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This study is related to the fluctuation theory of electromagnetic fields, charges, and currents. The three-
dimensional system under consideration is a semi-infinite conductor, modeled by the jellium, in vacuum. In
previous theoretical studies it was found that the correlation functions of the surface charge density on the
conductor decay as the inverse cube of the distance at asymptotically large distances. The prefactor to this
asymptotic decay was obtained in the classical limit and in the quantum case without retardation effects. To
describe the retarded regime, we study a more general problem of the semi-infinite jellium in thermal equilib-
rium with the radiated electromagnetic field. By using Rytov’s fluctuational electrodynamics we show that, for
both static and time-dependent surface charge correlation functions, the inclusion of retardation effects causes
the quantum prefactor to take its universal static classical form, for any temperature.
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I. INTRODUCTION

Experimental and theoretical investigations of charged
systems in thermal equilibrium play a key role in the under-
standing of various fundamental properties of solids and liq-
uids, in the bulk as well as on the surface. There exist two
complementary theoretical approaches to Coulomb models:
One based on the solution of microscopic models, the other
based on the assumption of validity of macroscopic electro-
dynamics. The microscopic description is more laborious and
complicated but, if available, it can reveal restricted applica-
bility of the macroscopic theory. On the other hand, the mac-
roscopic phenomenology usually allows us to predict, with
much less effort, basic features of relatively complicated
complex physical systems.

In this paper, we study the fluctuations of electromagnetic
fields, charges, and currents in systems formulated in the
three-dimensional �3D� Cartesian space of points r= �x ,y ,z�.
We shall deal with semi-infinite geometries, inhomogeneous
say along the first coordinate x. It will be sometimes useful
to denote the remaining two coordinates normal to
x as R= �y ,z�. The physical situation we are interested in is
pictured in Fig. 1. In its most general formulation, the model
consists of two semi-infinite media with the frequency-
dependent dielectric functions �1��� and �2���, in the half-
space �1= �r= �x ,R� ;x�0� and in the complementary half-
space �2= �r= �x ,R� ;x�0�, respectively. The interface
between the media is localized at x=0. Although we shall
derive basic formulas for this general case, the analysis of
the results will be done for the specific case when the half-
space �1 is occupied by a Coulomb fluid, namely a jellium,
and the half-space �2 is formed by an impenetrable plain
hard wall with the vacuum permittivity. For a Coulomb fluid
composed of charged particles, the average particle density is
varying at microscopic distances �of the order of the corre-

lation length� from the interface. Since we shall be interested
in macroscopic electrodynamic phenomena at distances
much larger than the microscopic length scale, we can as-
sume that the Coulomb fluid and the dielectric function are
homogeneous in the whole half-space �1.

The presence of the Coulomb fluid gives rise to a surface
charge density � on the conductor which must be understood
as being the microscopic volume charge density integrated
on some microscopic depth. It is associated with the discon-
tinuity of the electric field E at the surface x=0 of the con-
ductor. At a point r= �0,R� on the surface, in Gauss units,

4���R� = Ex
+�R� − Ex

−�R� , �1�

where the superscript 	 ��� means approaching the surface
through the limit x→0+ �x→0−�. The quantity of interest is
the surface charge density correlation function between two
points

���R���R���T =
1

�4��2


��Ex
+�R� − Ex

−�R���Ex
+�R�� − Ex

−�R����T,

�2�

where �¯�T represents a truncated equilibrium statistical av-
erage, �AB�T= �AB�− �A��B�, at the inverse temperature �.
The system is translationally invariant in the R plane and so
the charge correlation function depends only on the distance
between the points,
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FIG. 1. Two semi-infinite media characterized by dielectric
functions �1��� and �2���.
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���R���R���T = S�	R − R�	� . �3�

It is useful to introduce the Fourier transform

S�q� =
 d2Reiq·RS�R� , �4�

with q= �qy ,qz� being the two-dimensional �2D� wave vector.
For classical Coulomb fluids composed of charged par-

ticles with the instantaneous Coulomb interactions, S�R� can
be retrieved by simple macroscopic argument based on the
electrostatic method of images, giving �1�

�Scl�R� = −
1

8�2

1

R3 , �5�

where the distance R= 	R	 is much larger than any micro-
scopic length scale, like the particle correlation length. Since,
in the sense of distributions, the 2D Fourier transform of
1 /R3 is −2�q, the function �Scl�q� has a kink singularity at
q=0,

�Scl�q� �
1

4�
q, q → 0. �6�

Note the universal form of the asymptotic formulas, indepen-
dent of the composition of the Coulomb fluid, which is re-
lated to specific sum rules for systems with Coulomb inter-
action �for a review, see Ref. �2��. We see that the surface
charge correlation on the conductor has a long-ranged decay.
Such behavior is in contrast with a short-ranged, usually ex-
ponential, decay which occurs in the bulk charge density
correlations. The same result �5� has been obtained also in
the microscopic language �3�. The macroscopic formulas for
the surface charge density correlation functions on conduc-
tors of various shapes were derived by Choquard et al. �4�.
The inverse-power-law behavior of the surface charge den-
sity of type �5� causes the conductor-shape dependence of
the dielectric susceptibility tensor �which relates the average
polarization of the system to a constant applied electric field,
in the linear limit� �4,5�. Such a phenomenon is predicted by
the macroscopic laws of electrostatics �6�.

The extension of the classical result �5�, or equivalently
�6�, to a quantum Coulomb fluid was accomplished in Ref.
�7�. The model under consideration was the jellium, i.e., a
system of pointlike particles of charge e, mass m, and bulk
number density n, immersed in a uniform neutralizing back-
ground of charge density −en; the background is assumed to
have the vacuum dielectric constant 1. The dynamical prop-
erties of the jellium have a special feature: There is no vis-
cous damping of the long-wavelength plasma oscillations for
identically charged particles. The absence of damping was
crucial in the derivation of the large-distance behavior of the
surface charge correlation function using long-wavelength
collective modes, namely the nondispersive �if the pressure
term is neglected� bulk plasmons with frequency �p and the
surface plasmons with frequency �s, given by

�p = �4�ne2

m

1/2

, �s =
�p

�2
. �7�

In the Fourier space, the obtained asymptotic q→0 result has
the nonuniversal form �7�

�Squ�q� �
�2f��s� − f��p��

4�
q, q → 0, �8a�

f��� =
���

2
coth����

2

 . �8b�

According to the correspondence principle, a quantum sys-
tem admits the classical treatment in the high-temperature
region, which corresponds in our case to ��→0. In this
limit, the function f���=1 for any � and the quantum rela-
tion �8a� indeed reduces to the classical one �6�.

The surface charge correlation function discussed up to
now was static, i.e., time taken at the two distinct points was
the same. The generalization to the time-dependent correla-
tion function is accomplished by introducing a time-
dependent surface charge density, defined as the Heisenberg
operator

��t,R� = exp�iHt/����R�exp�− iHt/�� �9�

with H being the Hamiltonian of the Coulomb system. Since
the Heisenberg operators at different times do not commute,
it is useful to introduce the time-dependent surface charge
correlation function in a symmetrized form

���R���R���t �
1

2
���t,R���0,R�� + ��0,R����t,R��T.

�10�

This symmetrized correlation function still possesses the
translational invariance in the R plane

���R���R���t = Squ�t, 	R − R�	� . �11�

The asymptotic q→0 formula was shown �7,8� to be

�Squ�t,q� �
q→0

�2f��s�cos��st� − f��p�cos��pt��
4�

q . �12�

For t=0, this formula reduces to the static one �8a�. Note that
in the classical limit with f���=1 for any �, the surface
charge correlation function is nonuniversal and exhibits a
periodic time dependence of type

�Scl�t,q� �
q→0

�2 cos��st� − cos��pt��
4�

q . �13�

The quantum static and time-dependent results �8a� and
�12�, respectively, were derived in the nonretarded regime
where the speed of light c is taken to be infinitely large,
c=
. The effects of the retardation take place just at large
distances we are interested in, and so they should be taken
into account. To describe the retarded regime with the finite
value of c, we study a more general problem of the semi-
infinite Coulomb system in thermal equilibrium with the ra-
diated electromagnetic �EM� field.
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We intend to treat both the Coulomb fluid and the radia-
tion like quantum objects. For the static case, a substantial
simplification arises in the high-temperature limit ��→0.
First, according to the correspondence principle, both matter
and radiation can be treated classically. Second, the applica-
tion of the Bohr–van Leeuwen theorem �9,10� leads to the
decoupling between classical matter and radiation, and to an
effective elimination of the magnetic forces in the matter; for
a detailed treatment of this subject, see Ref. �11�. This means
that the matter can be treated as a classical matter, unaffected
by radiation, where the charges interact only via the instan-
taneous Coulomb potential. Because of the absence of quan-
tum effects for ��→0 we expect that the classical formula
�6� will be restored in this limit. How the retardation effects
manifest themselves at a finite temperature is an open ques-
tion which is studied in this paper. All that has been said in
this paragraph does not apply, in general, to time-dependent
quantities �12�. In particular, in the presence of the radiation,
it can happen that the classical time-dependent result �13� is
not reproduced in the limit ��→0.

To deal with the proposed physical problem of such com-
plexity, we shall use a macroscopic theory of equilibrium
thermal fluctuations of EM field, presented by Rytov �13�
and further developed in Ref. �14�. This theory is presented
also by Landau and Lifshitz �15� of which we adopt the
notation. Although the EM fluctuation theory was exten-
sively applied in investigations of thermally excited surface
EM waves �16,17�, we did not find a study about the present
topic concerning the long-range decay of surface charge cor-
relation functions.

The main results obtained in this paper are the following.
The quantum static and time-dependent prefactors of the
small-q behaviors �8a� and �12�, respectively, remain valid at
some intermediate distances, where the retardation effects do
not play any role. In the strict large-distance asymptotic
limit, for both static and time-dependent surface charge cor-
relation functions, the inclusion of the retardation effects
causes the quantum prefactor to take its static classical form,
see Eqs. �5� or �6�.

The paper is outlined as follows. In Sec. II, we review
shortly the EM fluctuation theory and derive the formula for
the surface charge correlation function between two semi-
infinite media. The analysis of the asymptotic form of this
formula for the configuration of interest, jellium vacuum, is
the subject of Sec. III. A brief recapitulation and concluding
remarks are given in Sec. IV.

II. DERIVATION OF BASIC FORMULAS

We consider the �3+1�-dimensional space with spatial
vectors r and time t. The physical system of interest is a
medium and an EM field present in it, which are in thermo-
dynamic equilibrium.

The medium is composed of moving charged particles
which are assumed to be nonrelativistic. In the long-
wavelength scale much larger that the interparticle distances
in the medium, its isotropic macroscopic characteristics are
the frequency and �possibly� position dependent dielectric
function ��� ;r� and permeability ��� ;r�. We shall assume

that the medium has no magnetic structure, i.e., it is not
magnetoactive, and �=1.

The matter is coupled to the EM field. The classical EM
field potentials form a 4-vector �� ,A�, where ��t ,r� is the
scalar potential and A�t ,r� is the vector potential. In the
considered Weyl gauge �=0, the microscopic electric and
magnetic fields are given by

E = −
1

c

�A

�t
, B = curl A . �14�

The elementary excitations of the quantized EM field are

described by the photon operators Âj �j=x ,y ,z� which are
self-conjugate Bose operators.

Medium and coupled radiation are in thermal equilibrium.
The EM fields and inductions are random variables which
fluctuate around their mean values. These mean values are
the quantities obeying macroscopic Maxwell’s equations.
The construction of all types of photon Green’s functions is
based on the retarded Green function, defined as the tensor

iDjk�t;r,r��

= ��Âj�t,r�Âk�0,r�� − Âk�0,r��Âj�t,r�� , t � 0,

0, t � 0.
�

�15�

Here, j, k=x, y, z, Âj�t ,r� denotes the vector-potential opera-
tor in the Heisenberg picture and the angular brackets repre-
sent equilibrium averaging over the Gibbs distribution of the
whole system. In what follows, we shall work in the Fourier
space with respect to time. The Fourier transform of the re-
tarded Green function reads as

Djk��;r,r�� = 

0




dtei�tDjk�t;r,r�� . �16�

For media with no magnetic structure, the Green function
tensor possesses the symmetry

Djk��;r,r�� = Dkj��;r�,r� . �17�

Within the framework of the fluctuational electrodynam-
ics of Rytov �13–15�, the retarded Green function tensor ful-
fills the differential equation

�
l=1

3 � �2

�xj�xl
− � jl� − � jl

�2

c2 ���;r�
Dlk��;r,r��

= − 4��� jk��r − r�� . �18�

Here, in order to simplify the notation, the vector r
= �x ,y ,z� is represented as �x1 ,x2 ,x3�. The differential equa-
tion �18� must be supplemented by certain boundary condi-
tions. The second space variable r� and the second index k
are not involved in the mathematical operations on the ten-
sor, so they only act as parameters. The boundary conditions
are thus formulated with respect to the coordinate r and the
Green function Dlk�� ;r ,r�� is considered as a vector with
the components l=x ,y ,z. There is an obvious boundary con-
dition of regularity at infinity, 	r	→
. At an interface be-
tween two different media, the boundary conditions corre-
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spond to the macroscopic requirements that the tangential
components of the fields E and H=B be continuous. Since
the electric and magnetic fields are related to the vector po-
tential by �14�, the role of the vector components El, up to an
irrelevant multiplicative constant, is played by the quantity

i
�

c
Dlk��;r,r�� �19�

and the role of the vector component Hl is played by the
quantity

�
j

curllj Djk��;r,r�� . �20�

Here, we use the notation curllj =�melmj� /�xm with elmj being
the unit antisymmetric pseudotensor. In both cases �19� and
�20�, the tangential components, which are continuous at the
interface, correspond to indices l=y ,z.

The fluctuation-dissipation theorem tells us that the fluc-
tuations of random variables can be expressed in terms of the
corresponding susceptibilities. For the assumed symmetry
�17�, the theorem implies

�Ej�r�Ek�r���� = −
�2

c2 coth����/2�Im Djk��;r,r�� ,

�21�

where the spectral distribution of the electric-field fluctua-
tions �Ej�r�Ek�r���� is the Fourier transform in time of the
symmetrized �truncated� correlation function

1

2
�Êj�t,r�Êk�0,r�� + Êk�0,r��Êj�t,r��T. �22�

Since the studied problem of two semi-infinite media, pre-
sented in Fig. 1, is translationally invariant in the R-plane
perpendicular to the x axis, we introduce the Fourier trans-
form of the Green function tensor with the wave vector
q= �qy ,qz�,

Djk��;r,r�� =
 d2q

�2��2e−iq·�R−R��Djk��,q;x,x�� . �23�

At this time, the dielectric functions �1��� and �2��� are
taken as general. The Green function tensor for simple planar
systems was obtained, as the solution of the differential
equation �18� supplemented by the mentioned boundary
conditions, in a number of papers, see, e.g., Appendix A of
Ref. �16� or, for multilayers, Ref. �18�. We shall not repeat
the derivation, but only write the final formulas. Let us de-
fine for each of the half-space regions the inverse length
� j�� ,q� �j=1,2� by

� j
2��,q� = q2 −

�2

c2 � j���, Re � j��,q� � 0; �24�

from two possible solutions for � j we choose the one with
the positive real part in order to ensure the regularity of the
Green functions at asymptotically large distances from the
interface �see below�. We shall only need the quantity
Dxx�� ,q ;x ,x�� for which the previously obtained results can
be summarized as follows:

�i� If x ,x��0,

Dxx =
4��c2

�2�1
��x − x��

−
2���cq�2

�2�1�1
�e−�1	x−x�	 +

�1�2 − �2�1

�1�2 + �2�1
e−�1�x+x��
 .

�25�

�ii� If x�0 and x��0,

Dxx = −
4���cq�2

�2

1

�1�2 + �2�1
e�2x−�1x�. �26�

�iii� The case x�0 and x��0 is deducible from Eq. �26�
by using the symmetry relation �17�.

�iv� If x ,x��0, considering the 1↔2 media exchange
symmetry, we obtain from Eq. �25� that

Dxx =
4��c2

�2�2
��x − x��

−
2���cq�2

�2�2�2
�e−�2	x−x�	 +

�2�1 − �1�2

�2�1 + �1�2
e�2�x+x��
 .

�27�

The symmetrized surface charge correlation function �10�
is expressible in terms of the symmetrized xx electric-field
fluctuations by using an obvious analogy of relation �2�.
These electric-field fluctuations are related to the xx elements
of the Green function tensor via Eq. �21�. The terms propor-
tional to ��x−x�� in Eqs. �25� and �27� can be ignored since
they originate from the short-distance terms proportional to
��r−r�� which do not play any role in the large-distance
asymptotic. Since the combination

Dxx�0+,0+� + Dxx�0−,0−� − 2Dxx�0+,0−�

= −
4���cq�2

�2

1

�1�2 + �2�1
� �2

�1
+

�1

�2
− 2
 , �28�

we finally get

�S��,q� =
��

4�
coth����/2�q2 Im g��,q� , �29a�

g��,q� =
1

�1��,q��2��� + �2��,q��1���
��1��� − �2����2

�1����2���
.

�29b�

Our task is to determine, for given �1��� and �2���, the
small-q behavior of the function

�S�t,q� = 

−



 d�

2�
e−i�t�S��,q� . �30�

III. ANALYSIS OF ASYMPTOTIC BEHAVIOR

In any material medium, the complex dielectric function
���� possesses the symmetry �19�
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�*��� = ��− ��, � � R . �31�

Denoting ����=�����+ i�����, where both the real ����� and
imaginary ����� parts are real numbers, this means that

����� = ���− ��, ����� = − ���− �� . �32�

The dielectric function has many other general properties.
Like for instance, for any material medium with absorption it
holds as

����� � 0 when � � 0. �33�

We shall analyze the general fluctuation results of the pre-
ceding section for the model configuration of interest: The
semi-infinite jellium in vacuum. As concerns the jellium, the
dissipation goes to zero in the limit of small wave numbers
�20�. The dielectric function can be thus shown to be �21� the
Drude one

�1��� = 1 −
�p

2

��� + i��
, �34�

where �p is the plasma frequency defined in Eq. �7� and
the dissipation constant � is taken as positive infinitesimal,
�→0+. The Weierstrass theorem reads as

lim
�→0+

1

x � i�
= P�1

x

 � i���x�, x � R , �35�

where P denotes the Cauchy principal value. It is tempting to
apply this theorem directly to the representation �34�, with
the result

�1���� = 1 − �p
2P� 1

�2
, �1���� = ��p
2 1

�
���� . �36�

Although both real and imaginary parts satisfy the necessary
conditions �32� and �33�, the expression for the imaginary
part has no meaning. In the algebraic manipulations with
�1���, we must therefore keep the positive infinitesimal � in
the representation �34� up to the end and to apply the Weier-
strass theorem �35� only to the final formula. In the vacuum
region,

�2��� = 1. �37�

To determine the sign of some quantities, we shall sometime
need the infinitesimal imaginary part of the vacuum dielec-
tric constant. To fulfill the required properties �32� and �33�,
the vacuum dielectric constant in fact corresponds to the
limit

�2��� = 1 + i sgn���0+. �38�

It is evident that the inverse length �, defined by the re-
lation �24�, also possesses the symmetry

�*��,q� = ��− �,q�, � � R . �39�

In terms of the real and imaginary parts, ��� ,q�=���� ,q�
+ i���� ,q�, this symmetry is equivalent to

����,q� = ���− �,q�, ����,q� = − ���− �,q� . �40�

A. Nonretarded limit

In the nonretarded limit c=
, the definition �24� becomes
�1=�2=q and Eq. �29b� reduces to

g��,q� =
1

q
� 1

�1���
+

1

�2���
−

4

�1��� + �2���
 . �41�

Substituting here the dielectric functions �34� and �37�, and
then applying the Weierstrass theorem �35�, we obtain

Im g��,q� =
��p

2

q
sgn�������2 − �s

2� − ���2 − �p
2��

=
�

q
��2�s���2 − �s

2� − �p���2 − �p
2�� , �42�

the frequency of surface plasmons �s is defined in Eq. �7�.
Using the general formula for the � functions

��h�x�� = �
j

��x − xj�
	h��xj�	

, �43�

where �xj� are the real roots of h�x�, it is a simple task to
show that relations �29a� and �30� imply the expected result
�12�.

The c=
 treatment of our equations is mathematically
accessible and reproduces the previous “nonretarded” results.
Since the true value of c is finite, there exists a limitation for
wave numbers q or distances ��1 /q for which retardation
effects are negligible. We can find this limitation via a simple
dimensional analysis of Eqs. �29� and �30�. The invoked sub-
stitution ���=�� tells us that there are two dimensionless
quantities in the theory,

u = ��cq, v = ���p. �44�

The requirement of the smallness of u�1 is equivalent to the
natural condition

�ph � � , �45�

where �ph���c is the thermal de Broglie wavelength of
photon. The nonretarded limit c→
 describes adequately
the region corresponding to the inequality u�v, i.e.,

� �
c

�p
. �46�

For rough value of the free electron density in metal n
�1029 m−3, taking e and m as the charge and mass of elec-
tron, we have �p�1015 s−1 and so

� � 10−7 m � 102d , �47�

where d�10−9 m is the mean interparticle distance. We see
that the distance, over which the retardation effects are neg-
ligible and so the formula �12� is adequate, is relatively large.

B. Retarded region

If we want to deal strictly with the large-distance
asymptotic behavior of the surface charge correlation func-
tion, we must take c as a finite number and consider the
region corresponding to the inequality u�v, or cq��p. This
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requires a detailed analysis of Eqs. �29� and �30�.
We start with an algebraic treatment of the function

g�� ,q� defined by Eq. �29b�. Multiplying both numerator
and denominator by �1�2−�2�1, and using the equality

�1
2�2

2 − �2
2�1

2 = ��2 − �1��q2��1 + �2� −
�2

c2 �1�2
 , �48�

we obtain

g =
�1�2 − �2�1

q2��1 + �2� − ��2/c2��1�2
� 1

�1
−

1

�2

 . �49�

The denominator of this expression for g is related to the
surface-plasmon dispersion relation

q2��1 + �2� −
�2

c2 �1�2 = 0; �50�

for a review, see Ref. �21�. Considering the metal dielectric
function �1���, as defined by Eq. �34� but for the time being
with �=0, and the vacuum one �2���=1, Eq. �50� has two
solutions

��
2 �q� = ��p

2/2� + �cq�2 � ���p
2/2�2 + �cq�4�1/2. �51�

These two dispersion relations are represented, for ��0, in
Fig. 2 by solid lines, together with the �dashed� light line
�=cq. The upper solid line �+ always lies above the disper-
sion curve of light in the metal �19�,

�+
2�q� � �p

2 + �cq�2. �52�

The lower solid line �−�q�, corresponding to the dispersion
relation of the surface-plasmon polariton, lies always below
the light line,

�−
2�q� � �cq�2. �53�

In the nonretarded limit cq��s, it approaches the nondisper-
sive surface-plasmon frequency �s=�p /�2. In the retarded
region of interest cq��s, it approaches the light line
�=cq. In what follows, we shall need the small-q expansions

�−
2�q� = �cq�2 −

�cq�4

�p
2 − ¯ , �54a�

�+
2�q� = �p

2 + �cq�2 +
�cq�4

�p
2 + ¯ . �54b�

After substituting the metal dielectric function �34�, now
completely with � being positive infinitesimal, and the
vacuum dielectric function �2���=1 into �49�, we obtain

g��,q� = g1��,q� + g2��,q� , �55�

where

g1 = −
�c�p�2

�2 − �p
2 + i��

�1��� + i��
��2 − �−

2���2 − �+
2� + i���

,

�56a�

g2 = �c�p�2 �2

��2 − �−
2���2 − �+

2� + i���
. �56b�

Here, the functions �1�� ,q� and �2�� ,q� are the square roots
of

�1
2 = q2 +

�p
2

c2 −
�2

c2 − i
�p

2

c2

��

�2 + �2 , �57a�

�2
2 = q2 −

�2

c2 − i
�2

c2 sgn���0+, �57b�

with a positive real part and the new function ���� is defined
by

���� = �2 − 2�cq�2��0 for �2 = �−
2 ,

�0 for �2 = �+
2 .
� �58�

As indicated, only the sign of this function at the points �2

=�−
2 and �2=�+

2 will be needed.
In order to keep the transparency of algebraic operations,

we introduce the counterparts of quantities �S�� ,q� �29a�
and �S�t ,q� �30� for each of the components g1 and g2,

�Sj��,q� =
��

4�
coth����/2�q2 Im gj��,q� , �59�

�Sj�t,q� = 

−



 d�

2�
e−i�t�Sj��,q� , �60�

j=1,2. The quantity of interest is

�S�t,q� = �S1�t,q� + �S2�t,q� . �61�

The evaluation of the introduced functions is the subject of
the Appendix. We summarize shortly the obtained results in
the next paragraph.

There are two linear in q contributions to �S1�t ,q�. The
first one �A5� originates from the discrete level of bulk plas-
mons �= ��p, the second one �A12� results from the inte-
gration over the continuous spectrum �2��p

2 + �cq�2. It is
seen that the two contributions are exactly canceled with one
another, so that

0

0.5

1

1.5

2

0 0.5 1 1.5 2

q

ω

ωs

ω-

ω+

ω=cq

FIG. 2. Dispersion �solid� curves �−�q�, �+�q� and the light
�dashed� line �=cq; the plane vector q is represented in units of
�p /c, the frequency � in units of �p.
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�S1�t,q� = o�q� . �62�

As concerns the quantity �S2�t ,q�, there is only one linear in
q contribution �A20� coming from the integration over the
continuous spectrum �2� �cq�2, i.e.,

�S2�t,q� =
q

4�
+ o�q� . �63�

We conclude that the total �S�t ,q� has the small-q expansion
of the classical static type

�S�t,q� =
q

4�
+ o�q� . �64�

In other words, for both static and time-dependent surface
charge correlation functions, the inclusion of retardation ef-
fects causes the quantum prefactor to take its universal static
classical form. This result holds for any temperature. The
static t=0 version of �64� is clearly consistent with the clas-
sical finding �6�, as it should be in the high-temperature limit
��→0 �11�. On the other hand, when t�0, our result �64�
does not reproduce the classical time-dependent one �13�, but
this feature is not against the general principles discussed in
the Introduction.

IV. CONCLUSION

We have studied the long-range decay of the charge cor-
relation function on the surface of the conductor in vacuum.
This problem has been investigated previously, for both
static and time-dependent correlation functions, in the clas-
sical and quantum nonretarded regime. Within the frame-
work of the fluctuation EM-field theory we have shown that
the consideration of retardation effects leads, for any tem-
perature, to the universal static classical form of the
asymptotic decay,

�Squ�t, 	R − R�	� �
	R−R�	→


−
1

8�2

1

	R − R�	3
, �65�

independent of t and �.
As a model system for the conductor, we have used the

jellium with the simple dispersion relation of Drude type
�34�. It is not clear at the present stage whether the obtained
result takes place also for other Coulomb or dielectric mod-
els with other types of the dispersion relation.

As a by-product of the formalism, we have obtained a
very simple formula �41� for the g function, valid in the
quantum nonretarded regime. This formula reproduces the
previous microscopic result for the jellium and might be used
to analyze general Coulomb or dielectric models, character-
ized by their dielectric functions. A general analysis might be
possible also for the retarded case.

The extension of the present macroscopic study to other
domain geometries, e.g., a conductor confined to a slab,
might be of interest.

In the near future, we plan to perform a different analysis
of a jellium coupled to the electromagnetic radiation, based
on the method of collective modes developed in Refs. �7,8�.
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APPENDIX

1. Contributions from g1

Let us first analyze the contributions of g1�� ,q� to
�S1�t ,q�, obtained by using Eqs. �59� and �60�.

Dividing �1 onto its real and imaginary parts, �1=�1�
+ i�1�, Eq. �57a� splits into two relations

��1��
2 − ��1��

2 = q2 +
�p

2 − �2

c2 , �A1a�

�1��1� = −
�p

2

2c2

��

�2 + �2 . �A1b�

The function on the right-hand side of �A1b� will help us to
choose the correct sign of �1� which is consistent with the
condition �1��0. We must distinguish between two cases.

�i� �2��p
2 + �cq�2,

�1� =
1

c
��p

2 + �cq�2 − �2, �1� = −
1

�1�

�p
2

2c2

��

�2 + �2 ;

�A2a�

�ii� �2��p
2 + �cq�2,

�1� = −
1

�1�

�p
2

2c2

��

�2 + �2 � 0,

�1� = −
1

c
sgn�����2 − �p

2 − �cq�2. �A2b�

Here and hereinafter, we adopt the convention that the square
root of a real positive number has the plus sign and neglect
all terms of order �2. Since �� / ��2+�2�������, the inte-
gration over � of the functions which contain this factor
gives zero contribution.

The function g1, defined by Eq. �56a�, can be analyzed by
using the Weierstrass prescription �35�. Since �1��p�=q and
��p

2 −�−
2���p

2 −�+
2�=−�p

2�cq�2, we obtain

Im g1 = −
��p

2

q
sgn������2 − �p

2� − �c�p�2�2�1�


 P� 1

�2 − �p
2
P� 1

�2 − �−
2
P� 1

�2 − �+
2


+
��c�p�2

�2 − �p
2 �2�1� sgn��������2 − �−

2���2 − �+
2�� .

�A3�

We take into account the lower bound �52� for �+
2�q� and the
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upper bound �53� for �−
2�q� and, as before, distinguish be-

tween two intervals.
�i� �2��p

2 + �cq�2,

Im g1 = − sgn���
��p

2

q
���2 − �p

2�

− sgn���
�c�p

2�−
2

��−
2 − �p

2���+
2 − �−

2�


 ��p
2 + �cq�2 − �−

2���2 − �−
2�; �A4a�

�ii� �2��p
2 + �cq�2,

Im g1 = sgn���
c�p

2�2

��2 − �p
2���2 − �−

2�


 ��2 − �p
2 − �cq�2P� 1

�2 − �+
2
 . �A4b�

The contributions of the discrete �-function terms in
�A4a� to �S1�t ,q�, defined by Eqs. �59� and �60�, are easy to
find. The bulk-plasmon term in �A4a�, which is proportional
to ���2−�p

2�, gives a contribution of order q,

−
q

4�
cos��pt�f��p� , �A5�

where the function f is defined by Eq. �8b�. The term in
�A4a�, which is proportional to ���2−�−

2�, gives a contribu-
tion of order q2,

−
q2

4�
cos��−t�f��−�

c�p
2

��−
2 − �p

2���+
2 − �−

2�
��p

2 + �cq�2 − �−
2

=
q2

4�

c

�p
+ o�q2� . �A6�

To find the contribution of the term in �A4b�, which is
continuous in �, is a more complicated task. In the small-q
limit, two functions 1 / ��2−�p

2� and ��2−�p
2 − �cq�2 are

close to their singular points just at the lower border of the
integration �2=�p

2 + �cq�2. Moreover, the principal value
P�1 / ��2−�+

2�� must also be taken with caution; see the
small-q expansion �54b� of �+

2. Based on the above informa-
tion, we split the whole interval of � values �2��p

2 + �cq�2

onto the small one symmetric with respect to �+
2,

I1: �+
2 − l � �2 � �+

2 + l, l = �+
2 − ��p

2 + �cq�2� �
�cq�4

�p
2

�A7�

and the infinite one

I2: �+
2 + l � �2. �A8�

We first perform the integration of the three “problematic”
quickly changing functions over the interval I1. Introducing
the variable u via �2=�+

2 +u, the contribution from the �
integration over the interval I1 is the factor
�cq2 /4�2�cos��pt�����p /2�coth����p /2� multiplied by



−l

l

du
1

u + �cq�2 + l
�u + l

u

u2 + �2

�
1

�cq�2

0

l

du
1

u
��l + u − �l − u�

=
�l

�cq�22��2 − sinh−1�1�� = O�1� . �A9�

This means that the contribution of �A4b� to �S1�t ,q� com-
ing from the interval I1 is of order q2. The integration of the
term �A4b� over the interval I2 can be represented, with the
substitution �2=�+

2 + l+v and in the small-q limit, as fol-
lows:

��q2

8�2 c�p
2


0




dv cos�t��p
2 + v�

�v + 2l

��p
2 + v


 coth���

2
��p

2 + v
 1

v + l

1

v + �cq�2 . �A10�

Performing the next substitution v= �cq�2w, considering the
q→0 limit and evaluating the integral



0




dw
1

�w

1

w + 1
= � , �A11�

the total contribution of the term �A4b� to �S1�t ,q� reads as

q

4�
cos��pt�f��p� + o�q� . �A12�

The linear in q part of this contribution is exactly canceled
by the bulk-plasmon contribution �A5�. We therefore con-
clude that

�S1�t,q� = o�q� . �A13�

2. Contributions from g2

We proceed by a relatively simple analysis of the contri-
butions of g2�� ,q� to �S2�t ,q�.

Writing �2=�2�+ i�2�, we must distinguish between two
cases.

�i� �2� �cq�2,

�2� =
1

c
��cq�2 − �2, �2� � 0; �A14a�

�ii� �2� �cq�2,

�2� � 0+, �2� = −
1

c
sgn�����2 − �cq�2. �A14b�

The function g2 is defined by Eq. �56b�. Using the Weier-
strass theorem, we obtain

Im g2 = �c�p�2�2�P� 1

�2 − �−
2
P� 1

�2 − �+
2


− ��c�p�2�2� sgn��������2 − �−
2���2 − �+

2�� .

�A15�

We thus have
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�ii� �2� �cq�2,

Im g2 = �c�p
2��cq�2 − �−

2 sgn���
1

�+
2 − �−

2 ���2 − �−
2�;

�A16a�

�ii� �2� �cq�2,

Im g2 = − c�p
2��2 − �cq�2 sgn���


 P� 1

�2 − �−
2
P� 1

�2 − �+
2
 . �A16b�

The contribution of the term �A16a� to �S2�t ,q� reads as

q2

4�
cos��−t�f��−�

c�p
2

�−
2��+

2 − �−
2�

��cq�2 − �−
2

=
q2

4�

c

�p
+ O�q4� . �A17�

The contribution of the term �A16b� can be represented, after
the substitution u=�2 and in the small-q limit, as follows:

��q2

8�2 �− c�p
2�


�cq�2


 du
�u

cos�t�u�coth����u/2�


 P� 1

u − �p
2
 1

�u − �cq�2
. �A18�

Making the next substitution u= �cq�2v and evaluating the
integral



1




dv
1

v

1
�v − 1

= � , �A19�

the contribution of the term �A16b� to �S2�t ,q� is found in
the classical static form,

q

4�
+ o�q� . �A20�

In view of Eqs. �A17� and �A20� we conclude that

�S2�t,q� =
q

4�
+ o�q� . �A21�
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