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The elasticity and mechanical stability of empty and filled viral capsids under external force loading are
studied in a combined analytical and numerical approach. We analyze the influence of capsid structure and
chirality on the mechanical properties. We find that generally skew shells have lower stretching energy. For
large Foppl-von Karman numbers y (y=103), skew structures are stiffer in their elastic response than non-
chiral ones. The discrete structure of the capsules not only leads to buckling for large y but also influences the
breakage behavior of capsules below the buckling threshold: the rupture force shows a y'/# scaling rather than
a "2 scaling as expected from our analytical results for continuous shells. Filled viral capsids are exposed to
internal anisotropic pressure distributions arising from regularly packaged DNA coils. We analyze their influ-
ence on the elastic properties and rupture behavior and we discuss possible experimental consequences. Fi-
nally, we numerically investigate specific sets of parameters corresponding to specific phages such as ¢29 and
cowpea chlorotic mottle virus (CCMV). From the experimentally measured spring constants we make predic-
tions about specific material parameters (such as bending rigidity and Young’s modulus) for both empty and

filled capsids.

DOLI: 10.1103/PhysRevE.78.051924

I. INTRODUCTION

With modern experimental methods it has become pos-
sible to probe the elastic and mechanical properties of living
matter on the single cell and molecular level. Important ex-
amples include (i) the stiffness of polymerized actin net-
works [1,2], (ii) active mechnical response of cells [3], (iii)
protein unfolding in single-molecule experiments [4], and
(iv) the robustness of viral capsids measured by scanning
force microscopy (SFM) experiments [5,6].

The latter studies are motivated by the astonishing elastic
properties of phages which allow them to withstand the high
internal pressures exerted by their densely packed DNA.
This pressure is necessary to inject the DNA into the
prokaryotic host cell [7].

In typical SFM studies the phage capsids are indented on
the nanometer scale with a tip which is mounted to a flexible
cantilever [5,6]. The tip radius is typically less than 20 nm
[5]. For small forces one generally observes a reversible
elastic behavior. The measured data are force-distance curves
which are characterized by a distribution of spring constants.
Larger forces may cause the shell to weaken irreversibly in a
small region. This softening is commonly attributed to the
failure of individual capsomer-capsomer bonds and local dis-
integration of the shell. Rupture experiments carried out on
phage ¢29 show that these capsids resist external point
forces up to ~1 nN.

These experimental methods have successively been re-

PACS number(s): 87.10.Pq, 87.80.Fe, 87.16.ad

are located on the vertex positions of an equilateral triangu-
lation of a sphere [12]. While a planar triangulated sheet
consists exclusively of vertices with six neighbors (“hexam-
ers”), the spherical topology of viral shells introduces local
defects in the triangulation. Upon closing the triangulated
sheet to a spherical shape one must, due to Euler’s theorem,
insert at least twelve capsomers with five neighbors (“pen-
tamers”). These pentamers lie on the vertex positions of a
perfect icosahedron and the capsids of spherical viruses have
icosahedral symmetry [13,14].

More precisely, the centers of the capsomers are the ver-
tices of an icosadeltahedron, which can be characterized by
the Caspar-Klug numbers % and k [12]. These numbers have
a direct geometrical interpretation: to get from one pentamer
to its nearest neighboring pentamer, one must follow a
straight chain of h capsomers, then make a 60° turn and
proceed along another straight chain of k& capsomers. We
refer to capsids with h,k#0 as skew capsids. Moreover,
skew capsids with i # k are chiral. The number of capsomers
needed to build a (h,k) capsid is 10T+2, where T=h>+hk
+k? is the so-called triangulation number [12]. A given tri-
angulation number might have several realizations (4,k); see
Table 1. In particular, for T7=49,147,169 both skew and non-

TABLE I. Selected triangulation numbers 7" with more than one
(h,k) realization. It follows from the definition of 7 that T=49 is
the smallest triangulation number with more than one realization.

fined and have analyzed the effect of capsid maturation on T (h,k)
shell stiffness [8], and the influence of DNA packing [9,10].
In the most recent experiments it has even been possible to 49 (5.3); (7.0)
probe specific loci on the shell surface [10]. 91 (6,5); (9,1)
Crick and Watson [11] argued that, because of their small 133 9.4); (11,1)
genome size, viruses can encode just a small number of dif- 147 (7,7); (11,2)
ferent capsid proteins, so called capsomers. Due to the small 169 (8,7); (13,0)
variety in constituents the shell must be arranged in a very 1183 (26,13); (29.,9): (31,6)
regular fashion. Indeed, in spherical viruses the capsomers
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skew structures can be realized. Examples are the Parame-
cium bursaria Chlorella virus type 1 (PBCV1) with triangu-
lation number T=169 and its skew realization (h,k)=(8,7)
[15] and the Chilo iridescent virus (CIV) with T=147 and its
(h,k)=(7,7) realization [16]. The triangulation number of
the giant mimivirus [17] is estimated to be around T
~1179. The closest theoretically valid triangulation number
is T=1183, which has three possible (%,k) pairs.

Of course, not all viruses are spherical. For example, the
lentivirus HIV-1 has a conical shape [18]. Some bacterioph-
ages like ¢29 [19] and T4 mutants [20] have a spherocylin-
drical shape. Recent numerical studies [21,22] suggest that
such complex shapes are the result of a spontaneous curva-
ture.

The elasticity of these viral capsids can be, as mentioned,
probed in SFM experiments, which show that for small de-
formations the elastic response is fully reversible. As shown
here in detail, this behavior can be fully explained in the
framework of continuum shell mechanics. In this work we
present analytical results for the linear response of thin
spherical shells. The elastic behavior of such shells arises
from the competition between in-plane stretching and bend-
ing. The strength of these contributions is set by the two-
dimensional (2D) Young’s modulus «, and the bending rigid-
ity k,. The elasticity of a shell of radius R can then be
characterized by the dimensionless Foppl-von Karméan
(FvK) number y=R?k,/ k,. Our analytical results hold for
viral capsids in the limit of small 7.

At larger y the applicability of continuum theory to viral
shells is limited by the discrete structure of capsids. The
disclinations must be treated as local defects of the otherwise
isotropic capsid material. For flat sheets local defects can be
incorporated into von Kdrmdn’s plate equations [23]. It turns
out that above a threshold at y,= 154 pentamers buckle out,
giving the sheet a conical shape. The buckling transition has
been shown to have strong influence on the shape [24] and
elasticity [25,26] of viral capsids.

Generally speaking, the distribution of strain is changed
by the presence of disclinations. For small vy the influence of
in-plane deformation is small compared to bending. There-
fore the altered strain distribution becomes effective only for
large strains, i.e., for large deformations. For y> v, in-plane
strain dominates the elasticity and even the small-
deformation regime is strongly influenced by the presence of
disclinations.

Most viruses have FvK numbers y=10% and are in the
order of the buckling threshold. Bacteriophages, like the
widely studied ¢29 or T4, typically have y=10°. Among
viruses the giant mimivirus with y==10* has a very large
value. However, FvK numbers as high as y= 10° have been
realized with polyelectrolyte capsules [27,28].

The analytical tools employed in this work do not cover
the regime of buckled icosahedral shells. Even for small y
they are limited to small deformations. Unfortunately, it is
not straightforward to extend the analytic scheme presented
in Ref. [23] to curved surfaces. However, by making use of
an advanced discretization scheme we can treat large vy and
strong deformations numerically. Here, we present numerical
results on the influence of buckling on the reversible and
irreversible elastic properties of empty and filled viral
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capsids. In particular, the influence of the triangulation num-
ber and its different realizations on the elastic behavior of
capsids is analyzed.

Phage capsids contain densely packed DNA which exerts
an enormous force on the shell. Values as high as 6 MPa
have been estimated for ¢29 based on the measurements of
the stall force of the packing machinery [29]. Experiments
and analytical models on phage \, in which the genome ejec-
tion is osmotically inhibited, also report internal pressures in
the order of 5 MPa [30,31]. There is experimental [32,33]
and numerical [34] evidence that inside the capsids the DNA
is organized in regular coils, leading to significant effects on
the energetics of DNA packing [35]. Here, we show that
coiled DNA leads to an anisotropic pressure which (under
high-salt conditions) strongly influences the rupture behav-
ior.

Our theoretical predictions on the mechanical strength of
capsids might be relevant for the following experimental
situations: (i) Experiments usually carried out in buffer solu-
tions with different salt concentrations. The mean DNA pres-
sure as well as the anisotropy strongly depend on these con-
centrations. Our numerical results may help to separate the
pressure dependence of mechanical strength from the influ-
ence of bond softening due to different buffer conditions. (ii)
Osmotic shock experiments; this is a common technique to
extract DNA from viral capsids. With the aid of our numerics
we can determine the critical internal pressure needed to
break the capsid.

In our numerical simulation we model the viral capsid as
a triangulated spherical surface. We are able to construct
icosadeltahedra with arbitrary triangulation (%,k) and to
implement specific phage geometries. For the bending en-
ergy we use a fairly novel discretization scheme that is based
on a direct geometrical interpretation of the mean curvature
[36]. The advantage of this approach is its validity even for
strongly deformed surfaces.

A similar discretization scheme, originally introduced for
the simulation of crystalline membranes [37], has been used
to study the dependence of virus shape on the FvK number
[24] and the effect of DNA packing and maturation on viral
shape [38]. Only recently, the elasticity of capsids has come
into the focus of such numerical studies [39]. In a short com-
munication [25] we have already applied our approach to
study the elastic properties and mechanical stability of viral
capsids under external force loading. Here, we give more
details of this analysis, extend it to chiral capsids and present
new analytical results.

This paper is organized as follows. In the next section, we
present our analytical results. After introducing our numeri-
cal approach in Sec. III this method is applied to empty and
filled capsids of different geometries in Sec. IV. The paper
ends with a summary and outlook.

II. ANALYTICAL RESULTS

In this section we first introduce the elastic description of
the viral capsid and then present analytical results for the
elastic response to point deformations. In doing so, we use a
continuum approach which does not take into account the
topological defects of the spherical shell.

051924-2



ELASTIC PROPERTIES AND MECHANICAL STABILITY...

A. Continuum approach

Viral shells are built of morphological protein units (“cap-
somers”) giving the shell a discrete structure. As pointed out
by Caspar and Klug [12], these capsomers represent a regular
triangulation of the sphere. The morphological units are held
together by covalent bonds. Because of the geometrical con-
straint that the capsomers have to arrange on a closed spheri-
cal surface the bonds have nonoptimal length and angles.
These deviations from the optimal planar conformation give
rise to bending and stretching energy even in the undeformed
conformation.

This motivates a phenomenological description of the
capsid material which is based on the theory of thin plates.
Here, the full three-dimensional strain energy reduces to a
sum of a 2D in-plane stretching energy and a 2D bending
energy [40]

E=E,+E,, (1)
where
i N 02
E,=u | dA uju'f+5 dA(u)) (2)
and
Eb=2kbfdAH2+KngA K. (3)

Here, u;; is the 2D strain tensor, K the Gaussian, and H the
mean curvature. These quantities are completely determined
by the first and second fundamental form [41]
zuij:gz',j_gij’ 4)

where gi'j is the metric of the deformed and g;; that of the
undeformed capsid. Thus, all energies are measured relative
to the undeformed conformation. The mean curvature is
given by the trace of the second fundamental form 2H=-b!,
while the Gaussian curvature K=det(b;;) (for a more detailed
explanation, see, e.g., Ref. [42]). Note that in Eq. (3) we do
not take a spontaneous curvature into account since we as-
sume that the capsomers prefer a planar conformation.

According to Gauss-Bonnet the surface integral of K is a
topological invariant [41]. Thus, for the fixed surface topolo-
gies considered here it is a constant of integration which can
be neglected in Eq. (3).

The 2D Lamé coefficients appearing in Eq. (2) are related
to the 3D Young’s modulus Y, 3D Poisson ratio o, and shell
thickness s via [40]

A=Y (5)
and
1
M=2(1+U)Ys. ©

Typically o lies in the range between 0.2 and 0.5 [43,44].
Triangular networks of springs have o=1/3 and are thus
suitable to describe the 2D limit of a wide range of materials
[45]. The 2D Young’s modulus «, is given by
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4 +A
e:M:YS, (7)
2u+ N

while the 2D bending modulus is given by

Ys?
Kp = -0 (8)

Here and in the following we set o=1/3. As mentioned in
the Introduction, the dimensionless Foppl-von Karman num-
ber y [24] is a convenient measure for the ratio between
elastic and bending energy contributions,

y=R"~ 11<£>2. )

Kp S

Here, R is a typical length of the system, in the following
chosen to be the radius of the shell.

The analogy between 2D elasticity and the elasticity of
triangular networks makes them ideal to represent thin shells.
Moreover, viral capsids themselves resemble such triangu-
lated networks. In particular, 12 pentamers are required to
complete the surface to a spherical shape. They can have
large impact on the elastic behavior of the shell as a whole.
As pointed out in Ref. [24] the Foppl-von-Kérman number
governs the transition from the continuous shell regime to
the regime, where the influence of these disclinations be-
comes predominant. More precisely, above a buckling
threshold y,=~ 154 the pentamers form rigid cones, giving
the viral shell a faceted icosahedral shape.

In the next section, we give qualitative results for the
elasticity of shells based on a scaling analysis. A linear re-
gime for small deformations and a nonlinear regime for
larger deformations are identified that are separated by a
shape transition. In Sec. II C we present analytical results for
the linear regime including some predictions about the rup-
ture behavior. The nonlinear regime and strongly buckled
shells are investigated numerically. In Secs. III and IV we
outline the foundations of our numerical analysis and present
results on various aspects of shell stability.

B. Scaling analysis

For FvK numbers below the buckling threshold (y<v,)
spherical capsids can in good approximation be described as
continuous 2D shells with no topological defects. On a quali-
tative level, their elastic properties can already be understood
within the scaling analysis given here (which is based on
Ref. [40]). Two regimes have to be distinguished: (i) a linear
regime where small deformation forces lead to a linear re-
sponse of the shell, and (ii) a nonlinear regime where above
a critical force the mean curvature of the indented region
abruptly changes sign.

1. Linear regime

Under small load the shell is flattened in an area of order
d? (see Fig. 1). The indentation depth in this case is
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FIG. 1. (a) For small indentation the spherical shell with radius
R is flattened under axial point load in a region of radius d and
radius of curvature p. In the deformation region the meridians
(dashed arc) are compressed. In this regime, the shell shape has an
up-down symmetry since the reaction to the applied force acts at the
point of contact with the supporting substrate. (b) At a critical in-
dentation A,~ y"2R the shell undergoes a shape inversion. The
deformation energy is mainly concentrated in a highly bent ring of
radius » and width d. Again, p denotes the radius of curvature in the
deformed area. Point P is moved to position P’ which amounts to a
compression of circles of latitude. Here, up-down symmetry is
broken.

A 1
5 =R(1-cos ) —p(l —cos ') = E(Rﬁz—pﬁ’z),

(10)

where we assume that the diameter of the deformed area is
small, i.e., #<<1. The radius of the flattened region in this
approximation is given by

d=pb =R0. (11)

The mean curvature in the deformed region is then given by
1 1 A

H=-=~—-—. (12)
p R d

The change in Helfrich bending energy is of the order

E,~4 dZ(i i) =8 <1A—2 é) (13)
b = ATK p2 R2 =0TK), 2d2 R .
In the last two equations it has been assumed that the mean
curvature is constant on the deformed area (with surface area
md?). The other factor 2 accounts for the up-down symmetry.
In Eq. (13) we have neglected contributions from the edges
of the flattened region giving rise to bending energies lower
than that of the undeformed (spherical) reference state. This
artifact of our approximation, however, does not affect the
results of our scaling analysis since the force-distance rela-
tion [see Eq. (26)] is independent of the bending energy con-
tributions linear in A.
The strain associated with the compression of meridians is

A
u=1-cos = Fr2~—. (14)
2R
For the in-plane elastic energy one has
A 2
E, =~ 27Td2Keu2=zKe<—> d*. (15)
2 “\R

The size d of the flattened area is set by mechanical equilib-
rium. Correspondingly, the total deformation energy must be
minimal under variations in d leading to
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dz23/4R'y_1/4, (16)

and the total energy is
A& r(A>2
E=~—8mK,— +2\2 =] . 17
7TKbR NZTKp\ Y R ( )

The force-distance law follows from

_E o K g R
—dA~—87TR +4\r277\7RR. (18)
The A-independent term appearing in Eq. (18) represents the
force needed to bend the material without spontaneous cur-
vature into the spherical shape. For materials with spontane-
ous curvature Cy=1/R the last term is not present. In both
cases, the force needed to deform the shell is only the
A-dependent part of Eq. (18) and the force-distance relation
reads

F~—\y—-. (19)

In particular, in the linear regime the force scale is set by
Kb/ R.

One should note that Eq. (19) holds only for sufficiently
large 7y since d <R was assumed. Together with Eq. (16) this
implies that our analysis is valid only for shells with an
in-plane stiffness at least of the order of its bending stiffness.

2. Nonlinear regime

When the axial load exceeds a critical value, the curvature
of the shell is spontaneously inverted inside a region of ra-
dius r~R@ as sketched in Fig. 1. Because the Helfrich en-
ergy depends only on the squared mean curvature inversion
of the region does not cost any bending energy. However,
there is an increase in bending energy coming from the small
strip connecting the inverted with the noninverted parts. The
main energetic contribution arises from this small strip of
width d, where the shell is highly bent, see Fig. 1. The in-
dentation depth is of the order of

>
A ~ R(1 - cos 6)~R02~%, (20)

and the radius r of the inversion is fixed by R and A. The
only remaining parameter is the width d of the rim. For the
radius_of curvature in the bent zone p one has d~p6
~pVA/R (see Fig. 1), and the bending energy is of order

1 1A3/2
Eb -~ Kbrd_2 =Ky~
P

(21)
where the factor rd is coming from the area of the bent rim.
The change in the in-plane elastic energy is dominated by the
deformation along the circles of latitude. Their radii change
by ~d#” and the relative compression is

~—~—. 22
u~ (22)

The change in elastic energy caused by the in-plane defor-
mation is given by
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3

rd \? d
E, ~ Kerd(ﬁ> = KEWAyZ. (23)

In mechanical equilibrium the width of the deflected rim
becomes

1/4
d~R1/2(%) , (24)
and the total deformation energy is
T
E~ A”Tb. (25)

In this regime, the force-distance law is no longer that of a
Hooke spring but rather has square root dependence on A,

12
Kp 1/4(A>
F~ — . 26
27\ & (26)

This picture is valid only if the width of the rim does not
exceed its radius. Hence, one expects the inversion transition
to take place when r~d. According to Egs. (20) and (24) the
corresponding critical indentation is given by

Ainv ~ Ry_l/Z . (27)

Because of Egs. (7) and (8), R/ y"?>~s, and from Eq. (27)
one expects that the transition to the nonlinear behavior takes
place when the displacement A becomes comparable to the
shell thickness s. Equation (27) and the linear force-distance
law (19) determine the critical inversion force
Kp
F inv R . (28)
The scaling of the rupture force with y can now be de-
duced from the scaling of the local strain. To do so, we
assume that the material fails at a fixed critical strain u,. For
the linear regime Eq. (14) implies for the critical indentation
depths

A,~R. (29)

Similarly, one obtains from Egs. (22) and (24) for rupturing
in the nonlinear regime

A, ~ Ry"2. (30)

Whether the shell actually ruptures in the linear or nonlinear
regime depends on the prefactors of the scaling relations for
A;,, and A,. However, in both cases the rupture force scales
as

Kb 112
F.~ . 31
R (31)

C. Shape equation

Next, we want to derive the shape equation for a spherical
shell under external loading. To do so, we calculate the total
energy of a deformed sphere parametrized by the surface
vector
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R' =R+ 7R, + yN, (32)

where R=R(sin 6 cos ¢,sin 6sin ¢,cos 6) is the surface vec-
tor of the undeformed sphere. The tangential vectors are
given by R;=dJ,R=JR/dx' with x'=0, x>=¢, and
R, XR,

N ’f_
Vg

(33)

is the unit normal of the surface. g is the determinant of the
first fundamental form given by

g; =R, R;=R* diag(1,sin” 6). (34)

The deformation fields  and 7 in Eq. (32) are the compo-
nents of the displacement vector in the local coordinate sys-
tem spanned by N and R;.

For the following, it is convenient to decompose the tan-
gential deformation field 7/ into an irrotational and a sole-
noidal part,

7 =g"dx+ €L, (35)

where €7 is the antisymmetric tensor in two dimensions,
which can be rewritten using the Kronecker symbol 6‘] as

/=58~ 85 (36)

Here, we are interested in the deformation induced by an
axial force exerted at the north pole of the sphere (at #=0)
sitting on a planar substrate. To analyze this scenario analyti-
cally we have to restrict the analysis to the linear regime
(before the inversion transition discussed in the last section).
Then, the sphere has a single point of contact with the sup-
porting substrate at §=m. Consequently, the reaction to the
force applied at #=0 is acting as a point force at f=1. Be-
cause the (slightly) indented sphere has a reflection symme-
try with respect to the {6=/2} plane the normal displace-
ments at the two poles are given by

A
oo = l/l|0=77=_5' (37)
To determine the stationary shapes with surface vector Eq.
(32) the displacement fields ¢, y, and { have to be chosen
such that the first variation of the deformation energy van-
ishes. For the variations of the normal displacement field ¢
— i+ 8t the constraint given by Eq. (37) has to be satisfied,

implying
o= 6P g-r=0. (38)

The deformations induced by the radial point force lead to
deformation with axial symmetry and there is no ¢ depen-
dence of the displacement fields. From Eq. (35) and the di-
agonal structure of g;; we conclude that

1
n’=g%0x = PR (39)

Furthermore 7% must vanish for symmetry reasons, i.e.,
¥ == 0y, =0. (40)

Thus, the solenoidal part { does not contribute to the total
energy.
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Next, the energy of the deformed sphere can be calculated
by expanding (1) in the deformation fields ¢ and y. The
calculation is somewhat tedious since it involves the calcu-
lation of the metric g;; and the second fundamental form b;;
of the deformed sphere, where

bi;=R}-N', (41)

where N’ is the normal vector of the deformed surface.
One finally obtains in second order

1 k i jj
B=1% f dS(4 + 24+ Ryl + O ()",

(42)

3 K, 3
E,= ds +=R> X’ + 4Ry + 4 )
=168 (XX, 5 XX+ ARX Y, + 47

+0((PYH(0". (43)

where u+v=3 and dS denotes the area element of the unde-
formed sphere. The indices of the scalar quantities y and ¢
denote covariant derivatives, i.e., );;=D;i;. The covariant
derivative of a contravariant vector q; is defined by

k
Dja;=d;a;— a;l';;. (44)
Likewise, for a covariant vector a’ one has
Dia'=d;a' + aka(j. (45)

Here, the Fi-k are the Christoffel symbols of the second kind
[41]. In deriving Egs. (42) and (43) we have taken into ac-
count that covariant derivatives do not commute, i.e.,

[D;.Djla;= a;R};, (46)

where Rkﬂ is the Riemann curvature tensor [41]. For a more
detailed discussion in a similar context see, e.g., Ref. [42].

The easiest way to satisfy the constraints given by Eq.
(37) on ¢ is to expand the deformation fields ¢ and y in
spherical harmonics Y, [46]. As mentioned above, we re-
strict the analysis here to small deformations for which the
deformed sphere has an up-down symmetry. Since addition-
ally the deformation fields do not depend on ¢, only the Y,
with even /[ and m=0 contribute, i.e.,

=R A Y (47)
=0
and
xX=R>2 B)Yy. (48)
=0
Upon choosing
Ag =—\’7T— 2 +14,, (49)

the constraint (37) is satisfied and the total energy becomes
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E=x,>, (212(21+1)2 20020+ 1) + = 'y)AZ
=0

3
+ Zy[312(21+ 1)2 =121+ 1)]B} = 39I(21 + 1)A;B,

o

= K, @A} + BB} + SAB,. (50)
1=0

As expected, there is no contribution coming from B, (since
Bo=v,=0) since the energy depends only on the derivative
of x. By inserting relation (49) and varying the expansion
coefficients as A;—A;+a;, B,— B;+b;, one obtains for the
first variation of the energy

[’

—
6E= sz al(ZAla/l - 2a0\'4l + lAQ + 5[31) + bl(5IAl + ZBIBI)
=1

(51)

In mechanical equilibrium the deformed sphere obeys the
shape equation SE=0, implying

K
A= —2\4l+ 14, (52)
K;
and
1
Bj=- A, (53)
2B
where
K= 20 - 2 (54)
1= c0— =
2B
and
KO = 2a0. (55)
With Eqgs. (49) and (52) the total energy simplifies to
o -1
(A < 4 +1
E=x,—|— . 56
sz(ze) (% K, ) (56)
The linear spring constant for a radial point force is found
from
% -1
1E K 47+ 1
k= . 57
AN R (E) K, ) G7)

The infinite sum appearing in Eq. (57) can (with the help of
MATHEMATICA [47]) be expressed as

S 4l+1 In16-4+20
E K, 8+3y
. 12 —W(-x;) + 3V (- x)x; + 6W(- )ci)xi2
24 —2+3y+ 10x;+20x7 ’
(58)
where I'=0.577216 is Euler’s constant and W(x)

=d Inl'(x)/dx denotes the logarithmic derivative of the
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FIG. 2. (Color online) Analytically calculated spring constant k;
as a function of vy for a supported elastic sphere indented at =0 by
a radial point force. For Foppl-von Kdrmdn numbers y below 10
the spring constant deviates noticeably from the 7! behavior. As-
ymptotically the curve fits k;=3.99\y«,/R? (fit was made for y
=10%,...,10%).

Gamma function [46]. The x; are the zeros of the fourth-
order polynomial

P(x) = —37y—4x +4x? + 48x> + 48x*. (59)

With the explicit representation (58) the sum in Eq. (57) can
be numerically evaluated without having to truncate it at
some large (but finite) [. The only limiting factor is thus the
numerical precision with which the zeros of the polynomial
(59) can be determined numerically.

The spring constant determined in this way is plotted as a
function of the Foppl-von Karman number in Fig. 2. Asymp-
totically the curve agrees well with the square root behavior
expected from the scaling analysis given above:

k= 3.99% Vy. (60)

This relation was found by Reissner [48] in the thin shell
limit of a 3D elastic theory. However, Eq. (9) implies that the
thin shell approximation is equivalent to y—oc. The consid-
erable deviations from the square-root law occurring for
smaller 7y are captured only by our more general expression
Eq. (57).

D. Comparison with scaling analysis

Our analytical approach is so far limited to the linear re-
gime of small indentations which do not lead to inversion of
the local mean curvature at the point of loading. However, it
can be extended to make predictions about rupture and the
onset of the inversion transition.

The y dependence of this critical indentation can be found
analytically from the condition

H(G»Ainv(')/)”)/n(}:o:o’ (61)

where
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FIG. 3. (Color online) y dependence of the critical indentation
for various types of rupturing. It is assumed that rupturing occurs at
a relative bond length change of 4.5% (see Sec. IV D). The com-
pression of meridians is responsible for rupture at small A,. The
critical indentation A, is independent of 7, in agreement with the
scaling picture. The dotted line shows the y dependence of the
inversion transition. For y=<20 rupturing occurs before inversion,

i.e., in the linear regime. The black dashed line is a fit to y~"/.

H

1.
- ~b; 62
b (62)

denotes the mean curvature. In Eq. (61) it is assumed that
H(A) goes through zero continuously. In the linearized prob-
lem this is indeed the case, since here H is a linear function
of the deformation. However, as will be shown later in Sec.
IV, for large vy this transition becomes discontinuous.

The solution of Eq. (61) is plotted in Fig. 3 (black dotted
line). For small 7y the curve deviates from the expected y~!/
behavior [see Eq. (27)], since the equilibrium configuration
is dominated by the bending energy, which is scale invariant.
The point force thus leads to a shape-invariant shrinking of
the shell. One must also keep in mind that our analytical
analysis is based on a linear expansion in the deformation
and holds only for A2<R2.

Using the analytical results for the deformation fields ¢
and 7, we can also determine the 7y dependence of the rup-
ture indentation A,. The strain tensor u;; has elements

Ugg= (63)
and
Uy =sin 6(7” cos 6+ yrsin 6). (64)

For axial-symmetric loading the off-diagonal terms vanish.
The strain tensor is closely related to the local change of the
first fundamental form [see Eq. (4)] and we can express the
relative length change in direction of the ith coordinate via

S=1+2u;-1, (65)

where i= 6, ¢. Then, at the rupturing indentation A, the rela-
tive length change &; reaches a critical strain u,

max [+ &(6,A,)] =u,. (66)
0e[0,7]

Here, (+) corresponds to critical expansion and (—) to criti-
cal compression. Furthermore, i=#6 corresponds to meridi-
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FIG. 4. (Color online) Distribution of deformation energy along
the 6 coordinate as a function of the Fppl-von Kdrmdn number 7.
For the evaluation of the energy density ¢ and n have been ex-
panded in spherical harmonics up to Y44 . For y<1 the deforma-
tion energy concentrates along the equator.

onal and i=¢ to circumferential in-plane deformation. The
four different scenarios are compared in Fig. 3. In accor-
dance with the scaling analysis of Sect. II B the shell rup-
tures most likely due to meridonal compression at a critical
indentation A, which is independent of 7. As mentioned, the
analytical results are valid only in the limit A><<R? which is
satisfied for meridonal compression. A, exceeds the inver-
sion threshold only above y=20 (see Fig. 3). Our analytical
approach does not hold in this regime.

The derivation of the scaling results is based on the as-
sumption that only a small region around the poles are de-
formed. With our analytical results we can check the validity
of this assumption. For this purpose we plot the (normalized)
density of deformation energy e, +e,, as function of 6 and y
(see Fig. 4). This density is given by the integrand of the
total energy defined in Egs. (1)—(3). The normalization con-
stant

E= J dfle,(0) +e.(0)]. (67)

0

The flattening of the polar region leads to a local decrease
in bending energy. In case of dominating bending energy,
i.e., y<lI, the deformation energy concentrates around the
equator, contradicting our assumptions. For higher y, how-
ever, the flattening leads to an increase in the density of the
total deformation energy at the poles.

III. NUMERICAL INVESTIGATION

So far, we have used in our analysis a continuum descrip-
tion of the shell without defects. As explained, our results
cannot be expected to hold in the regime above the buckling
threshold. Many interesting phenomena are thus analytically
intractable. However, numerical simulations of capsids under
external loading give valuable insights into their elastic and
inelastic behavior [25].

In our simulations, the viral capsids are represented by an
icosadeltahedron with appropriate Caspar-Klug numbers. In
particular, we have implemented capsids with triangulations
T=169 and 1183 corresponding to the PBCV1 and mimivi-
rus capsids, respectively. In addition to these specific geom-
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etries we have also studied the triangulation 7=49 [which
allows for two distinct (,k) representations] to analyze
more general aspects of chiral capsid design. To our knowl-
edge a virus with this particular 7" has not yet been discov-
ered.

In our simulations, the centers of the capsomers are rep-
resented by vertices connected to each other with harmonic
springs with spring constants k,. The associated harmonic
potential models the elastic (stretching) part of the deforma-
tion energy

E,= &E (I=ri=rj))?, (68)
2 )

where r; denotes the position of the ith vertex and [ is the
preferred vertex distance. The sum extends over all nearest
neighbor pairs (i, /). The 2D Young’s modulus of the elastic
network is related to the spring constant ¥, via k,=2K,/V3
[37].

The bending energy can be expressed in terms of the nor-
mal vectors of the facets of the triangulated surface. This can
be done in different ways (see Appendix A). We chose the
method described in Ref. [36] throughout, since it gives the
most reliable results even for strong deformations. In this
discretization scheme the bending energy is given by

c?
E,=2K,2 -, (69)

i A
where the sum extends over all edges. A; is the network area
of the ith edge, i.e., one-third of the area of the two adjacent

triangles. The mean curvature of the ith edge is given by [36]

=K mxnm) (70)

|y [[my + 1y - my
Here, n; (n,) are the non-normalized normal vectors of the
adjoint triangles left (right) of the ith edge and k is its non-
normalized direction vector. The discretization Eq. (70) is an
approximation of the Helfrich Hamiltonian [49] for small
dihedral angles between n; and n,.

The shape of minimal energy is then found by minimizing
the total energy E=E,+E, using a conjugate gradient algo-
rithm [50]. To do so, we have constructed a regular icosadel-
tahedron with the desired quasisymmetry. Initially, we have
set k,=Rvy'? and k,=1/k, with R=(A/4m)"?. Here, A is
the surface of the shell, i.e., the sum of the areas of all facets.
With these values, the total energy was numerically mini-
mized. Then, with the new surface area, the values R, k,, and
K, were recalculated and the total energy was minimized
again. This procedure was repeated until R converged.

To simulate the indentation experiments vertices i at the
point of loading were moved away from their equilibrium
position r;. We thus work in an ensemble of prescribed in-
dentation A rather than in an ensemble of applied force. Gen-
erally, all vertices (except the indented vertex i) are free to
move; they are only constrained to lie above a (virtual) plane
at z=0. The shape of the triangulated surface under these
constraints is also found by minimizing the total energy.
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FIG. 5. (Color online) (a) Total energy of the different (h,k) realizations with triangulation T=169 corresponding to a PBCV1 capsid.
Clearly, the chiral structure is favorable for FvK numbers 9> 103, The inset shows the in-plane elastic part of the total energy. The buckling
transition is characterized by an increase in stretching energy leading to a pronounced peak at y==103. Above y= 10’ the nonchiral structure
is more strongly stretched than the chiral one. The structures depicted on the lower right are the nonskew (left) and the skew capsid (right)
at y=10°. The distribution of in-plane elastic energy is shown on a common gray scale in units of 10k,. Dark areas represent strong
stretching or compression. (b) Total energy for a T=1183 structure corresponding to a mimivirus capsid. Here, the (26, 13) structure is the
most favorable one although noticeable differences become visible only above y==10°.

To generate force distance curves the buckled capsids
were indented stepwise with a step width JA=R/250. At
each step the corresponding indentation force was deter-
mined using the relation

oF

F=-—,
SA

(71)
where OF is the change of the deformation energy between
two successive steps.

IV. NUMERICAL RESULTS

In this section numerical results on the stability of viral
capsids are presented. First, we discuss skew shell designs
under the energetic aspects. In the following sections we
discuss elastic and inelastic properties of viral capsids. Here,
our focus lies on the structural inhomogeneity of capsids and
the influence of a skew viral design on shell elasticity. We
complete the section with a discussion of capsid stability
under large internal pressures. In particular, we analyze the
influence of the pressure distribution which arises from the
organized packing of DNA. We discuss both an ensemble
with prescribed pressure and prescribed volume.

A. Chiral viruses

Most spherical viral capsids have icosadeltahedral sym-
metry with a certain skewness (h,k#0) and even chirality
(h # k). This handedness may arise from an inherent handed-
ness of the capsid proteins [51]. Additionally, as we show
now with our numerical analysis a skew design is also favor-
able for energetic reasons. The handedness of the capsomers
determines whether the capsid is left or right handed.

Figure 5 gives an example where the total energy of the
two realizations (8,7) and (13,0) of PBCV1 viral capsids
(with T=169) [15] are compared. As can be seen from the
insets in Fig. 5, the edges of the icosahedral superstructure
are stretched more in the nonchiral capsid than in the chiral
one. For y>10° the energy difference becomes dominant
such that the (8,7) structure is favorable. Similar results are
obtained for CIV capsids with T=147 (data not shown).
Here, the (7,7) structure has lower elastic energy than the
(11,2) structure for > 10°. Like PBCV, the CIV capsid has
y=10? [16]. Although, there is no significant energetic dif-
ference between chiral and nonchiral structures at this FvK
number, the wild type PBCV1 and CIV prefer the chiral
structures, i.e. Caspar-Klug numbers which have lowest en-
ergy for large 7.

More generally, these findings indicate that those
icosadeltahedra are energetically preferred (for large 1),
which have the smallest difference |h—k|. This can be justi-
fied as follows. Buckling is associated with a large strain
along the icosahedral edges. For an (%,k) structure this strain
is distributed among the 4+k bonds connecting the pentam-
ers. Thus, the larger k the smaller the strain per bond. Addi-
tionally, for k# O the strain can also be reduced by a change
of the bond angles. Since stretching or compression of bonds
contributes quadratically to the total energy via the elastic
energy, the strain saving geometry has a much lower energy.
This effect becomes more visible the higher the contribution
of the stretching energy, i.e., the larger 7.

B. Spring constants

Next, we compare the mechanical response of capsids
with different skewness to externally applied indentation
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FIG. 6. (Color online) (a) Typical force distance curves for hexamers [orange (light gray) lines] and pentamers [red (dark gray) lines] for
chiral (solid lines) and nonchiral (dashed lines) structures at y=10°. (b), (c) Detailed view of the elastic behavior of pentamers (b) and
hexamers (c) for very small indentations. The dotted curves represent deformations of metastable conformations.

forces. From the scaling analysis of Sec. I B one expects
that the capsids respond linearly to small forces. This regime
is explored here for a T=49 structure in both the skew (5, 3)
and nonskew (7, 0) design.

Viruses were indented radially by a distance A varying
with step size SA=R/250 as described above. Both hexamers
and pentamers were displaced. The indented hexamers dis-
cussed here all lie in the center of the facet spanned by their
three neighboring pentamers, i.e., they are the points of
threefold icosahedral symmetry. For small indentations the
observed force-distance curves are linear with a spring con-
stant defined via

kl=_'

A (72)

Figure 6 shows typical force distance curves for y=10.
As was already shown in Ref. [25] the force-distance curves
at such high FvK numbers are characterized by discontinu-
ous jumps. The sudden drops in the restoring force represent
transitions between stable indented configurations. The tran-
sitions can be discontinuous accompanied by metastable
states which have higher deformation energy than stronger
deformed conformations.' In Figs. 6(b) and 6(c) these states
are plotted as dotted lines. Figure 6 also shows that meta-
stable states are encountered much more frequently when
pentamers are probed.

The analysis of force distance curves for y ranging from
10 to 108 is summarized in Fig. 7. Below y==10° the spring
constants of both pentamers and hexamers follow nicely the
analytical curve. In general, for larger FvK numbers pentam-
ers become stiffer with a spring constant which roughly
scales as 7y'. Hexamers become softer. As can be seen from
Fig. 7 the (5, 3) and (7, 0) structures have identical elastic
response up to y==10°. For larger y the skew capsid has a
larger spring constant than the nonskew structure. This effect
is much more pronounced when the capsid is pushed on its
hexamers. Here, the spring constants scale approximately as
¥' (¥"?) for the skew (nonskew) capsids. For loading on
pentamers there is hardly any difference in the elastic re-
sponse.

'For y<100 the transition is continuous; for y>10000 it is
discontinuous.

C. Material properties

With the aid of numerical simulations it is possible to
extract precise material parameters of experimentally inves-
tigated viruses. To do so, we simulated indentation experi-
ments under the conditions corresponding to the SFM ex-
periments on the phages @29 [5], N [52], the plant virus
cowpea chlorotic mottle virus (CCMV) [9], and the animal
viruses minute virus of mice (MVM) [10] and murine leuke-
mia virus (MLV) [8]. Their FvK numbers can be estimated
from their geometry via the relation Eq. (9). Note that this
relation is based on the thin shell approximation. For MLV
the validity of the thin shell limit is at least arguable.

The shapes of the viral capsids of interest have been quan-
titatively characterized by cryo-electron-microscopy (EM)
and x-ray studies [19,53-56]. For example, phage ¢29 has
an average equatorial radius R=21 nm and a shell thickness
of s=1.6 nm. As its FvK number y=2000 indicates, the
shape of ¢29 is noticeably buckled. For CCMV the corre-
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FIG. 7. (Color online) Spring constants of hexamers and pen-
tamers (inset) as function of the FvK number y. Below y=103 the
linear elasticity of spherical capsids is well described by the ana-
lytical results of the homogeneous shell approximation. Above vy
=10 pentamers become stiffer and hexamers softer. Pentamers
show a k;~ y' scaling. Above =10’ the linear spring constants of
hexamers are considerably softer for nonchiral shells than for chiral
ones. They show a k;~ y' (k;~ ¥"?) scaling in the skew (nonskew)
case. As the inset shows, the difference is less pronounced for
pentamers.
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TABLE II. Estimated material properties of viruses, whose elasticity has been probed in SFM experi-
ments. The values for R, s, and k; are taken from the references given in the text. y has been calculated from
R and s. Here, s is the shell thickness and R the mean shell radius. The elasticity of filled capsids is discussed
in Sec. IV E. The tolerance of the bending stiffness of CCMV arises from the numerically observed bimo-

dality of the spring constant distribution.

R (nm) s (nm) % k; (N/M) K/ R* (mN/m) Y (GPa)

$29 21 1.6 1778 0.16 1.14 1.3
A 31.5 29 1300
Empty 0.13 1.02 0.41
Filled 0.23 1.01 0.41
CCMV 12.3 23 310

Empty 0.15 24+02 0.24+0.02

Filled 0.20 33+0.5 0.33+0.05
MVM 14.6 5.4 80 0.56 16.3 0.24
MLV

Immature 435 370 15 0.33 18.3 0.0007

Mature 570 100 360 0.13 20*04 0.007

sponding values are R=12nm and s=2.5 nm. Thus, y
=300 and CCMV is slightly buckled. The estimated FvK
numbers for all investigated viruses are summarized in Table
II.

For ¢29 the estimate of its FvK number can be refined
using the available experimental information about the bimo-
dal spring constant distribution. By using the FvK number y
as fit parameter for the measured bimodality ratio kfs)/ kf@
=1.88 one finds y=1778, in good agreement with the value
estimated above from the geometrical parameters [19].

Then, k,/R*=1.14 mN/m can be extracted from the (di-
mensionless) numerical spring constant k, = k;R?/ k,, for the
softest experimentally measured value of k§6)=0.16 N/m
(with corresponding k;s )=0.296 N/m) [5]. From the bending
stiffness and the shell geometry the 3D Young’s modulus Y
=1.3 GPa can be calculated via Eq. (8). This value is in
agreement with earlier estimates based on finite element
methods [5]. The estimated elastic moduli of all investigated
viruses are summarized in Table II. The values for filled
viruses were obtained from a numerical scheme introduced
in Sec. IV E.

Apart from ¢29, for none of these capsids has a bimodal-
ity been reported. As can be seen from Table II, the phages A
and ¢29 have estimated y values far above the buckling
threshold, while the animal and plant viruses have FvK num-
bers below or slightly above v,. Therefore, one would not
expect a noticeable bimodal spring constant distribution for
CCMYV, MLV, and MVM.

In contrast, phage \ is very strongly buckled. In cryoEM
images it appears as a sharply edged icosahedron (see Ref.
[54]). However, the measurement in Ref. [52] were per-
formed on phages with intact tails. One end of these rather
long tails is incorporated into the capsid in place of one
pentamer. Therefore, these capsids always expose their
icosahedral faces to the SFM tip. This explains the absence
of a second spring constant for phage \ in Ref. [52].

For empty CCMV the bimodality cannot be resolved ex-
perimentally (k;=0.15%0.01 N/m [9]). Numerically, we find

a slightly higher spring constant for hexamers, k;ﬁ)
=0.17 N/m and k§5)=0.12 N/m. Here, we extract K,,/R2
=2.47%0.2 mN/m and «,/R=29*2 pN from the numerical
data.

The bulk elastic moduli for MLV are remarkably small. In
contrast to the other investigated capsids, MLV is an envel-
oped virus [56]. Tts shell has a by far more complex compo-
sition than the capsids discussed in the Introduction, and in
particular lacks icosahedral symmetry. Moreover, the enve-
lope is typically a lipid membrane with a much softer bulk
elasticity compared to shells that are entirely composed of
tightly bound capsid proteins. The bending stiffness of the
viral capsid of MLV changes drastically during maturation.
Accordingly, the 3D bulk Young’s modulus increases tenfold
while still being very small (see Table II). One must note,
however, that the suitability of the thin shell approximation
is arguable in this case, since the ratio R/s is close to 1.

D. Rupture

As a next step we have analyzed numerically the rupture
of shells. Rupture is assumed to occur when a bond reaches
a critical strain u, [see Eq. (66)]. To get an estimate for the
numerical value of u, we have simulated a SFM experiment
with parameters chosen to mimic phage ¢29 [25]. Analyzing
the structure at the experimentally determined rupture force
reported in Ref. [5] yields a critical strain of u,=4.5%. How-
ever, other viruses might have different critical strains due to
different chemical composition.

Numerically, the capsid was indented until for some bond
the critical length change of 4.5% was reached. At this criti-
cal indentation A,, the rupture force F, was determined using
Eq. (71).

Figure 8(a) shows the rupture force as a function of 7.
There is no significant difference between the rupture behav-
iors of skew and nonskew structures. For y< 10%, the rupture
force scales as y'2, in agreement with the scaling arguments.
As discussed above for y< 107 scaling arguments do not
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FIG. 8. (Color online) (a) Rupture force of hexamers as function of 7y for a nonchiral (7, 0) and a chiral (5, 3) structure. For y< 10* we

observe a 2

scaling of the rupture force in agreement with thin shell theory. For y>10%, rupture force scales as y'. (Inset) Rupture

indentation for the same data. (b) Plot of the rupture indentation A, as a function of . Numerically we observe a crossover from a y'? to

a ’}/1/5

scaling at y=10. The dotted line represents the numerically determined inversion threshold. Thus, rupturing occurs in the linear

regime for y<<100. The force distance curves for this vy range are indeed perfectly linear (data not shown). The insets show the strain
distribution in a (5, 3) structure for y=10 (left) and 1000 (right) at the respective rupture indentations. Compressed (stretched) areas are

colored in dark red [black] (yellow [light gray]).

apply. In this regime, we observe roughly a y** scaling as
already reported in Ref. [25].

The vy dependence of A, is shown in the inset of Fig. 8(a).
It differs strongly from the A,~ 9° behavior expected from
scaling arguments. As shown in Fig. 8(b) we observe a '
scaling of the rupture indentation in this regime. In a regime
between y=10 and 7, we observe a y'/> scaling. Figure 8(b)
also shows that above y=70 rupture already occurs in the
nonlinear regime. The insets in Fig. 8(b) show the strain
distribution in a (5, 3) structure for y=10 and 1000 at the
respective rupture indentations.

As implicitly assumed in the above scaling analysis, me-
ridians are compressed in the linear regime. Here, however,
the strain extends over a large area for y<< 100, covering also
pentamers further away from the point of loading. Therefore,
the strain no longer distributes homogeneously as assumed
by the continuum shell theory [see the left inset in Fig. 8(b)].
This might explain the deviations from the predicted A,
~ " scaling (cf. Fig. 3).

Instead of the expected A,~ 1" scaling, we observe a
sharp transition from a '3 to a y'° scaling at y=10 [see
Fig. 8(b)]. This crossover in scaling might reflect the discrete
distribution of disclinations. As Eq. (16) shows, the area over
which the strain distributes scales as y 2. Thus, when 7y
becomes smaller, the strain extends over a larger area, finally
including the next set of pentamers.

Above the inversion transition the strain is distributed
concentrically around the point of loading, supporting the
assumptions of the scaling arguments. However, for vy larger
than the buckling threshold v, the scaling arguments break
down due to the dominance of the disclinations.

In a typical SFM experiment the capsid is repeatedly
pushed with the SFM tip [5]. Since the tip is moving along
the surface, the stability is not probed at a single well-defined
locus but rather at an ensemble of indentation sites. To mimic
this experimental procedure we have also performed simula-

tions of ensemble measurements on viral capsids. To do so,
the point force was applied to each vertex perpendicularly to
the axis connecting two opposite pentamers. In order to
avoid tilting of the capsid when pushing close to the poles,
the lowest 10% of vertices of the shell were kept fixed in the
simulations. Figure 9 shows the distribution of stretching en-
ergy in such an ensemble measurement for a skew (5, 3) and
a nonskew (7, 0) structure at y=10°. Here, each single vertex
was indented a distance A=0.1R. For each vertex position on
the shell the deformation energy was recorded and averaged
over all indentation sites.

Capsids will most likely break in regions of high average
deformation energy. Figure 9 shows that the deformation en-
ergy is concentrated near the edges of the lower and upper
caps. The nonskew capsid design leads to a high concentra-
tion of deformation energy close to the pentamers.

A somewhat different ensemble was probed in Fig. 10
where every vertex was indented until material failure oc-
curred. For the skew capsids the forces required to break the
shell are much larger than for nonskew capsids. This is in
agreement with our finding that skew structures have larger
spring constants. Compared to nonskew capsid a larger force
is needed to produce a deformation of the same order.

0.006

0.099[(AV

FIG. 9. (Color online) Distribution of the average change of the
in-plane deformation energy at an indentation of A=0.1R for a (5,3)
structure (left) and a (7,0) structure (right) at y=10°. Indentation
was perpendicular to the axis spanned by the pentamers at the left
and right.

051924-12



ELASTIC PROPERTIES AND MECHANICAL STABILITY...

1504

(5.3) 9575 (A0

FIG. 10. (Color online) Distribution of rupture forces for a (5,3)
structure (left) and a (7,0) structure (right). Force is measured in
units of «;,/R.

E. Capsids under pressure
1. Energetics of packed DNA

In this section we will analyze the influence of DNA pack-
aging on the elastic properties. To do so, we focus on cylin-
drical capsids representing elongated icosadeltahedra such as
the capsids of ¢29 and several T phages. The DNA inside
these phages is highly organized. Mechanical and electro-
static interactions force the DNA to form spools [32-34,57].
Purohit et al. have discussed in detail the energies associated
with different packing geometries [35]. Here, it is simply
assumed that the DNA (with length L) is coiled around the
cylinder axis. The total energy of this configuration, consist-
ing of electrostatic repulsion and bending energy, in a cylin-
der of length z and radius R, is given by [35]

E=\BLFy(c*+cd) ( ds>+2ﬂk TE =1 <R0>

= X —— — —n_ .

N olc™ + cdy)exp c N/gb pd? R
(73)

Here, Fy=1.5X 103 pN/nm? is an empirical constant char-
acterizing the strength of electrostatic repulsion, and c¢
=(.27 nm is the screening length. Both F; and ¢ depend on
the buffer solution and are given in Refs. [35,58] for a
500 mM NaCl solution at 298 K. R is the inner radius of the
DNA coil and d; the spacing between neighboring DNA
strands. &,=50 nm is the persistence length of DNA [59]
(see also [60] and references therein). For given genome
length and geometry, R and d; are not independent. Their
relation is found by minimizing Eq. (73) with respect to R
which yields [35]

27 7

1/2
émhﬁgg%—ﬁﬂ. (74)

From Eq. (73) the DNA pressure can be calculated. To do so,
it assumed that the capsid volume changes isotropically im-
plying that the ratio z/Ry= 8 is constant. For ¢29 one has
B=2 and the pressure is given by

OE 1 OE
vV 3mBRIIR,

p= (75)

We consider fixed buffer conditions at constant ¢=0.27 nm
and Fy=1.5X10° pN/nm. With Egs. (74) and (75) the pres-
sure is a function of Ry and R. The relation between the two
radii is given implicitly by the equilibrium condition
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FIG. 11. Internal pressure in phage ¢29 has a much stronger
dependence on the external radius R, than the R53 scaling expected

for a hydrostatic pressure contribution to the total energy. The
dashed line is a power law fit to the analytical curve (solid line).

JE(R,R) _o (76)
R

The above equation can be solved numerically for R(R),
converting Eq. (75) into a function of R, only. We have
evaluated p(R,) numerically with the geometrical values spe-
cific for ¢29 (radius R=20 nm, cylinder height z=40 nm,
and genome length L=6.6 um). The function p(R,) is plot-
ted in Fig. 11. The pressure displays a very strong depen-
dence on the outer shell radius. Under the conditions speci-
fied above, we observe roughly a P~R513 scaling whereas
for a hydrostatic pressure contribution (—pV) one would ex-
pect a R53 scaling. Thus, volume compression is strongly
inhibited by the electrostatic and mechanical interactions of
the DNA coil. For small outer radii or large initial pressures,
this suppression effectively acts as a volume constraint.

For the conditions investigated here, the volume changes
are of the order of 2% corresponding to a shrinkage of the
outer radius of less than 1% (see Fig. 16 below). From Fig.
11 we extract for ¢29 a corresponding pressure increase
from 5.5 to 6.5 MPa. In this regime we can therefore con-
sider the pressure to be nearly constant.

The above analysis is only valid for homogeneous volume
changes which leave the geometrical aspect ratio constant.
However, in a DNA spool pressure is anisotropic since the
electrostatic repulsion acts mainly along the spooling axis
while the bending forces act in radial direction. From Eq.
(73) the parallel and perpendicular components can be com-
puted

— 1 £ (77)
pi B 27TR02 (;RO,
and
1 oE
=——. 78
PI= R % (78)

Replacing d, by the right-hand side of Eq. (74) we get for the
anisotropy «
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FIG. 12. (a) Ratio a between parallel and perpendicular pressure as a function of the screening length c. Here ¢29 is modeled as a
cylindrical container in which the DNA is coiled up. For filled capsids one finds for reasonable (in vivo) salt concentrations 0.5 < o< 1. Note
that for repulsive electrostatic interactions « is always smaller than 1. (Inset) The F|, dependence of a. Reasonable values for F(y range from
0.5 to 3pN/nm? [35]. In this range the repulsive strength F,, has only slight influence on a. (b) Perpendicular pressure as a function of ¢ and

F,. Dilution of the buffer leads to a large increase of the pressure, ultimately bursting the capsid (for parameter values see text).

R} . k,T&,L exp(d/c)[R? - Ry + 2R; In(Ry/R)]
R} -R? 2m(R§ - R?)3zF, '

al=

(79)

Because the first term in the last equation is always larger
than 1 and the second term is always positive for a purely
repulsive electrostatic interaction (F,>0), « can never ex-
ceed 1. This implies that the pressure is always larger in
perpendicular direction.

The dependence of the anisotropy of ¢29 on the buffer
conditions is shown in Fig. 12(a). For the analysis of the
screening length dependence the repulsion strength was fixed
at Fy=1.5X10° pN/nm?. Correspondingly, c=0.27 nm was
kept constant to study the F; dependence. Under these con-
ditions ¢29 has an anisotropy of a=0.97 implying that ¢29
has hardly any anisotropic pressure distribution despite its
(approximately) cylindrical shape. However, dilution of the
buffer solution may significantly reduce the screening length
giving rise to a larger anisotropy. In this case the increased
interstrand repulsion drastically amplifies both axial and per-
pendicular pressure [see Fig. 12(b)].

Numerically, the presence of the DNA can be taken into
account in two fundamentally different ways. (i) An explicit
volume energy —pV can be added to the free energy (1) ac-
counting for the work needed to compress the filled capsid.
Thus, in this case the total energy of the capsid is given by

E=E,+E,-pV. (80)
This approach is justified by the experimental estimates of
the internal pressure of phages like ¢29 or T4. Such a de-
scription also allows for the inclusion of an anisotropic pres-
sure distribution (see Appendix B). (ii) A volume constraint
can be added to Eq. (1). This is justified for large pressures
where the strong R, dependence of the pressure effectively
keeps the volume fixed. The capsid elasticity under such con-
ditions is studied in Sec. IV E 4.

2. Osmotic shock

As discussed above, electrostatic repulsion between
neighboring DNA strands contributes to the internal pres-
sure. The strength of this repulsion of course depends on the
ionic strength of the buffer solution. Under osmotic shock
(with no salt in the surrounding medium) the internal pres-
sure is the highest. In fact, these conditions are used experi-
mentally to extract DNA from viral capsids. Under osmotic
shock some viral capsids (e.g., T-even phages) rupture while
others (e.g., T-odd phages) stay intact [61,62], indicating that
stability depends on details of the capsomer-capsomer inter-
actions.

In this section we analyze the dependence of the stability
under osmotic shock on the elastic moduli of the capsid ma-
terial and the anisotropy of DNA packing. The numerical
simulation of capsids subjected to an (anisotropic) internal
pressure are based on the discretization of the volume energy
derived in Sec. IV B.

An estimate for the maximal sustainable pressure can be
obtained from the discrete description (see Sec. III) of viral
capsids assuming that there is some maximum sustainable
strain. In first order an increased pressure leads merely to an
isotropic expansion of the shell. Because the bending energy
is scale invariant the deformation is set by the equilibrium of
volume energy —pV and stretching energy. A shell with initial
radius R that has been inflated to a radius R’ experiences an

expanding force
_ 12
F,=4mpR'", (81)

and a counteracting, restoring force arising from the stretch-
ing energy

3
E,= ZKeB[lo —I(R"T~. (82)

Here, [, is the initial length of a bond, B is the number of
bonds, and I(R’) denotes the length of a bond in the inflated
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FIG. 13. (Color online) Rupture pressure as function of 7y for
skew [red (dark gray) line] and nonskew [orange (light gray) line]
structures. The triangulation number is 7=49. Solid lines corre-
spond to isotropic pressure while dashed lines correspond to «
=0.5. Both the mean pressure, averaged over the capsid surface
(large figure), and the maximum of the pressure field (inset) are
shown. The inset structures visualize the strain distribution in the
skew capsid at p=0.1«,/R for y=10 (left) and y=10° (right). The
scale ranges from no strain [yellow (white)] to 6.5% [red (black)].
Orange (light gray) corresponds to approximately 4.5% strain.
Above the buckling threshold the pressure-induced strain is local-
ized close to the pentamers, reducing the critical pressure
significantly.

shell. If the triangulation is equilateral the number of tri-
angles is

16 R’
N=—F=m—. (83)
V3 lo

A facet shares each of its three edges with its adjacent facet
and therefore N=2B/3. For a given shell radius R’ the length
of a bond is then given by

I~
/

83
F(R’):-j§—7nR’2, (84)

and the restoring force becomes
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dE,
F,=—=127k,(R' —R).

drR' (85)

Equilibrium can only be found for sufficiently low pressures,
i.e., for p<p.., with the maximal sustainable pressure

ELY (86)
Pmax = 4 R .
For higher pressures the inflating force prevails and R’ ex-
pands to infinity. The relative bond length change at pressure

Pmax 1S given by
==, (87)

Given a fixed maximal strain, the rupture pressure is a con-
stant for all . For our particular choice of the critical strain
we have p,=0.135«,/R.

Numerically, we have increased the mean pressure in
steps of op=0.001«,/R. For each step the maximal strain
was recorded. This was done systematically for a wide range
of vy. The data collected in this way yields the strain as func-
tion of y and the mean pressure p averaged over the capsid
surface. Figure 13 shows contour plots of these data at a
strain value of 4.5%. For isotropic packing the rupture pres-
sure agrees nicely with the estimated value for FvK numbers
below 1000. Above this value shell buckling induces a dra-
matic decrease of capsid stability. This behavior can be at-
tributed to an inhomogeneous strain distribution above the
buckling threshold (see inset in Fig. 13). Here, the pressure
mainly deforms the soft icosahedral facet, thus leading to
high local strain on the facet centers.

For anisotropic pressure the stability is further decreased;
see the inset of Fig. 13, which shows the maximum of the
pressure distribution (i.e., p,) as function of y. The curves
for anisotropic pressure are simply shifted upward by a con-
stant factor 4/[(4— ) a+ 1| [see Eq. (B2)]. But still the rup-
ture (peak) pressure is lower for anisotropic packing.

3. Point forces

In many phages the DNA packaging motor is located at a
pentameric position. Therefore, it is reasonable to assume

5

10 0=0.1 axial ----
4 0=0.5 axial

107 ¢ o=1.0 axial

a=0.1 perpendicular —
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FIG. 14. (Color online) Elastic response of capsid with internal pressure p=0.02«,/R. Different degrees of anisotropy and different
loading directions are compared. y dependence of the linear spring constants (a) and the rupture force (b) of densely packed capsids are
shown. Both depend mainly on the FvK numbers only. Neither the loading direction nor the anisotropy have a significant effect.
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that the DNA spools around the axis defined by the motor
and its opposite pentamer. To mimic this in our simulations,
the axis of cylindrical symmetry is defined by the positions
of two opposite pentamers. In our simulations we set p
=0.02k,/R. This is less than the values obtained for filled
@29 capsids [29] (p=0.06«,/R) since at p=0.06«,/R a mod-
erate anisotropy of @=0.5 would already lead to rupture (see
Fig. 13). We have studied two different types of loading:
parallel and perpendicular to the axis of anisotropy. Due to
the capsid geometry, axial (perpendicular) loading corre-
sponds to the indentation of pentamers (hexamers).

At high pressures the circumferential stress at the fivefold
disclinations is balanced by the volume contribution pV.
Thus, pentamers do not form rigid buckles and hexamers
remain flat. For example, the DNA pressure of 6 MPa in ¢29
phages (y=~ 1778) reduces the aspherity a=(AR?)/{R)* from
a=1.4x1073 for an empty capsid to a=0.6x 107, Thus,
hexamers and pentamers behave similarly, in particular their
elastic response is nearly identical at high internal pressure.
Figure 14(a) shows that a moderate pressure p=0.02«,/R is
sufficient to blur the spatial variations of shell stiffness. A
similar effect is observed for the rupture force [see Fig.
14(b)]. Most astonishingly, the anisotropy of the pressure
field has no significant influence on the local spring constants
and the shell stability (see Fig. 14). Even an extreme aniso-
tropy of a=0.1 does not lead to any noticeable effect.

Compared to empty capsids an internal pressure increases
both force and indentation needed to disrupt the shell see
(Fig. 15). This is easy to understand: since the filled capsid is
initially inflated the material is stretched. Therefore, one has
to indent more deeply in order to reach the critical compres-
sion of 4.5%.

As in Sec. IV C the numerical result can be compared to
experimental data to get estimates for the bulk elastic
moduli. The results for viruses, for which experimental val-
ues were available, are summarized in Table II. Filled \ ph-
ages have the same Young’s modulus as empty capsid, im-

10° —
—100 L
. F10 \/\
— 10 %
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“ 103,2
e} ) DT
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= 402 ; |
=)
L 40! ]
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Y

FIG. 15. (Color online) Force (main panel) and indentation (in-
set) needed to break a (5,3) shell. Filled capsids [orange (light gray)
curve] need a somewhat higher rupture force than empty shells [red
(dark gray) curve], due to initial pressure-induced stretching of the
capsid material. Correspondingly, the rupture indentation is also
increased.
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plying that the change in the elastic response can be
explained by the internal pressure alone. In contrast, the
comparison between numerics and experiments for CCMV
yields different Young’s moduli for filled and empty capsids.
Even more astonishingly, experimentally the filled MVM vi-
rus shows a trimodal spring constant distribution, while the
empty capsid has a uniform elastic response [10]. These find-
ings disagree with our numerical results which indicate that
the elastic response of pentamers and hexamers becomes
similar. A possible explanation could be that apart from the
purely mechanical reinforcement, DNA has also a strong bio-
chemical effect on shell stability. The estimated rupture
forces for these viruses are summarized in Table III. As for
the empty capsids, the rupture force is slightly larger in the
numerical simulations.

4. Constrained volume

Numerically, a volume constraint can be implemented by
introducing an energetic penalty for any deviation from the
initial volume V,,, given by the potential

E,=k,(Vo-V)?, (88)

where V is the volume of the shell. In the simulations the
Lagrange multiplier was chosen to be k,=100x,. It is impor-
tant to note the k, must not be too large since otherwise the
total energy is dominated by E, and the deformation energy
E,+E, is only minimized with poor precision. As the insets
in Fig. 16 show, with the chosen value of k, a constant vol-
ume is ensured.

Representative  force  distance  curves for 7y
=10,102,10%,10* are shown in Fig. 16 and compared to the
results for empty shells and shells under pressure (p
=0.02k,/R). For y<10 and small indentations the force-
distance behavior agrees with that of empty shells. For larger
v the forces needed to indent pressurized capsids are gener-
ally somewhat larger (see Fig. 16).

From Fig. 16 we conclude that the constraint on the en-
closed volume does not have a significant influence on the

TABLE III. Experimental (F,) and numerical (F™, A"™) rupture
data. The numerical values are determined for the indentation of
hexamers. The rupture forces of filled capsids are discussed in Sec.
IV E. As far as we know, no experimental data are available for
filled ¢29. The tolerance in the numerical rupture forces for CCMV
is due to the tolerance in the bending stiffness, which arises from
the numerically observed bimodal spring constant distribution.

F, (nN) F (nN) A™ (nm)

$29

Empty 1.0 1.0 7.7

Filled 1.8 6.8
A

Empty 0.8 1.4 132

Filled 1.6 2.02 10.6
CCMV

Empty 0.63 0.7%0.1 5.2

Filled 0.8 1.1+0.2 5.9
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FIG. 16. Force-distance curves for empty (solid lines) capsids and filled capsids. The presence of DNA is modeled either by a pressure
contribution with p=0.02«,/R (dashed lines) or a volume constraint (dotted lines). In (a) and (b) the dashed and solid curves lie on top of
each other. Deviations between empty capsids and those with conserved volume become apparent only for indentation A~ 0.1R. Interest-
ingly, for y> 10 capsids under DNA pressure are generally stiffer than those with a fixed volume. The insets show the dependence of the
enclosed volume on the indentation depth. Clearly, the volume is not conserved for empty shells and shells with internal pressure.

linear spring constants. This can be explained as follows:
The spring constant is taken at small indentations where the
volume does not change significantly and the volume con-
straint Eq. (88) has only little effect. Minor deviations from
the empty shell behavior arise for small vy [see Fig. 16(a)],
where the scale-invariant bending energy dominates. As al-
ready discussed in Sec. II D, in this regime an empty shell
simply responds with a global shrinkage to external forces.
When the enclosed volume is fixed the shell has to transform
its shape, thus inducing additional curvature leading to a
higher spring constant. For larger vy these induced deforma-
tions are strongly localized even for empty shells and the
volume constraint is less significant in this regime.
However, significant differences in the elastic behavior
occur at larger indentations. Here, the spring constants (given
by the local slopes of the F-A curve) are generally somewhat
larger. This can be understood in the following picture. To
preserve constant cross-sectional area, the local compression
at the point of loading must be compensated by an additional
expansion of the equatorial area. Therefore, the influence of
the volume constraint becomes more apparent for larger 7.
An interesting phenomenon is observed for y=10* where
the volume constraint leads to a nonlinear stiffening of the

shell, resulting in a concave force distance curve [see Fig.
16(d)].

Figure 17(a) shows the rupture force as function of . For
the rupture force we observe a clear y! scaling for 7y
>1000. Figure 17(b) shows that in this vy range rupture oc-
curs in the inverted shape at a constant indentation A,
~0.4R. From the insets in Fig. 17(a) it is apparent that the
main rupture mechanism in filled capsids is stretching of the
material, in contrast to empty shells. For small y<<100,
where rupture occurs in the noninverted regime, the material
fails due to equatorial expansion. For higher 7y (after the
inversion transition) the shell breaks because of strong
stretching close to the point of loading.

V. SUMMARY AND OUTLOOK

The mechanical properties of viral capsids have recently
attracted much experimental interest. In this work we have
developed analytical and numerical methods to complement
these studies and to make theoretical predictions about the
elastic properties of empty and filled, skew and chiral
capsids.
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FIG. 17. (Color online) (a) Rupture force for capsids with volume constraint. The insets show the strain distribution in ruptured structures
at y=10 and 1000. The color code ranges from yellow (white) (4.5% compression) to red (black) (4.5% expansion). The main rupture
mechanism in filled capsids with fixed internal volume is material stretching. (b) Rupture indentation and numerically determined inversion
threshold as function of y. Above y= 100 rupture already occurs in the inverted regime. Correspondingly, the y=1000 structure shown in
the inset is slightly inverted. Above the buckling threshold, rupture occurs at a constant depth A= 0.4R.

Within a continuum approximation, which ignores the
presence of disclinations, we are able to identify a linear and
a nonlinear response regime. The properties of these two
regimes can already be analyzed in a simple scaling analysis
of the force-indentation relation. A variational approach,
however, puts these findings on more solid grounds. By ex-
panding the force-induced deformation up to second order
we find an exact formula for the functional dependence of
the linear spring constant on the FvK number y which differs
from the simple square-root law expected from scaling argu-
ments for small y. Assuming a critical strain at which the
shell breaks, we find that the rupture indentation is a constant
for all FvK numbers.

The mechanics at larger indentations and for large y can
only be investigated numerically. In the latter case the me-
chanical properties are dominated by the disclinations which
have to be taken explicitly into account. The arrangement of
the disclinations can be varied giving rise to skew and non-
skew capsids.

We have compared the elastic properties of different
capsid designs. Generally, skew capsids have lower deforma-
tion energy in the buckled ground state than nonskew ones.
This might explain why some viruses (such as PBCV 1 and
CIV) have a skew capsomer arrangement.

By simulating viral capsids under small deformations, we
find that for FvK numbers y<<1000 the spring constants of
both skew and nonskew agree well with the continuum re-
sults. Above y> 1000, pentamers become stiffer and hexam-
ers softer. Interestingly, skew capsids appear to be stiffer than
nonskew ones.

In our simulations the mechanical limits of viral shells
can be probed in an ensemble where every capsomer is in-
dented. In doing so, we find surprisingly strong deviations
from the expected constant rupture indentation even in the
linear regime, indicating that already for small indentations
the presence of disclination cannot be neglected. The capsid
design has no influence on the rupture behavior. Also, for
these ensemble measurements skew capsids are more rigid
and more stable than nonskew capsids. In particular, skew
capsids have higher rupture forces than nonskew ones.

Finally, we have studied the influence of internal pressure
arising from packed DNA on capsid mechanics. At high
pressure the elastic response of hexamers and pentamers be-
comes similar. An anisotropic pressure distribution leads to a
lower rupture pressure. However, anisotropy has hardly any
influence on the mechanical behavior under point force load-
ing.

Generally these findings indicate that the disclinations
have quite an influence on the elastic properties even below
the buckling threshold. For a deeper understanding it will
become important to find ways of including these in the ana-
lytical description. Possibly, these can be done by extending
the analysis of Ref. [37] to curved surfaces or by deriving the
shape equation for an icosahedral surface. However, none of
these approaches seem to be straightforward.

APPENDIX A: COMPARISON OF DISCRETIZATION
SCHEMES

Here, we compare the different discretization schemes for
the bending energy.

1. Heisenberg discretization scheme

A numerically very efficient representation of the mean
curvature uses the difference between the unit normals of
two neighboring facets. The bending energy is then given by
a Heisenberg-type Hamiltonian [63],

ise _ Kb _
By =" 2 m=nf =R/ (1-nom). (AD
(i) (i.j)
Here, the sum extends over all neighboring pairs of facets
(i,j). In the limit of a very fine triangulation (A1) represents

the continuous Helfrich Hamiltonian [37],
i 1
ESSC 2k, f dA H? - K (A2)

In simple geometries, such as cylinders or spheres, it is easy
to calculate directly both the discretized and the continuous
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FIG. 18. A cylinder can be triangulated in such a way that its
surface is subdivided into bands parallel to the cylinder axis. For
such a triangulation the relation between numerical and continuous
bending energy can be easily calculated.

bending energy. A direct comparison then yields the numeri-
cal relation between K, and «;, [64].

First consider a sphere covered with LV nearly equilateral
triangles with edge length a and area y3a?/4. The distance
between the midpoints of two neighboring facets is h
=a/V3. Since h=2Rsin(6/2)~R0 the angle between two
neighboring normal vectors is #=a/\3R. The number of
edges is E=3/2N where N=167R2/ 342, and the discretized
bending energy is

a—0
. a 4
E‘h“:iEE(l —cos—)—> —K,. (A3)
b b \ER \"E b

Comparison of this result with the continuous bending en-
ergy Fp=4mk, yields

%, = \3xk,. (A4)

Numerical simulations with spheres with up to 4000 vertices
have confirmed the relation E}]h“z 7.25kK, (data not shown).

However, one should be aware that Eq. (A4) is valid only
if all triangles are nearly equilateral and the mesh size be-
comes infinitely small. To illustrate this consider a triangu-
lated cylinder of length L as depicted in Fig. 18. Within a
band all normal vectors are parallel. Hence, only the longi-
tudinal edges contribute to the discrete bending energy. Gen-
erally, the number of bands N, can be chosen independently
from the number of longitudinal edges per band N,. The
angle between two neighboring bands is #=27/N,. As an
specific example, for isosceles triangles with height b and
base length a one has N,~27R/b and N =L/a. In the limit
of an infinitesimal triangulation N, ,N,—x, a/b=const, the
discrete bending energy becomes

2 N.
EY = EbNZN¢(1 — cos —) —RR2T—E=K,
' N, N,

(AS)

Comparing this result with the continuous bending en-
ergy, E,=k,mL/R yields k,/ k,=a/b. Since the lengths a and
b can be chosen independently this ratio is arbitrary. There-
fore, the discretization (Al) together with Eqs. (A4) (for
spheres) and (A5) (for cylinders) is appropriate for the nu-
merical treatment of membranes only when a high in-plane
rigidity gives preference to an equilateral triangulation. At
the latest when the structure is strongly deformed an equilat-
eral triangulation can no longer be guaranteed. This is the
case for small y where the weak in-plane elastic part of the
total energy does not impose any restrictions on the bond
length. In this regime the assumption of an equilateral mesh
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FIG. 19. (Color online) The linear spring constant of triangu-
lated spherical shells follows nicely the analytical curve (dotted
black line) when the Wintz discretization scheme is used. In the
simpler discretization scheme k; is somewhat lower. For y<<100 the
simple scheme is no longer valid due to strong deviations from the
equilateral triangulation. However, for y> 100 both discretization
schemes agree well with the analytical curve Eq. (60).

is strongly violated since the mesh size becomes very small
near the pentamers to adopt a more spherical shape. We have
compared the quality of both discretizations calculating the
spring constants of triangulated spherical shells for y be-
tween 1 and 100. As can be seen from Fig. 19, the Heisen-
berg discretization is not capable of reproducing the spring
constants correctly.

2. Discretization scheme by Wintz ef al.

In our study we consider strongly deformed spheres and
in this case the triangulation is, in general, no longer equi-
lateral and the discretization scheme (A1) is no longer valid.
Fortunately, there is an alternative approach to the discreti-
zation of the bending energy, that makes use of a direct geo-
metrical interpretation of the mean curvature H [36]. When
the points on a surface are moved along the local surface
normal by a distance &, the area of a surface patch changes
by 28/ H+O(&). For the discretized surface this gives rise to
the representation of the mean curvature of the ith edge [36]
as given by relation (70). As can be seen from Fig. 19, simu-
lations using this discretization scheme give a much better
agreement with the analytical spring constant. Alternatively,
methods using dual lattices could be employed (see Ref.

[64]).

APPENDIX B: NUMERICAL IMPLEMENTATION OF
ANISOTROPY

Generally, pressure is implemented numerically by taking
into account an additional contribution —pV to the total en-
ergy. For our numerical simulations of pressure distributions
with anisotropy a we assume a functional dependence of the
form

p(0)=p||<1+ 1_asin 0). (B1)

a
Here, the angle 0 < #< 7 is measured relative to an axis of
anisotropy a. We define the mean pressure p as the average
of (B1) over the surface, given by
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_ Tl -«
p=p\l+—-—). (B2)
4 «a
The energetic contribution of an anisotropic pressure is
Evz—dep(ﬁ). (B3)

Numerically, this integral is approximated by a sum over all
vertices i,
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isc 1_a/|xi><a|

xillal

Here, x; is the position of the vertex i and sin 6 is given by a
vector product of position vector x; and axis a. The volume
V; is then

1 i i
V':E.E.,) ;- (K X ). (B5)

With this definition the sum over all V; results in the total
volume of the capsid. Here, k; is the direction of the jth edge
connected to the vertex i. The sum extends over all pairs of
neighboring edges of vertex i.
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