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We describe an experimental and computational investigation of the ordered and disordered phases of a
vibrating thin, dense granular layer composed of identical metal spheres. We compare the results from spheres
with different amounts of inelasticity and show that inelasticity has a strong effect on the phase diagram. We
also report the melting of an ordered phase to a homogeneous disordered liquid phase at high vibration
amplitude or at large inelasticities. Our results show that dissipation has a strong effect on ordering and that in
this system ordered phases are absent entirely in highly inelastic materials.
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Ordered phases observed in noncohesive granular media
demonstrate both profound similarities to and differences
from those observed in elastic systems, where the results of
equilibrium statistical mechanics apply �1–5�. Controlled ex-
periments on simple model systems are necessary to develop
and test extensions of statistical mechanics to nonequilibrium
systems �6�. In previous research �3,7–9�, we have reported
the existence of ordered phases in vibrated dense thin layers
of identical metal spheres. For monolayers at high densities,
hexagonal ordering is observed �7�, and recent results from
our group �9� and, in a somewhat different setup, Reis et al.
�1�, show that the crystallization of the ordered phase can be
directly mapped onto the analogous two-dimensional �2D�
equilibrium system. In the presence of a confining lid, we
have reported a complex phase diagram that is closely re-
lated to that observed in similarly confined equilibrium col-
loidal systems �10�, including two-layer crystals with square
or hexagonal symmetry �3,8�. In a recent study Clerc et al.
�4� extended this work to quasi-one-dimensional systems,
and showed that the transition was mediated by traveling
waves and was triggered by negative compressibility.

In this paper we present the experimental phase diagram
for the confined granular layer in more detail than reported
previously, for both stainless steel and brass spheres. We
report the existence of a melting transition of the ordered
phase as the vibration amplitude is increased, and show that
similar behavior is observed in computer simulations of in-
elastic spheres. The melting of the crystalline phase occurs
significantly earlier in the system of brass spheres, and com-
puter simulations show that the ordered phase disappears en-
tirely in the presence of high inelasticity. This result demon-
strates that dissipation can dominate over geometric packing
effects for sufficiently inelastic spheres.

The experimental system consists of nearly identical me-
tallic spheres confined in a gap which lies horizontally be-
tween a circular plate and a lid �Fig. 1�. In this paper we
report results with stainless steel and brass spheres with di-
ameter �=1.5875�0.0032 mm �1 /16 in.�. The plate diam-

eter is 168 mm, or equivalently, dp=112�, and the gap spac-
ing is h=2.78 mm=1.75� for all experiments. We
characterize the system’s density with the 2D density �, de-
fined as �=N /Nmax, where Nmax=11 377 is the maximum
number of balls that can fit in a hexagonally packed mono-
layer of balls on the plate at rest. In the experiments reported
here the frequency of the sinusoidal plate vibration, provided
by an electromagnetic shaker, was fixed at �=60 Hz. In what
follows we report the amplitude of the oscillation, A, as the
reduced acceleration �=A�2 /g, where �=2�� and g
=9.8 m/s2 is the acceleration due to gravity. The acceleration
is measured by a fast response accelerometer mounted on the
bottom plate and maintained at a constant value with a
computer-based feedback loop.

Under experimental conditions similar to our setup, it has
been shown that the particle-particle collisions can be accu-
rately described by a model characterized by three coeffi-
cients: e, which characterizes the incomplete restitution in
the normal component of the relative particle velocities in
the collision; 	0, which is the tangential coefficient of resti-
tution for nonsliding collisions; and 
, which is a frictional
coefficient for sliding collisions �11�. Brass and steel spheres
differ primarily in their coefficients of normal restitution e:
For steel, e=0.95; and for brass, e=0.77 �12�. Therefore,
brass balls lose approximately 4 times more energy per unit
mass in particle-particle collisions, compared to steel balls,
since the kinetic energy lost by the normal component of
relative velocities is proportional to 1−e2 �13� �1−e2

=0.0975 for steel whereas 1−e2=0.4071 for brass�. Thus, the
system of brass spheres is significantly further from equilib-
rium than the comparable system of stainless steel spheres.

In order to map out an experimental phase diagram, we
started from an acceleration close to 1g and increased the
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FIG. 1. Schematic side view of the experimental setup, consist-
ing of two horizontal planes, separated by a gap of h=1.75�. Both
walls vibrate together sinusoidally in the vertical direction.
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amplitude in small increments ���0.025g. After each in-
crement, we waited until there was no discernible evolution
of the system, and then waited several minutes longer to
ensure that a steady state had been reached. The phases
present were then determined by visual inspection. This pro-
cedure was repeated for a range of densities, for both steel
and brass spheres. The results are summarized in Fig. 2.
Figures 2�a� and 2�b� show the phase diagrams obtained for
steel and brass, respectively, while panels �c� and �d� show
expanded views of the region below �=2.

At the lowest amplitudes, we observe a “collapse” of mo-
tionless, hexagonal close-packed spheres �7�. At slightly
higher acceleration, the spheres order into a fluctuating hex-
agonally ordered single layer �9�. As the acceleration is in-
creased further, the hexagonal phase melts into a homoge-
neous liquid. If we continue to increase input acceleration,
small clusters, denser than the surrounding fluid, begin to
appear, initially unstable in time. With further increase of
input acceleration one of the clusters becomes more stable
and nucleates a two-layer ordered phase with square symme-
try �8�. These phase diagrams are consistent with previous
reports, but are more comprehensive and represent the direct
comparison between different types of particles.

This experimental phase diagram shows two notable fea-
tures. The first one is that for some densities the square phase

melts at high vibration amplitude, and the second one is that
for some parameter ranges the ordered square phase present
in steel spheres is completely absent in brass. �For instance
the square phase forms for steel spheres in the range of den-
sity �=0.80–0.815, while it is not present for brass spheres
for densities below �=0.82 for any vibration amplitude.�
While much of the phase behavior of this system can be
understood by analogy with equilibrium colloidal systems
�3,8�, the melting of the square phase due to increase of
acceleration and/or inelasticity reported here are purely non-
equilibrium effects. We have speculated that some of the
behavior we have observed upon increasing acceleration may
be due to layer compression �3,8�. It is not clear why this
effect would be more pronounced in more inelastic material,
except that it is clearly somehow associated with deviations
from elastic behavior. Computer simulations by Clerc et al.
�4� of a confined 2D �hard disk� system showed that increas-
ing inelasticity reduced the liquid-solid coexistence region,
consistent with the results reported here.

To further investigate the dependence of the phase coex-
istence on acceleration and inelasticity, we have measured
the area occupied by the square phase as a function of input
acceleration, from its appearance up to its disappearance, for
both brass and steel spheres. The results for two different
densities are shown in Fig. 3. In all cases the freezing tran-
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FIG. 2. �Color online� Experimental phase map for steel �a� and brass �b� spheres. The critical reduced acceleration �, for which a phase
appears is plotted against the 2D density. We find the following phases: Hexagonal-collapse ���, hexagonal-liquid ���, double-hexagonal-
liquid ���, liquid ���, square-liquid-hexagonal ���, square-liquid ���. In the lower panels the phase maps for steel and brass, respectively,
are expanded in the ��1–2 region.
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sition is abrupt, consistent with previous observations �8�,
while the disappearance is gradual. For both density values,
the square phase maximum size is lower for the more inelas-
tic brass spheres and it is observed over a smaller range of
accelerations.

In order to confirm that the inevitable imperfections in the
experimental setup are not responsible for the features ob-
served in the phase map and to more thoroughly study the
effect of varying inelasticity, we have also analyzed a series
of molecular dynamics simulations �MD�, using the same
procedure as in �8�. The collisions are characterized by three
forces: Two normal forces �one elastic restoring force, pro-
portional to particle overlap, and one frictional dissipative
force, proportional to relative normal velocity� and a tangen-
tial force �inelastic�. We have used values of parameters in
the simulation that mimic the behavior of stainless steel balls
�see �14� for details�, and then vary the normal frictional
force by varying the constant of proportionality, �n, to inves-
tigate the effect of increased inelasticity. The interactions in-
cluded in the model do not capture the full complexity of real
inelastic collisions, but reproduce the dominant effects of
vibration, collisions, and dissipation, and show all of the
same qualitative features of the experiment.

The simulations followed the same sequence as the labo-
ratory experiments. First, an initial state is prepared by plac-
ing spheres at random positions, with the constraint that par-
ticles do not overlap. Particles are assigned random
velocities chosen from a uniform distribution. The simulation
then runs at constant frequency and amplitude until a steady
state is reached �as indicated by a constant granular tempera-
ture�, which typically takes a few seconds of simulated time.
Then, the acceleration was increased in small increments,
��=0.025g, keeping the frequency constant, with sufficient
delay between each increase to ensure that a steady state was
again reached. As reported previously �8�, the simulations
reproduce the ordered phases observed experimentally. The
crosses in Fig. 3�a� show the size of the square phase as a
function of acceleration for one value of the normal dissipa-
tive force parameter, �n=200 s−1, and the plus signs show
the size for a larger value, �n=262.5 s−1, for a simulation
with N=2000 particles.

The simulation reproduces the behavior of the experi-
ments: The ordered phase disappears for large acceleration
amplitudes, and the region of stability is smaller for more
inelastic spheres. An example of the evolution upon increas-
ing acceleration is shown in Fig. 4. Figure 4�a� shows a
rendering of the sphere positions for �=1.85, where the
square phase is stable. Upon sudden increase in acceleration
amplitude to �=3.5, the crystal shrinks �Fig. 4�b�� and then
disappears entirely, leaving only a disordered state �Fig.
4�c��.

Figure 5�a� shows the critical value of the acceleration for
the formation of the square phase at �=0.895 upon increas-
ing acceleration �solid symbols� and for its melting �open
symbols� as a function of inelasticity, for N=2000 �triangles�
and N=6000 �squares�. For both values of N, the region of
stability of the crystal decreases as the inelasticity increases,
as does the maximum size of the crystal �data not shown�.
Above a critical value of �n ��n

crit�, the crystal does not form
for any vibration amplitude. Figure 5�a� also shows that the
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FIG. 3. The area of the square phase, Ac, divided by the plate
area, Ap, in experiments with densities �=0.82 �triangles� and �
=0.86 �squares� for both brass �open symbols� and steel balls �solid
symbols�, and MD simulations ��=0.90 and �n=200 s−1 �
� and
�n=262.5 s−1 ���, N=2000� as a function of input acceleration.

FIG. 4. Renderings of MD simulations snapshots, for different
values of the vibration amplitude. In �a�, with �=1.85, there is a
stable ordered two-layer square phase coexisting with the disor-
dered phase. �b� A snapshot �3 s after a sudden acceleration in-
crease to �=3.5, showing the shrinking unstable crystal. �c� The
steady state for �=3.5, where the only present phase is a homoge-
neous liquid ��n=200 s−1, �=0.895, N=2000�.
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crystallization transition depends on the size of the simulated
system. Finite-size effects are well known in constant vol-
ume simulations of equilibrium transitions �15�, and arise
because the formation of a dense phase exceeding the critical
nucleation size results in a finite reduction in the density of
the coexisting disordered phase. The appearance of finite-
size effects in the granular crystallization suggests that some-
thing analogous to a strong surface tension is present, despite
the absence of attractive interactions. The origin of this effect
is unknown, but we note that the granular temperature in the
crystal is higher near the edges than in the center �8�, and this
boundary layer may contribute to an effective surface ten-
sion.

In Fig. 5�b� we plot the value of �n
crit as a function of

system size. The results clearly show that the finite-size ef-
fects become negligible for sufficiently large systems, and
that there is a critical value of inelasticity above which the
ordered phase is suppressed for any system size. This sur-
prising result provides a vivid demonstration that free-
volume considerations that explain the transitions observed
in confined equilibrium hard-sphere systems are not suffi-
cient to describe the behavior of inelastic spheres, despite the
strong similarities. We have observed previously that the
granular temperature is significantly lower in the crystal than

in the coexisting liquid �8�, and suggested that this difference
may account for the presence of a coexistence region signifi-
cantly larger than that found in equilibrium systems �3�. To
investigate whether the absence of equipartition was also
playing a role in the suppression of the crystalline phase, we
measured the granular temperature in the ordered and liquid
phases in the MD simulations reported here. The tempera-
tures of the phases do change with the dissipation, but we
observed no obvious anomalies near �n

crit. We did find that
the density of the crystal increases with increasing dissipa-
tion, and that close to �n

crit the crystal is nearly close-packed.
Finally, we investigated whether the melting transition is

described by the Lindemann ratio �16�, the ratio of the rms
fluctuation in particle positions in the solid phase to the lat-
tice spacing. Equilibrium solids typically melt when this ra-
tio exceeds about 0.15, and the melting of a granular mono-
layer was found to be consistent with this criterion �1�. We
find that the Lindemann ratio at the melting line �the open
squares in Fig. 5�a�� ranges from about 0.3 at very low in-
elasticity ��n=0.1 s–1� to 0.2 at �n=350 s–1. Due to the small
size of the crystal close to the melting transition it is difficult
to unambiguously measure the amplitude of the positional
fluctuations, so these preliminary results will need to be con-
firmed with larger scale simulations. We have observed pre-
viously that the diffusion coefficient in the gas phase is larger
for more inelastic particles �3�, presumably as a result of
increased correlations. The rms fluctuations in the solid
phase also increase with increasing inelasticity for fixed ac-
celeration �data not shown�. However, the amplitude of the
fluctuations decrease upon decreasing acceleration, and
along the melting line the decrease from the acceleration is
greater than the increase from the inelasticity, resulting in a
reduction of the Lindemann ratio. These results suggest that
the effects of forcing and/or dissipation on the ordering tran-
sition result in a complexity that is not present in equilibrium
systems, where the Lindemann ratio usually provides a reli-
able guide to the transition point.

These results demonstrate that the phase behavior of
steady states of inelastic spheres is considerably different
than their equilibrium analogs. The extension of the ideas of
equilibrium statistical mechanics to nonequilbrium systems
remains an ongoing challenge, and the insights gained from
careful comparisons of closely analogous model systems are
necessary to develop and test new approaches. Our observa-
tion that ordering is suppressed by inelasticity for identical
inelastic spheres shows that quantitative changes in the
strength of dissipation can qualitatively alter the phase dia-
gram of even the simplest granular media.
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FIG. 5. �a� Critical acceleration values from MD simulations for
square phase nucleation �solid symbols� and melting �open sym-
bols�, for varying �n, for simulations with N=2000 �triangles� and
N=6000 �squares�. �b� Maximum value of �n for existence of the
square phase in MD simulations with different values N ��=0.895,
h=1.75�, �=60 Hz�.
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