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We present a rice-pile cellular automaton model that includes inertial and friction effects. This model is
studied in one dimension, where the updating of metastable sites is done according to a stochastic dynamics
governed by a probabilistic toppling parameter p that depends on the accumulated energy of moving grains. We
investigate the scaling properties of the model using finite-size scaling analysis. The avalanche size, the
lifetime, and the residence time distributions exhibit a power-law behavior. Their corresponding critical expo-
nents, respectively, �, y, and yr, are not universal. They present continuous variation versus the parameters of
the system. The maximal value of the critical exponent � that our model gives is very close to the experimental
one, �=2.02 �Frette et al., Nature �London� 379, 49 �1996��, and the probability distribution of the residence
time is in good agreement with the experimental results. We note that the critical behavior is observed only in
a certain range of parameter values of the system which correspond to low inertia and high friction.
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I. INTRODUCTION

Since its introduction by Bak, Tang, and Wiesenfeld, the
concept of self-organized criticality �SOC� �1,2� has made
considerable impact on a number of fields in natural and
social sciences. The idea of SOC is generally illustrated con-
ceptually with avalanches in a pile of sand grains. Many
different kinds of sandpile models have been studied. These
include models with discrete or continuous variables �3� and
deterministic or stochastic toppling �4,5�. SOC is described
for some extended dynamical systems which can evolve into
a statistically stationary state where events, i.e., avalanches
of all sizes, are observed with long-range spatial and tempo-
ral correlations between them. The stationary critical state
can be reached after some transient time by adding grains
one by one.

Comparison with real systems has proved to be a sound
test for the theory and models. However, early experimental
studies of real sandpiles led to clear disagreement with the
numerical models: instead of the power-law behavior,
bounded distributions of avalanche sizes were observed
�6–9�. Against this background, recent one dimensional rice-
pile experiments �10� have shown that under some condi-
tions a real rice pile can self-organize into a critical state: A
system of grains with large aspect ratio presents a self-
organized critical state. The main cause of the emergence of
the critical behavior was explained by the presence of grain
anisotropy, which gives rise to a variety of packing configu-
rations that develop large slopes. The anisotropy restricts the
way the grains moved down the slope and can produce an
increasing frictional contact between grains that is able to
cancel the inertial effects. The results provided from the rice-
pile experiments sparked a renewed interest in the study of
sandpiles.

Several models of granular material, which are called
rice-pile models �4,5�, have been proposed in order to model
the friction effects. The rice piles have been studied experi-
mentally and theoretically using both analytical methods and

numerical simulations �11–13�. The distribution of times the
added grains spend inside the system has been investigated
analytically �11,12�. On the other hand, many variations and
extensions of the basic idea of the rice-pile model have been
considered �5,14,16�. The friction and inertial effects were
introduced implicitly in a stochastic toppling parameter or in
dynamical critical slopes.

Indeed, the friction effects in rice piles have been studied
through the introduction of randomness in the relaxation rule
instead of in the deposition rule. The randomness was illus-
trated by introduction of a probability p of toppling
�4,5,14–16�. The introduction of such a toppling probability
is motivated by the dynamics of granular material. Due to the
different shapes, stickiness, momentum effects, stacking de-
tails, etc. of the sand grains, it is possible that a given slope
is stable at one time whereas the same slope is unstable at
another time. To mimic all these complicated degrees of free-
dom stochastic toppling conditions have been implemented.
Physically, the parameter p describes the friction between the
rice grains, which comes directly from the observation that
there exists a large range of slopes in the system, with the
possibility of obtaining metastable packing configurations.
The introduced parameter p represents the fact that there is a
finite probability that the system reaches a new steady state
where no toppling occurs �15�.

The rice-pile model assumes a discrete space, i
=1,2 . . . ,L, from left to right, as well as a discrete field �the
height of the pile, or the number of grains�, and the grains
are slowly added at a fixed position in a quasi-one-
dimensional system. The grains pile up until the local slope
somewhere is larger than a critical slope zc; then the top
grain may become unstable and be transferred to the next
right column. In addition, the effects of gravity were mod-
eled by the introduction of a second critical slope zg. In terms
of the height h�i� and the local slope, defined as z�i�=h�i�
−h�i+1�, these prescriptions are expressed by the following
rules:

z�i� � zc, no toppling,
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zc � z�i� � zg, toppling with probability p ,

z�i� � zg, toppling.

It was found that the system belongs to the local linear in-
terface universality class where it displays a critical behavior
with a power-law distribution of avalanche sizes character-
ized by a critical exponent �=1.55�0.02, signaling the ex-
istence of no characteristic scales for the avalanche process.
Moreover, the concordance with experiments for avalanche
properties is only qualitative. The key to modeling the dif-
ferent ingredients, which make the model critical in one di-
mension, and taking into account heterogeneities of real sys-
tems, is the implementation of the stochastic toppling
parameter which incorporates explicitly or implicitly all dy-
namical degrees of freedom. As in real sandpile experiments,
the randomness is internal in the rice-pile model, and the
stochastic parameter p may be a complicated function of
local slope and the packing of particles. However, by using
an exponential form of the toppling probability p�16� that
approaches 1 in the limit of large z�i� in a smooth way, it was
shown that the nonlocal unlimited �17� sandpile model pre-
sents nonuniversal behavior with a continuous variation of
the critical exponent � related to the distribution of the ava-
lanche sizes.

Frette et al. �10� found that for less elongated grains the
system did not evolve into a critical state. The reason for this
result can be understood only if the role of the inertia in the
dynamics is remembered. To the best of our knowledge,
there have been only a few attempts to construct an inertial
sandpile model. Prado and Olami �18� tried to simulate the
experiment of Ref. �7� and chose to associate moving par-
ticles with a decrease in the local stability, assuming that the
critical slope zc is a decreasing function of the energy or the
momentum, accumulated by a grain of sand during a se-
quence of topples. As a result, they found SOC behavior only
for small system sizes. For large system sizes the size distri-
bution maintains the power-law behavior for low values of
inertia while for high values the size distribution is domi-
nated by large avalanches, and the SOC behavior is lost. The
preferred scale for large avalanches, for large grain inertia,
was also observed in a coupled-map lattice model of rotated
sandpiles �19�.

On the other hand, the effect of inertia and dissipation on
a sandpile subject to constant tilt in a rotating cylinder was
studied using a local approach to sandpile dynamics �20�.
The established coupled stochastic nonlinear dynamical
equations contain a transfer term, which represents the iner-
tia in an implicit way since it is a mechanism for amplifying
sandpile avalanches. Within this approach the critical expo-
nents were found to be nonuniversal. They depend on the
kind of noise and the symmetries of the models.

In this paper, we develop a model to test the effects of
microscopic details on the large-scale behavior. Inspired by
the configurational disorder observed in piles of rice, we sug-
gest a model to study the effects of inertia and friction and
we present a way to incorporate these quantities in the rice-
pile model in order to develop a more appropriate model as
well as to reach the rice-pile experiment exponent given by

�=2.02 and reproduce the results obtained experimentally.
Thus, we propose an exponential form of the toppling prob-
ability where the energy of the toppling particles benefits
from the contribution of two terms: the kinetic and the po-
tential energy. The randomness effect introduced in the sys-
tem is then studied using Monte Carlo simulations. In Sec. II
we define and give a brief description of our model while in
Sec. III we present and discuss the results obtained by using
Monte Carlo simulations and compare them with those es-
tablished for other rice-pile models. The conclusion is given
in Sec. IV.

II. THE MODEL

A one-dimensional sandpile is defined by a set of integer
heights hi, i=1,2 , . . . ,L, or equivalently by the local slopes
zi=hi−hi+1. We simulate a system with open right-hand
boundary, zL=hL, whereas the left-hand boundary is taken to
be closed, z0=0. Particles are deposited one grain at a time at
the site i=1, increasing its height by unity,

h�1� → h�1� + 1. �1�

The rate of deposition is slow enough that any avalanche
initiated by an added grain will have ended before a new
grain is deposited. In the local limited sandpile model �17�, a
site i becomes active when zi becomes greater than the criti-
cal slope parameter zc. A site i is considered active if, in the
anterior time step, �1� it received a grain from column �i
−1�, �2� it toppled a grain to site �i+1�, or �3� site �i+1�
toppled one grain to its right neighbor. Any such active site
will topple with a probability p, which depends on the energy
of the particle, and one grain leaves site i and moves to site
�i+1�,

h�i� → h�i� − 1,

h�i + 1� → h�i + 1� + 1. �2�

When no active site remains on the pile, the avalanche is said
to be over. Since the relaxation of each grain depends on the
variation of its kinetic and potential energy, we propose the
following form of the toppling probability, which depends on
the energy difference �E between the energy of the moving
grain and the energy that it would have if it were motionless
at the critical slope z=zc, which we take in what follows to
be zc=1:

p��E� = 1 − exp�− �E� , �3�

where E is the total energy of the moving grain, which has
two contributions.

�1� The kinetic energy Ec which results from the succes-
sive shocks:

�Ec � ��v2 − 1� , �4�

where v represents the average velocity of the moving grain
and � the related parameter that incorporates the inertial ef-
fects. Indeed, if we assume that the grains move without
sliding, it is easy to show that the inertiaterm is proportional
to v2. If we consider the position x�i� on the surface of the
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pile of the toppling grain located at site i at time t�i�, we can
show that the average velocity may be calculated as follows:

v =
�x

�t
=

�
i

�x�i� − x�i + 1��

�
i

�t�i + 1� − t�i��
�

�
i

�h�i� − h�i + 1��

ni
, �5�

where ni is the number of topplings a given grain has done
before reaching the site i, and the sum is over the history of
the toppling grain. Hence, we introduce a form of memory
into the system in which the velocity of toppling grains
evolves throughout the avalanche. The falling grains gain
momentum, and if the process persists long enough they can
be stopped only at the boundary of the system.

�2� The potential energy, which is proportional to the
height difference, �Ep=	�z�i�−1�. The parameter 	 incorpo-
rates the frictional effects implicitly.

In addition to the height h�i� defined at each site, the
configuration of the system involves also the velocities of the
grains. Hence, for a full specification of the rules governing
the motion of grains in the model, we have to define pre-
cisely how the unstable grains move under toppling and in
which order they topple. The system evolves under a fully
parallel update dynamics in which all unstable sites topple
one grain at the same time to their neighbors. In order to
clarify the parallel update process used in our model and the
number of moving grains at each time step, we start from a
situation where only the sites �i+1� and �i−1� are active. The
transfer of two grains from �i+1� and �i−1� to their neigh-
bors is done at the same time. This constitutes a single mi-
crostep of evolution. In this process the grain of each site
moves to the right. Thus, the sites �i+2� and �i−2� are per-
turbed once and the site �i� twice, leading to one possible
toppling at the sites �i+2� and �i−2� and two topplings at the
site �i� in the next microstep. Consequently, we remark that
the toppling process may involve more than one grain per
site at each microstep time. On the other hand, the velocity
of each transferred grain is updated following Eq. �5�.

The model we suggest is controlled by the following dy-
namics.

�1� One grain is deposited on the top of the pile �site i
=1�.

�2� If the slope z�i�, i.e., the height difference, of the site
i=1 exceeds a specified threshold value z=zc one grain, to
which we assign a velocity v obtained from Eq. �5�, is
toppled with a probability p��E� to its nearest neighbor and
the avalanching process starts.

�3� Following a parallel update, all sites are visited at the
same time. For each microstep of evolution a velocity, which
is calculated from Eq. �5�, is assigned to the moving grain
located at site i. Its energy is then calculated and it relaxes
with a probability p��E� to site �i+1� if its local slope z
�zc. The grain stops if z�zc.

�4� If the grain of the visited site is motionless and its
local slope exceeds zc, it loses only potential energy since
�Ec=0 and it flips with a probability p��E�.

�5� The process is continued until no active site appears
and we restart from the first step 1.

The friction effects are introduced implicitly in the top-
pling probability p��E�, which is a function of the height
difference and the kinetic energy accumulated by a grain of
rice during a sequence of topples. As in realistic situations
we suppose that grains with high accumulated energy and
large height have more chance to topple, which is in agree-
ment with the chosen exponential form of the toppling
probability.

III. SIMULATION RESULTS AND DISCUSSION

We study the model in the slowly driven limit where the
rate of deposition is slow. Any avalanche that might be
started by deposition of a grain will have ended before a new
grain is added. The simulations of our model show the exis-
tence of a critical behavior with continuous variation of criti-
cal exponents depending on the physical properties of the
grains. Our analysis is based on the study of different quan-
tities related to the avalanche dynamics, namely, the ava-
lanche size s, which is the total number of topplings during
the process, the lifetime of the avalanche T, which is the
duration of the relaxation process, the size of the discharge
events m, which is the number of grains that leave the system
from the boundary, and the residence time Tr, which is de-
fined as the time spent in the system by an added grain.

A. Avalanches

We start by investigating the distribution of avalanche
sizes s, which follows a scaling form,

P�s,L� = s−�f�s/L
� . �6�

� and 
 are critical exponents and f is a scaling function
rapidly decaying for large arguments. Alternatively, we have
P�s ,L�=L−�g�s /L
�. In order to reduce the finite-size effects
on our simulation data and increase the accuracy of the de-
termination of avalanche exponents, we use the function
H�s ,L1 ,L2� �21� defined as

H�s,L1,L2� =
P�s,L1�ln�L1�

P�s,L2�ln�L2� , �7�

where L1 and L2 are two different system sizes. The nice
property of this function is that, in contrast to the probability
distribution, the numerical estimate of the critical exponents
related to the avalanche properties can be determined with
high accuracy, since the size effects vanish for large sizes,
and then any crossover behavior at large values of s will
appear as a sharp variation.

The size effects on the distribution P�s ,L� �Fig. 1�a�� are
studied for different values of the parameters � and 	. Using
the scaling analysis, we show that our system presents a
nonuniversal behavior such that the equality �=� /
 is vio-
lated. In Figs. 1�b�–1�d� we show that for �=0.1 and 	=2,
�=0.01 and 	=0.7, and �=0.001 and 	=0.1, respectively,
the finite-size scaling works extremely well. The resulting
critical exponents for �=0.1 and 	=2, for example, are �
=3.15, 
=2.1, and �=1.74, which is different from the ratio
� /
. For high values of the parameters � and 	, p→1, the
system is highly activated and only large-size avalanches are
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frequent. As a result, the SOC behavior is lost and the
log10-log10 plot of the avalanche size distribution P�s ,L� de-
viates visibly from power law behavior, which is in agree-
ment with previous results �18–20�. However, we restrict
ourselves to the parameter values 0���3 and 0�	�3
where the power law behavior is clearly observed. Within
this region of the parameter space we find that the maximal
value of � that may be obtained without losing the SOC
behavior is ��1.89. It approaches the experimental critical
exponent value, ��2.02.

The results obtained from our numerical simulations show
that our model presents a nonuniversal behavior. The critical
exponents exhibit a continuous variation versus the param-
eters of the system � and 	 �Fig. 2�. By fixing the value of �
and varying 	, the critical exponent � decreases for low val-
ues of 	 while for high values it is an increasing function.
This result may be understood by the fact that for low values
of 	, i.e., high friction, the system may develop relatively
large slopes with a large potential energy leading to a large
number of metastable state sites. Thus, with an increase in
the value of 	 the toppling probability p increases, leading to
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FIG. 1. �a� Log10-log10 plot of the avalanche size probability distribution P�s ,L�. Simulations were performed for several system sizes for
�=0.1 and 	=2. The best finite-size scaling fit is obtained with the scaling exponents �b� 
=2.1 and �=3.15 for �=0.1 and 	=2, �c� 

=2.12 and �=3.34 for �=0.01 and 	=0.7, and �d� 
=2.15 and �=3.33 for �=0.001 and 	=0.1.
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FIG. 2. Variation of the critical exponent � versus the parameter
	 related to the potential energy for L=200 and �=0.1. The
	-dependent corrections to scaling are indicated by error bars.
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more frequent high numbers of discharges. As a result, big
avalanche sizes are favored and the slope of log10�P�s ,L��
increases, i.e., � decreases. On the other hand, for high val-
ues of 	, i.e., low friction, the metastable states occurring in
the system are reduced since p→1. Hence, low numbers of
discharges are probable in each avalanche process. Conse-
quently, the more 	 increases the more frequent are small
avalanches, which leads to an increase of the critical expo-
nent �.

On the other hand, by fixing the parameter 	 we show that
� is an increasing function of � �Fig. 3�a��. This is due to the
fact that, for low inertia where the frictional contact is en-
hanced, i.e., low values of �, the system develops metastable
states responsible for the packing states �Fig. 3�b�� observed
experimentally �10�. As a result, the local slope varies con-

siderably along the profile and we observe that the larger is �
the rougher is the profile of the pile. These patterns of steep-
ness in the profile change with changed parameters of the
system. Consequently, small avalanches are more frequent
than large ones, which reinforces the value of the critical
exponent �. We note that for �→� and/or 	→� one gets a
trivial model: zi=1 for all i and any avalanche reaches the
edge of the pile. The SOC is then lost.

It is well established �5,15� that the average number of
topplings for a given grain before being discharged scales as

�s	 � Lq. �8�

Using Monte Carlo simulations we show that for our model
the critical exponent q=1 independently of the parameter
values and the details of the sandpile model �Fig. 4�a��. This
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FIG. 3. �a� Critical exponent � versus the parameter � related to the kinetic energy for system size L=200 and 	=1. The error bars
indicate the 	-dependent corrections to scaling. �b� Profile of the pile for system size L=40 and two different values of �. The pile develops
a large slope, signaling the presence of packing configurations when � increases from �=0.01 �open squares� to 0.1 �closed circles�. The
inset presents a close-up photograph of the rice pile in Ref. �10�, where the local slope varies considerably along the pile.
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result agrees with previous work �5,15� and emphasizes the
fact that q is a universal critical exponent at least for one-
dimensional systems. But the variation of the mean ava-
lanche size versus 	 �Fig. 4�b�� follows the same variation as
the critical exponent �.

To further test our conclusion regarding the variation of
the critical exponents, we have studied different definitions
of avalanche size. When using the lifetime T of the ava-
lanche we find that the probability density function is well
described by the scaling form

P�T,L� = T−yf�T/L
� �9�

where y and 
 are critical exponents. In Fig. 5�a� we show
the distribution of lifetimes for different system sizes. The

study of the scaling effect shows that the critical exponent y
presents the same variation versus � and 	 as was quoted
above for the critical exponent �. On the other hand, the
average value of the lifetime �Fig. 5�b�� scales as

�T	 � Lz, �10�

where the value of the exponent z depends on the values of
the system parameters �Fig. 5�c��.

B. Residence time

The residence time of grains through a pile of rice has
been studied both theoretically and experimentally. The time
unit is the duration between successive additions of two sand
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FIG. 5. �a� Log-log plot of the avalanche lifetime probability distribution P�T ,L�. Simulations were performed for several system sizes
for �=0.1 and 	=1. �b� Mean avalanche lifetime �T	 vs the system size L for �=0.1 and for two values of 	. The empty squares represent
	=0.2 and the full squares 	=1.7. �c� Variation of the critical exponent z related to the mean avalanche lifetime �T	 vs 	 for L=200 and two
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grains. The residence time of a sand grain is defined as the
time spent by that grain inside the system. We calculate the
probability distribution P�Tr ,L� of the residence time Tr after
the pile has reached the stationary critical state and for dif-
ferent values of � and 	 �Fig. 6�a��. It obeys a finite-size
scaling form:

P�Tr,L� = Tr
−yrg�Tr/L
r� , �11�

and is essentially constant for small values of Tr, exhibiting a
crossover to a decaying power law behavior for large resi-
dence times with varying critical exponent yr. We note that
such behavior was observed experimentally �4�. The critical
exponents yr and � present opposite variations �Fig. 6�b��.
This is due to dependence of the depth of the active zone on
the parameters � and 	. However, when the depth of the
active zone increases, the time that the grains spend in the
system decreases, which produces an increase of the critical
exponent yr. Furthermore, the decrease of � means that large
avalanches occur with increasing probability, and hence
deeply buried grains tend to leave the system for a short
time, which leads to an increase of the critical exponent yr
values, and vice versa. It is worthwhile to note that by a
combination of combining numerical simulations and scaling
arguments, it was shown for the Christensen et al. rice-pile
model �22� that the distribution probability of residence time
Tj � t at site j, P�Tj � t�, does not obey a simple finite-size
scaling and the corresponding critical exponent yr may be
derived in a simple way from its analytical expression. One
finds yr=2.

Our numerical investigations show that the average resi-
dence time exhibits, for fixed time series, a power law be-
havior according to the system size, �Tr	�L�, where the val-
ues of � depend on the parameters of the system, � and 	
�Table I�. On the other hand, it was found, using an analytical
approach for sandpile models �11�, that �=2, while the ex-
periment gives �=1.5�0.2 and some suggested rice-pile
models �4,23� found that �=1.3. However, we argue numeri-
cally that when the time simulation steps t increase, unlike
the first moment of the size and the lifetime, the average
residence time presents a logarithmic increase versus t �Fig.
7�,

�Tr	 � log10�t� . �12�

This result comes from the fact that the deeply buried
grains had to be released by large avalanches in order to

TABLE I. The variation of the critical exponent � related to the
average residence time ��Tr	�L�� versus 	 for �=0.1.
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move on. However, broad avalanches are not very frequent.
Hence, deeply buried grains have a tendency to stay a very
long time in the system. Therefore these particles do not
contribute to the mean residence time because they come out
only for large numbers of simulation time steps �about 1015

time steps�. Thus, we can prove numerically, as suggested by
Dhar �11�, that the numerical underestimate of the mean resi-
dence time is due to the short time observation, making �Tr	
unreliable.

The residence time depends on the model and the micro-
scopic details that it incorporates, since the avalanche dy-
namics is governed by the stochastic toppling parameter p.
Thus, we think that the discrepancy in the estimate of the
first moment of the residence time probability distribution
between our results and the others obtained analytically and
numerically is presumably due to the time taken by the
grains to leave the system.

IV. CONCLUSION

In conclusion, we have simulated a one-dimensional cel-
lular automaton with local, limited, and stochastic dynamics.
The model we have suggested takes into account the kinetic
and potential energy of the grains. The inertial effects, which
are incorporated implicitly in the kinetic energy term, have
been investigated. We have shown that the model describes a
nonuniversal behavior where the critical exponents change
continuously when the parameters associated with the kinetic
and potential energies are varied. The dynamics of the sys-

tem has an important dependence on the dissipation level and
exhibits SOC behavior in a certain range of the adjustable
parameters. All features of SOC were observed: finite-size
scaling and power law behavior of all quantities that charac-
terize the avalanche. In contrast to previous rice-pile models
�5,15,16�, we found that by using a stochastic toppling prob-
ability p, which depends on the kinetic and potential energy
of the toppling grain, the distribution size critical exponent is
improved, �=1.89, and it approaches the experimental one,
��2.02. On the other hand, the distribution of residence
time and its related critical exponent agree both qualitatively
and quantitatively with the experimental findings, where yr
=2.5�0.2. However, the mean residence time does not de-
pend either on any details of the toppling rules or on micro-
scopic details of the model, and the proof presented in Ref.
�11� that it scales as L2 remains valid for our model also.
Furthermore, the study of the friction effects �24�, in an ex-
plicit way, on a rice-pile model shows that SOC occurs in a
slowly driven granular pile of rice as long as friction domi-
nates inertial effects. But for high values of the adjustable
parameters the SOC is lost.
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