After developments made by Dyson and Mehta [2] the
theory was prepared to be fully confronted with experimental
data. The breakthrough in this direction was achieved in the
beginning of the 1980s by Haq, Pandey, and Bohigas, who
have verified the theoretical predictions using what they
called the nuclear data ensemble [3]. About the same time
the connection between spectral statistics properties and clas-
sical chaos was put on firm ground [4]. This connection
states that quantum systems whose classical analogs are cha-
otic have the same statistics properties as the eigenvalues of
matrices of the random matrix theory (RMT) ensembles. In
particular, if the system has time-reversal symmetry, the sta-
tistics to be used are those of real symmetrical matrices of
the Gaussian orthogonal ensemble (GOE).

A remarkable feature of the theory is its sensitivity to the
amount of system symmetries. The statistical measures react
to even small breaking of a given symmetry [5-7]. Of
course, this sensitivity works in favor of the theory by en-
larging its applications. We mention, for instance, that it has
been conjectured that spectral analysis can become a useful
nondestructive test of material imperfections. However, at
the same time, this sensitivity brings difficulties in obtaining
experimentally the statistical measures. Dyson realized this
difficulty and put it in the language of information theory,
considering spectra as messages that may be corrupted. Fol-
lowing this idea, he used spectral correlations to work out an
error-correction code to detect isolated spurious or missing
levels. Unfortunately, his test has proved to be impractical
[8].

Recently the problem of missing levels has been reexam-
ined, focusing on the case when the fraction of levels miss-
ing is randomly distributed along the spectrum [9]. From a
practical point of view it is reasonable to assume the ran-
domness condition, since there are many reasons why levels
cannot be detected.

The main effect on the statistical properties of randomly
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incomplete spectra is a reduction of the correlations among
levels. Roughly speaking, the levels behave more indepen-
dently, letting the spectrum be more Poissonian [9]. This is
reflected in the decrease of the repulsion between adjacent
levels and in the increase of long-range statistics.

In a recent paper the application in the analysis of spectra
of frequencies of elastomechanical vibrations has revealed
that in that kind of system the missing levels can be an
important issue [10]. In fact, Bertelsen er al. [12] verified
that the experimental density of states (DOS) was slightly
below the Weyl theoretical formula and attributed that dis-
crepancy to the loss of levels.

The purpose of this article is to report the effect of miss-
ing levels in the data set of frequencies of acoustic resonators
by using the model of Ref. [9]. We used the data of two
resonators extracted from Refs. [11,12] and also our own
data of four resonators.

Our aluminum plate resonators have the profiles shown in
Fig. 1. To couple the flexural and in-plane modes, the planar
symmetries were removed by digging two straight channels
in one face of each sample as represented by the darker lines
in Fig. 1, and we call them asymmetrical samples.To remove
the samples internal stress an annealing process was applied
keeping them in an oven at 300 °C for 24 h. We obtained
data of four resonator plates cut in the shape of chaotic bil-
liards: namely, a Sinai stadium, an asymmetrical Sinai, and a
rectangular and a scalene asymmetricgl triangle with irra-
tional angles (a,fB,7)= (2 , \5 11 = and (1-— 2
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FIG. 1. Asymmetrical samples profiles. The darker lines repre-
sent the channels dug to break the samples’ planar symmetry. The
triangular angles are irrationals, and the scalene triangle is almost
rectangular with angle a=87.1°.
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FIG. 2. The experimental apparatus diagram.

The experimental apparatus diagram is shown in Fig. 2. In
a vacuum chamber, the samples were placed over three ruby
spheres of 1 mm diameter, which are the end of the trans-
ducers’ systems. All these parts were mounted inside an alu-
minum oven which was also inside a copper oven, and both
had the temperature controlled at 7=313.00*=0.01 K. The
traces were obtained by exciting the samples through one of
the transducers (the transmitter), increasing the frequency
driven by a spectrum analyzer and measuring the sample
response with one of the receivers. The sample temperature
was monitored by following the peak position of a particular
resonance which after two days stabilized, showing that the
sample temperature was stable. To avoid the loss of levels
that could happen due to the transducer being located at the
resonator node position, we collected five traces with the
transducers in different positions and the statistics measures
were derived from all five traces. Examples of traces are
shown in Fig. 3.

In order to analyze the data, cubic polynomials were fitted
to the cumulative staircases of the experimental spectra. The
polynomial values calculated at the experimental frequencies
correspond to the so-called unfolded spectra which have an
average DOS equal to 1. We obtained two statistical mea-
sures, the so-called nearest-neighbor distribution (NND) and
the A5 statistics [spectral rigidity (SR)].

The NND gives the probability P(s) that there is no level
between a pair of levels separated by a distance s. If a frac-
tion 1—f of levels is randomly removed, we have an incom-
plete spectrum. It is shown in Refs. [9,13] that in this case
the NND is given by

pls.f)=2(1 —f)kP<k,§), (1)
k=0 f
where the functions P(k,x) are the probabilities that initially
there were k levels between the pair of levels.
The SR statistics gives the deviations from the straight
line fitted to the ladder cumulative spectrum in a window of
length L. For an incomplete spectra the SR is given by [9]

(L) =(1 —f>%+f2A3<§). 2)

In Egs. (1) and (2) we followed the convention that quanti-
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FIG. 3. (Color online) In (A) are shown three traces in the range
148-152 kHz, illustrating a missing level due to a node transducer
position, pointed out by the vertical dashed line. In (B) a trace is
shown in the range 138.9—139.1 kHz, showing the existence of a
very weak and narrow resonance.

ties of the incomplete spectrum are represented by lowercase
letters while uppercase letters are used for those of the com-
plete ones.

Equations (1) and (2) are general relations that apply to
systems of any nature. By assumption, the acoustic resona-
tors analyzed here behave as quantum systems whose classi-
cal analogs are chaotic with time-reversal symmetry. Accord-
ingly, their eigenfrequencies are expected to have the same
statistical properties as the real symmetric matrices of the
GOE of the random matrix theory.

Following this idea we proceed as in Refs. [9,13]. The
NND p(s,f) given by Eq. (1) was calculated using the
Wigner surmise P(s)=P(0,s)=7s exp(-7s?), the next-
nearest-neighbor distribution P(l,s):ziwg(%)ss4 exp(—lgﬁ—;_ ,
and for higher spacing distributions P(k,s) with Gaussians
centered at k+ 1 having variances V(k) given by [14]

k
Vz(k) =k- 2] (k= x)Y,(x)dx — é, (3)
0
where
Y, (x) = (Sin(ﬂX) )2 = [Si(mx) - Wé(x)]( cos(m) _ Si(n(mzc) ) ’
X)
(4)
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FIG. 4. (Color online) In magenta (or gray) are symbols of the
experimental spectral rigidities of the in-plane mode and of the
uncoupled modes from Ref. [11] of the sixth of the three-leaf clover
shape resonator. The dashed magenta (gray) lines are the simula-
tions obtained with the complete spectra and the black lines by
supposing 2% of missing levels.

and Si(7x) is the sine integral and €(x)=0 if x=0 [2].
The spectral rigidity &(L,f) given by Eq. (2) was calcu-
lated with the GOE expression for A;(L) given by

As(L) = £ :

L
- —— | [L-xP[2L? = 9xL - 3x*]Y,(x)dx.
15 15L* fo :

(5)

In an experimental study of a sixth of the three-leaf clover
shape resonator Andersen et al. [11] obtained the statistics of
the in-plane mode separated from the flexural one. They ob-
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FIG. 5. (Color online) The experimental spectra rigidities for the
Sinai stadium. The circles in black are our data (910 eigenfrequen-
cies), and the other symbols correspond to the data extracted from
Ref. [12]. The magenta (or gray) dashed line is the SR of the com-
plete spectra, and the black solid line we obtained by supposing 7%
(f=0.93) of missing levels.
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FIG. 6. (Color online) In (A) the NND statistics and in (B) the
SR ones for the asymmetrical Sinai stadium sample. In both cases
the open circles are the experimental data (990 eigenfrequencies).
The dashed lines correspond to the complete spectra statistics of the
coupled modes. The solid lines show the good agreement when we
consider 4% of missing levels.

served that the flexural mode follows the GOE statistics de-
scribed well by the Wigner distribution and by the A statis-
tics. However, for the in-plane mode the spectral rigidity lies
above the complete spectra A5 statistics, although P(s) still
lies close to the Wigner distribution. Similar results were
found in the experimental statistics when the two modes are
uncoupled. If we suppose that frequencies are missing, this
unexpected result of Andersen ef al. [11] can be described by
the present SR model with 2% of missed levels (f=0.98) as
shown by the black line labeled as “in-plane mode” in Fig. 4.
When the two modes are uncoupled the statistical quanti-
ties must be obtained by the superposition of two indepen-
dent GOE spectra; this amounts to replacing A;( Jé) in Eq. (2)
by 2A3(2£f) [15]. Therefore, also the 2% of missing levels can
explain the experimental data as shown by the upper black
line in Fig. 4, which means we do not need to separate the
two modes to measure the amount of missing levels.
Another example of uncoupled modes is shown by the
Sinai stadium in Fig. 5, where the circles correspond to our
experimental data while the other symbols to the 1997 data
of Bertelsen et al. [12]. In Fig. 5 the dashed line corresponds
to the complete spectrum simulation and the solid line is the
SR missing-level model with f=0.93, showing a good fit to
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FIG. 7. (Color online) In (A) the NND statistics and in (B) the
SR ones for the asymmetrical triangular samples. In both cases the
triangular symbols are our experimental data, 1265 eigenfrequen-
cies for the rectangular triangle and 1237 for the scalene one. The
gray dashed lines are the complete spectrum statistical measures.
The black solid lines show the good agreement when we consider
7% of missing levels for the two triangular samples. The scalene
triangle is close to a rectangular one with a=87.1°.
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all data, which confirms the assumption of Bertelsen et al.
[12] about the lack of levels in the experimental spectra.

For the asymmetrical Sinai stadium the results are shown
in Fig. 6, where the dashed lines are the complete spectrum
predictions for coupled modes and the solid lines are the fit
with 4% of missing levels. The NND does not differ too
much from the Wigner surmise.

Similar results were obtained with the asymmetrical rect-
angular and scalene triangles as shown in Fig. 7. As before,
the deviations from the Aj; statistics are more significant than
NND ones, and they are also well described by the missing-
level model with f=0.93.

In conclusion, the predictions given by the GOE statistics
for the complete spectra (f=1) describes reasonably just the
experimental NND P(S), but the spectral rigidities A clearly
show deviations from the experimental spectral rigidity.
However, when one takes into account the effect produced
by removing a fraction (1—f) of levels at random, the situa-
tion changes completely. By doing this, agreement between
experimental and theoretical results is achieved by adjusting
only one parameter: the fraction f of the detected frequen-
cies. Regarding the use of the Weyl formula to detect missing
events, the present results show a more stringent method to
do this job as we are looking to the effect of the losses using
the correlations among the frequencies. As a consequence,
several statistics can be investigated and, in particular, in
long-range ones the effect of spectral imperfections are mag-
nified. We also remark that the use only of the DOS can be
strongly affected by the lack of certitude in the theoretical
determination of these quantities for each mode.
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