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We introduce a stochastic equation for the microscopic motion of a tagged particle in the single-file model.
This equation provides a compact representation of several of the system’s properties such as fluctuation-
dissipation and linear-response relations, achieved by means of a diffusion noise approach. Most importantly,
the proposed Langevin equation reproduces quantitatively the three temporal regimes and the corresponding

time scales: ballistic, diffusive, and subdiffusive.
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I. INTRODUCTION

Since its introduction in 1965 due to Harris’ pioneering
work [1], the single-file (SF) model has attracted more and
more interest among the scientific community. Introduced
first in the mathematical physics literature as an interesting
though somewhat exotic topic, it has inspired over the last
40 years a large body of profound theoretical studies [2] and
detailed numerical investigations, including extensive Monte
Carlo and molecular dynamics simulations [3].

The motivations for the long-standing interest in this topic
reside, on the one hand, in its analytical tractability and, on
the other hand, in its effectiveness as a description of diffu-
sion phenomena in real quasi-one-dimensional systems. As a
matter of fact, since the direct observation and manipulation
of nanoscopic systems have exponentially evolved in the last
decade, models suitable to account for the single-particle dif-
fusional mechanisms in constrained flow geometries have
been the subject of increasing attention. Remarkably, among
these, the SF model holds a preeminent position, since it
correctly reproduces transport properties in a large category
of quasi-one-dimensional systems, where each particle is free
to diffuse against its neighbors, but is forbidden to overcome
them [4]. Transport processes of this type may be observed
in nanoporous materials [5] and in collective motion of ions
through biological channels and membranes [6] as well as in
nanodevices and cellular flows [7]

Along a mathematical line, the SF model is perhaps the
simplest interacting one-dimensional gas one can consider: it
consists of N unit-mass particles constrained to move along a
line following a given dynamics. As the particles’ interaction
is purely hard core, no mutual exchanges of the diffusants
are allowed; i.e., they retain their ordering over time (single-
filing condition). In spite of the intricacies of its mathemati-
cal derivation, the long-time behavior of the single-file dis-
persion relation can be cast in the following suggestive form

[2]:
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&2(1) = @, (1)

where p:%l (N—o0,L—) is the file’s density and {|X|) is
the absolute displacement of a noninteracting particle. If the
free-particle dynamics is characterized by a diffusivity D
=kgT/ vy, then relation (1) takes the form [8]

521) =24/ 7%2 2)

The predicted subdiffusive behavior has been reproduced ex-
perimentally in colloidal particles systems [9] and observed
in molecular sieves (zeolites) [10]. We remark that the sub-
diffusive behavior represented by Eq. (2) will eventually be
replaced by regular diffusion if, for instance, the particles are
allowed to overtake each other [11], if there is only a finite
number of particles [12], or if the particles move in a ring
[13].

In Ref. [14] it was pointed out that the subdiffusive re-
gime of a SF tagged particle occurs on the score of long-
ranged anticorrelations of its velocity and/or of the jump’s
statistics of the collisional mechanism underlying its dynam-
ics. Beside these persistent memory effects, different math-
ematical derivations agree with the fact that asymptotically
the tagged particle’s probability distribution must be Gauss-
ian with a variance growing in time according to (2) [2].
Together, these properties contrast with the continuous-time
random-walk (CTRW) scheme and its corresponding Fokker-
Planck representation, for which a stretched Gaussian solu-
tion has to be expected (see Ref. [15] and references therein).
Furthermore, several subdiffusive systems in nature share the
property of Gaussianicity with the SF model—e.g., a mono-
mer in a one-dimensional phantom polymer [16], the “trans-
location coordinate” of a two-dimensional Rouse chain
through a hole [17], a tagged monomer in an Edward-
Wilkinson chain [18], de Gennes’ defects along a polymer
during its reptation [19], and solitons in the sine-Gordon
chain [20].

In this paper we address the question of the microscopic
effective description of the stochastic, anomalous motion of
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the tagged particle. Our aim is to extend the valuable Lange-
vin approach, valid for the case of a diffusive Brownian
walker, to the subdiffusive dynamics of a SF particle. We
anticipate here that the generalized Langevin equation (GLE)
[21,22] provides the ideal theoretical tool for such a goal,
incorporating all the statistical properties enjoyed by the par-
ticle. Within this framework the non-Markovian memory ef-
fects are achieved by means of a power-law damping kernel
[23], which is simply added algebraically to the instanta-
neous friction of the surroundings. We note here that the
GLE has recently been successfully used to describe several
physical phenomena and market flows [24].

The article is organized as follows: in Sec. II we study the
density profile dynamics by means of a diffusion-noise ap-
proach and we connect the file’s density fluctuations to the
motion of a tagged particle. In Sec. III we introduce the GLE
and we show the accuracy of the Langevin description by
means of extensive molecular dynamic simulations.

II. DIFFUSION-NOISE APPROACH

We start by considering the file density dynamics. As
stated in Sec. I, the system is composed of N Brownian-
point-like particles, all of unit mass, moving along a ring of
length L and performing a stochastic motion according to the
Langevin equation (LE):

x() =v(1),

(1) ==y (1) + (1), (3)

where i € [1,N] denotes the particle’s index and the damping
coefficient y and the random noise source &(r) satisfy the
well-known fluctuation-dissipation relation (often called the
second Kubo theorem [22]) (&(1))&(¢'))=2kTy6; j6(t—1").
The single-filing condition turns out to be merely the inter-
change of two particle labels, whenever these suffer an (elas-
tic) collision. However, as pointed out in [25], all system
properties which do not depend on particle labeling remain
unchanged from those of an ideal gas—i.e., of N independent
Brownian walkers.

Let us first define the file density at a point x of the line at
time ¢ as

plx,1) = M, (4)
dx

where n(x,r) refers to the number of particles in the bin
[x—%x,x+ %] at time 7. It is straightforward to note that the
quantity p(x,7) is a local property of the file, independent of
the relabeling of the particles due to collisions. A direct con-
sequence of this is that the time evolution of the file profile
density can be described by the diffusion-noise equation for
a one-dimensional gas of N noninteracting Brownian par-
ticles [26]

J J
EP(XJ):_aJ(x?t)s (5)

having a recourse to the definition of a stochastic flux
J(x,t)z—Da—ip(x,t)+77(x,t). The noise term 7(x,7) can be
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shown to be Gaussian and satisfy the following properties
[27]:

n(L,1) = 1(0,1),
(n(x,1)=0,

(n(x,)n(x',1")) =2D8x - x") 8t —1')p(x,1)), ~ (6)

the first one of which refers to the conservation of the parti-
cle’s number (conserved noise) along the segment [0, L] with
periodic boundary conditions. The remaining properties in
(6) are required to fulfill the equations for the first two mo-
ments of p(x,?):

J & i _F P
5<P(x,f)> = D@(f)(x,t»{;t - Da_x% - D@}

Jd d
X{p(x1,0)p(x2,1))c = 2D————8(x| — x,)
(9)6] (9)C2

X{p(x.1)), ™)

where we made use of the short notation {p(x;,1)p(x,,1))c
=(p(x1,1)p(xz,1))=(p(x1,)Xp(xy,1)). As is apparent from
(6), the correlation function of the noise depends upon the
particular solution of the diffusion equation (7): in the fol-
lowing, as well as in the numerical simulations performed,
we consider the case of a uniformly distributed file: namely,
(p(x,0))=(p(x,1))=p.

The connection between the dynamics of the density over
[0,L] and the the motion of a tagged particle in the single-
file system is achieved in the following way. Given two par-
ticle trajectories x;(¢) and x,(f), the number of particles be-
tween these has to remain constant in time because of the

nonoverlapping condition; this implies
d xo(1)
” p(x,0)dx=0. (8)

x1(1)

Performing the derivative and making use of (5), the previ-
ous relation then reads

v2(0)p(xa(1).1) = J(x3(1),0) =01 (D) p(x, (2).1) + I (x,(1),1) = 0;

now, both the terms must set to zero irrespective of the par-
ticle labels: we can thus write down the equation for the
single-file particle as

v(D)p(x(1),1) = J(x(1),1). )

We notice that, although the relation (9) just introduced is
exact, it is highly nonlinear. We are thus compelled to fall
back upon two approximations in order to solve it. The first
approximation is to assume that the density surrounding the
particle position is essentially constant: p(0,7)={p(0,7))
=p. The second approximation we put forward is to assume
that the particle movements are correlated over a range equal
to the displacement of the tagged particle, such that we can
take the current J(x(z),7) to be equal to the current at the
particle initial position. Taking this to be at x=0, we thus
have J(x(¢),t)=J(0,1). Notice that similar assumptions have
been superimposed by Alexander and Pincus in a previous
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treatment of the single-file subdiffusive dynamics on a lattice
[28].
With these approximations Eq. (9) gets the form

J(0,1)

v(r) = (10)

Moreover, defining the Fourier transform (and its inverse) in
the space and time domains as

+00
flq,w) = f dx dif(x,r)e” @)

" dg dow
— (m)?

flx,0) = 1(g, w)e'»=, (11)

Eq. (10) can be cast as

1 (™ dg
v(w) = - f “ 1(g.).
p 2

—o0

which, by means of (5) and of the definition of the stochastic
flux, reads

(>~1f+xﬂi< ) (12)
o= o 27Tq2D—iw7]q’w.

Let us now define the quantity

1 (dg -iw
wow)=—| ———— (13)
pYJ)_o 2mq"D —iw
using (12) and the noise properties in (6), it is readily veri-
fied that the following equality holds:

(w(w)v(w"))=2kzTRe[pw(w) 27w+ ). (14)

Furthermore, a direct calculation of (13) gives

2 \@ .
wlw) =1 kBTyE[l -], (15)

which, substituted into (14) and consistent with the Wiener-
Khintchine theorem, yields the asymptotic form of the veloc-
ity autocorrelation function (VAF) of a single-file particle

[14]:
kgT 1 1
©O0O) ==\, (16)

In passing from Eq. (14)—(16) we implicitly adopted the con-
vention {(v(#)v(0))=(v(-1)v(0)), which uniquely determines
the mobility u(w) to be the Fourier-Laplace transform of the
VAF—i.e.,

_ o (v (0))e'

w(w) KT

(17)

Relation (17) is known as the first fluctuation-dissipation
theorem or Green-Kubo relation [22]. However, for linear
systems the connection between correlation functions and
mobility hinges on the domain of transport processes [29]:
within this framework Egs. (12) and (13) on the one hand
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FIG. 1. (Color online) (a) Typical SF dynamics. The tagged
particle (red) is subjected to the external periodic force F(7)
=F( cos wt, while the other ones perform the usual stochastic dy-
namics. (b) Linear-response relation (18). Average velocity (v(r)) vs
wt for kgT=1.0, y=0.5, p=0.25, and different values of F, and w.
Three typical numerical curves (black lines) are fitted through rela-
tion (18), showing a linear dependence on the amplitude of the
applied sinusoidal force. Averages have been taken over more than
2000 periods of each realization, performing at least 10 realizations
corresponding to each w.

and their statistical counterpart (17) on the other encouraged
us to explore the validity of a linear-response relation of the

type
(1)) = Re[ fZ(w)Fpe'"]. (18)

Indeed, applying a periodic external force F(r)=F cos wt to
a tagged particle and leaving the remaining surrounding ones
unaffected [see Fig. 1(a)], the response (18) has been directly
measured by meaning of extensive numerical simulations.
The results are shown in Figs. 1(b) and 2, where the real, the
imaginary part, and the relative phase ¢, of the quantity
a(w) are displayed. At first, we note as the average velocity
depends linearly upon the force amplitude F,, according to
Eq. (18). Most important, the low-frequency behavior of
(w) fully agrees with the analytical formula for the mobility
m(w) given in (15) (dashed line). We can interpret this result,
recalling that a particle undergoes a normal diffusive behav-
ior up to a time scale Td:#’ which is the time needed by a
couple of particles to collide with one of the neighboring
diffusants [14]; correspondingly, we can assume that the
tagged driven particle will feel the presence of the surround-
ing ones over frequencies smaller than the threshold wd=2f—j
(dotted line). Conversely, for o> w,, i(w) coincide with the
mobility of a free Brownian walker: 1/(y—iw). The numeri-

051116-3



ALESSANDRO TALONI AND MICHAEL A. LOMHOLT

R W)

FIG. 2. (Color online). Real (a) and imaginary (b) parts and
phase (c) of u(w) obtained through relation (18), for different F
and w. Simulation parameters are the same as in Fig. 1. The dashed
lines represent the formula (15) and are seen to fit quite well the
asymptotic subdiffusive behavior of the mobility [see the inset of
panel (b) where the low-frequency behavior of Im u(w) is blown
up]. The initial diffusive behavior (orange lines) is responsible for
the high-frequency regime w> w, [dotted line in (a)]. The GLE
expression for the mobility, Eq. (45), furnishes a very good descrip-
tion of both regimes: solid black lines. The nonperfect agreement
between theory and data is due to the small value of the ratio
7,/ 7,=4 (see text and Table I).

cal results in Fig. 2 can thus be summarized by writing,
besides relation (18), the mobility i(w) as

Y+iw

v+ 0’

() = — (19)
2 Vo
_[1 - l]’ o< wd'
kgTy 4p

The numerical evidence of the effectiveness of a linear
response relation allows us to rewrite Eq. (12) as

v(w) = i) &), (20)

where the introduced noise satisfies (£(£))=0. On the other
hand, its spectrum § g(w) exhibits two different regimes ac-
cording to (19):

0> wy,

oo 2kgTy, > wy,
; —
Sfw)= | (&n)E0))e™ =1 2ksT)*Vyp
—© — N w< w,.
Vw
21

The file particles surrounding the tagged one thus act as an
additional bath responsible for the onset of subdiffusional
behavior. The nature of this long-ranged correlations in the
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noise source can be easily understood in terms of the colli-
sional interaction between the file components. Note in fact
that expression (21) leads to a slowly decaying positive cor-
related noise (&(r)&(0)) \l;: this nontrivial finding is the sig-
nature of constrained geometry systems. Indeed, although the
collisions tend to tie back the particle motion, leading to the
negative velocity correlations (16), the noise provides the
way to maintain (v(z))=0 on time scale of the order 1/v.
Another way to say this is that in a collision a particle ex-
changes velocity and noise. Anyway, this is a manifestation
of the fluctuation-dissipation theorem. Furthermore, the non-
Markovian power-law nature of the noise spectrum charac-
terizes the asymptotic fractional Brownian motion (FBM) of
the tagged particle [32].

We end this section stressing that, using the formalism so
far developed, we can calculate the other asymptotic statisti-
cal properties of the system. In fact, it is straightforward to
write down an expression for the particle’s position similarly
to what we did in (12) for its velocity:

! f " dg_nlg.w)

. 22
pl . 27mg*D-iw @2

x(w) =

For instance, making use of (22) and (12) we get

(x(@)v(w')) =1/ ];;;7"1%2775((» +w'). (23)
YpP

Vo

III. GENERALIZED LANGEVIN DESCRIPTION

In this section we will collect the results outlined in the
previous one and will put them in a consistent compact for-
mulation. We emphasize three fundamental properties that
such a representation must incorporate.

(i) The linear-response (LR) relation must hold [Eq. (18)].

(ii) The fluctuation-dissipation theorem (FDT) is also
valid [Eq. (21)].

(iii) All the statistical properties exhibit two different be-
haviors, Brownian or subdiffusive motion, depending on
whether time is smaller or larger than 7,. We will in the
following assume that the time scale 7,=1/7 is smaller than
7, such that the particles are moving diffusively (in contrast
with ballistically) before colliding with each other.

Our aim is thus to write down an effective equation for
the microscopic dynamics of a tagged particle in single-file
systems, according to (i), (i), and (iii). Such an equation
turns out to be

x(t) =v(1),

O(1) == [y + 2n9100D; " To (@) + &@). (24)

Several new symbols have been introduced in the previous
expression deserving an explanation. First, the quantity n,
Ty . L

=T plays the same role as 7, in the collisional represen-
tation of the particle’s motion [14]: it accounts for the num-
ber of collisions a particle suffers before attaining subdiffu-

sive behavior. Second, the quantity 7,,, which has the
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dimension of [1 /t3/ 7], is the generalized damping coefficient
and is equal to (= )Y since 7, is the unique relevant time
scale of the system The third symbol in (24) is the Riemann-
Liouville fractional operator [30]

f(t') "

OD,«_I/Zf(t) ( )f |t |1/2 . (25)

Note that if we use the definition of the Caputo fractional
derivative [31],

d"?f(r) 1 ("df(e)dr
12 = mpdr’
dt 1\Jo |t=7|
1" —
2

then (24) takes the form

d*x(t)  dx() )

5 d”zx(t)
g +7y dr YT 0

A = &0). (26)

The noise appearing in (24) satisfies the properties (21).
Indeed, we recall that the diffusive microscopic time scale

rb:%y can be expressed as Tb=n1:211 [14] so that Eq. (24) can be
recast as

u(r) =—f e =1 Yo(t')dr' + &), (27)
0

introducing the generalized damping and defining the o func-
tion to contribute half at the end point of an integral:

W)= 23{ St) + lﬁ] ) (28)
N7t

Such a definition allows us to express the properties in (21)
through the compact notation of the generalized FDT [22]

(EDE")) = kgTHt ~1']). (29)

The solution of Eq. (24) can be easily achieved by means
of the Laplace transform

)= 2% 0)e) + E) )

v(s) =v(0)als) + &) als), (30)
where the mobility x(z) in the s domain is given by

() = — 1 (31)
S) = =
H s+y(s) s+y+ aniyl,zs_l/z

and

s = 2 L @

s s>+ ys + 2ndyl,2s

It is immediate to verify that the expression in (31) matches
the two predicted regimes in (19). In the time domain the
solution of the GLE (24) takes the simple form

PHYSICAL REVIEW E 78, 051116 (2008)

x(1) = x(0) +v(0) (1) + ft &) le—1)dr',
0

v(1) = v(0) (1) + J &)t —1")ar', (33)
0

from which it is apparent that the joint probability distribu-
tion for x and v is a Gaussian in this formulation. The posi-

tion and velocity are in fact linear functionals of E(t), which
is a (non-Markovian) Gaussian random process. Such a prop-
erty corroborates all the previous analytical derivations for
the probability distribution of a tagged particle moving sub-
diffusively in a single-file system (see, for example, Ref. [2]
and references therein), and it is clearly at odds with a frac-
tional Fokker-Planck description of the corresponding sub-
diffusive process, which leads to a stretched Gaussian solu-
tion [15].

Furthermore, we point out that the GLE (24) correctly
describes the time behavior of all the observable moments of
position and velocity, not only in the long-time asymptotic
regime, but also at the initial diffusive stage. To see this it is
sufficient to start from the general solutions (33) and put in
some physical assumptions [33]. For instance, the first mo-
ments of velocity and position will read

(x(1)) = (x(0)) + ((0))§1),

(1) = (0D (). (34)

The second moments, however, are more interesting quanti-
ties: for the VAF, assuming (v%(0))=kgT, it is straightforward
to prove

C(1) = (w®v(0)) = kpT (1), (35)

which is the generalized first Kubo theorem. The numerical
evidence of this is given in Fig. 3(a), where several rescaled
curves are plotted against the analytic function in (35) after
numerical inversion of the mobility in (31).

The excellent agreement between the analytical descrip-
tion yielded by (24) and the numerical data is even more
apparent looking at the mean-square displacement of the
tagged particle (Fig. 4). Indeed from (33) one obtains

&(1) = ([x(1) = x(0) ) = 2(v*(0)) f l Wr')dr',  (36)
0

where it is possible to recognize the theorem stated in Ref.
[14] provided that

d ~
d_t"”(t) = (1). (37)

The exact expression given in (36) quantitatively reproduces
the three stages of the dx*(t) curves in Fig. 4 (ballistic, dif-
fusive, subdiffusive) as well as the characteristic time scales
(7, and 7,) on which the crossovers between them take place:
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FIG. 3. (Color online) Second moments of observables: rescaled
VAF (v(r)v(0)) (a) and position-velocity correlation function
([x(£)—=x(0)Jv(2)) (b) vs t/ 7, for several densities p and damping .
kpT=1.0. Dashed lines are the asymptotic formulas (16) and (23),
respectively, whereas the solid ones represent the GLE predictions
(35) and (40) for p=0.05 and y=5.0. To improve our statistics we
averaged over 3000 different realizations.

kpTt?,
2Dt, T, <t << Ty,

(38)
D ~
24/ =3\, 1>,
P

An analytical inversion of the formula in (32) including the
crossover to the subdiffusive regime can be achieved by ne-

<< Ths

&A1) =

10

t/t q

FIG. 4. (Color online) Mean-square displacement &x2(r)
=S¥ [x{t)=x;(0)*/N for different values of p and y with kgT
=1.0 plotted versus /7, Data have been rescaled by xfl
=2/(p*Vm) on the y axis [14]. The black solid lines represent the
theoretical predictions as given by the GLE (36): they provide an
excellent description of the three diffusive regimes. Data have been
averaged over 30 different realizations for N of the order of 10%.
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TABLE 1. Values of 7, and 74 and their ratio for the values of p
and vy used in Figs. 2-5.

p Y ) (2 Tal T
0.25 0.5 2.0 8.0 4
0.1 1.0 1.0 100 100
0.1 3.0 ~0.334 300 900
0.1 5.0 0.2 500 2500
0.05 5.0 0.2 2000 10000

glecting the inertial (ballistic) term, leading to

Aty
<[X(t)—x(0)]2>2#{\/:—;+62/ erfc( 4::)—%}

(39)

In general, we believe the GLE (24) provides a very good
description of the tagged particle’s stochastic motion only
when the condition 7, << 7, is fulfilled (see Table I). In other
words, the particle must attain a truly diffusive regime before
getting a collision with one of its nearest neighbors. One can
see that the proposed GLE cannot work well in the opposite
case where 7,> 7, since all interactions with neighboring
particles vanish according to Eq. (24) as y— 0. This cannot
be true, since the particle will still collide and exchange mo-
mentum with its neighbors even though the rest of the fric-
tion with the surroundings vanish. We have not found a GLE
that works well in the case 7,> 7.

The close comparison between theory and numerics when
7,<< 7, is also displayed by the position-velocity correlation
function {(x(¢)v(z)) for which the following expression holds:

B(1) = ([x(1) = x(0) Jo (1)) = (*(0)) (). (40)

In Fig. 3(b) we compare the numerical data with both (40)
and (23), which is expected to work well only in the
asymptotic regime.

The relaxation of the second moment of the velocity
(v%(#)) to the asymptotic value kT is given by

(0*(1) = WH0)u*(0) + kgT[1 — p*(0)] (41)

and deserves particular attention. In Ref. [23] it has been
shown that the fractional Brownian process [32] generated
by a fractional Langevin equation and the stochastic process
corresponding to the relative fractional Kramer equation [34]
are on average the same, except for the second moment of
the velocity. We point out that such a discrepancy is a com-
mon problem in nonequilibrium statistical mechanics when-
ever one is concerned to pass from a generalized Langevin
dynamical description of a non-Markovian process [21] to
the corresponding Fokker-Planck equation for the probability
distribution [35] (see, for instance, the discussion in Ref.
[37] on the inconsistency of a retarded Fokker-Planck equa-
tion of the Rubin model [36]). In the GLE (24) the {v*(¢))
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FIG. 5. (Color online). Second moment of the velocity (v>(¢)) vs
t, displayed for several densities p and damping y. kz7=1.0. The
initial tagged particle velocity v(0) has been set to 0. Expression
(41) (solid black lines) shows the typical Brownian exponential
relaxation to kg7 for all the displayed curves, 7,/7,<1. To im-
prove our statistics we averaged the numerical curves over 3000
realizations.

relaxation process is dictated by the Brownian dynamics (see
Fig. 5) as long as 7,<<7, The fractional Kramer equation
corresponding to (24) would read

dP(x,v,t)  JIP(x,v,1)
+v

=|v+ D V2L P(x,v,1),
o o [7’ Y120, ] rrP( )

(42)

where lA,FP=%U+kBT§. In the 7,<7, limit the (v*(1))pxg
expression yielded by (42) is the one provided by the usual
Fokker-Planck equation—i.e., (v?(f))pxp=kgTe >"—once
v(0)=0, in agreement with the exponential saturation shown
in Fig. 5. This could lead to believe that the GLE description
(24) and the Kramer equation (42) are de facto equivalent in
the range 7,<<7,; Nevertheless, we expect that the P(x,?)
solution of (42) is still a stretched exponential instead of a
Gaussian: this fundamental difference casts some general
doubt on the possibility to determine a Fokker-Planck equa-
tion (with time independent coefficients) for systems whose
microscopic dynamics is represented by a FLE.

The last part of this section is devoted to property (i):
namely, the validity of the LR relation. In the presence of an
external force acting from time equal to zero and onwards,
Egs. (24)-(27) take the form

x(t) =v(t),
v(r)z—f 7(t—t’)v(t’)dt’+F(t)+§(t). (43)
0

The LR relation (18) in s space can thus expressed by using
(31) as

(v(s)) = i(s)F(s), (44)

PHYSICAL REVIEW E 78, 051116 (2008)

so that, thanks to expression (31), the real and imaginary
parts of the mobility z(r) read

I~ 2 —1/2
Y+ 25y 07"

—1/2)2

Re[ i(w)] =

[y, 2 [H 2 —1/2 2’
(y+\2nyyp0 +(\2ny71 007" - 0)

—
2 —1/2
0 = \2n,y1,®

—1/2)2

Im[ fi(w)] = .
+ (\’Enfﬂ’l/zw_m -w)?

(45)

[, 2
(y+\2ngy p0

Remarkably, in Fig. 2 both functions (45) (solid black lines)
are shown to fit quite well the outcome of our numerics.

Finally in the case of a constant external force—i.e.,
F(t)=F for t=0 in (43)—the LR relation provides that the
drift (x()) satisfies the generalized Einstein relation

(1)
2kpT’

x(0)p=(x(0)) + F (46)

which has been shown to be valid on file systems moving on
a ring [38] and on an infinite one-dimensional lattice [39].

IV. CONCLUSION

In this paper we introduced the effective equation ruling
the microscopic stochastic motion of a SF tagged particle.
Starting from a diffusionlike formalism for the file density
dynamics, we were led to several properties for which the
GLEs (24)—(27) can be regarded as a representation. Indeed
the GLE formalism provides an elegant representation of the
generalized fluctuation-dissipation theorems (29)—(35), linear
response relation (44), and generalized Einstein relation (46),
all remarkable properties satisfied by the particle, both in its
diffusive and in subdiffusive phase.

Nevertheless, we want to stress that the GLE is just a
description, though very good, of the stochastic motion of
the SF particle and, in this perspective, is valid within certain
limits. However, along the same line, within certain approxi-
mations the Langevin equation provides an excellent effec-
tive equation for the motion of a Brownian particle immersed
in a thermal bath; i.e., it describes well the ballistic and dif-
fusive regimes of the particle, but one would not expect it to
be exact in the region of crossover between the two regimes.
In SF systems the tagged particle is subjected to two types of
thermal baths, as is apparent from (24): the first is mimicked
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by the usual Markovian uncorrelated noise, whereas the sec-
ond, physically embodied by the surrounding file’s particles,
is achieved by the introduction of an additional non-
Markovian term, responsible for the strong memory effects.
Surprisingly this “sum of thermal baths” turns out to be well
described (in the same manner as for the Brownian particle
and LE) by simply the algebraic sum of two independent
terms in the stochastic equation of motion. Alternatively one
could view (24) as an usual LE (3) where the relabeling-
collisional symmetry accounts for the fractional term.
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