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Return interval distribution of extreme events and long-term memory
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The distribution of recurrence times or return intervals between extreme events is important to characterize
and understand the behavior of physical systems and phenomena in many disciplines. It is well known that

many physical processes in nature and society display long-range correlations. Hence, in the last few years,
considerable research effort has been directed towards studying the distribution of return intervals for long-
range correlated time series. Based on numerical simulations, it was shown that the return interval distributions
are of stretched exponential type. In this paper, we obtain an analytical expression for the distribution of return
intervals in long-range correlated time series which holds good when the average return intervals are large. We
show that the distribution is actually a product of power law and a stretched exponential form. We also discuss
the regimes of validity and perform detailed studies on how the return interval distribution depends on the

threshold used to define extreme events.
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I. INTRODUCTION

Extreme events take place frequently in both nature and
society. For instance, the recurrence of floods, droughts,
earthquakes, and economic recession are all examples of ex-
treme events. The consequences of extreme events to life and
property are often enormous and hence it is desirable to
study their properties and questions related to their predict-
ability. Interestingly, all of these extreme events are also non-
equilibrium phenomena and studying the extreme value sta-
tistics in them will lead to a better understanding of the
models and the phenomenology of nonequilibrium statistical
physics. Thus, there is an increasing interest in the physics
literature to understand a broad range of issues and phenom-
ena connected with the occurrence of extreme events and
their dynamics [1,2].

In the classical extreme value theory, the limiting distri-
bution for the extreme maximal values in sequences of inde-
pendent and identically distributed random variables can be
one of the Fréchet, Gumbel, or Weibull distribution depend-
ing on the behavior of the tail of the probability density [3].
This has been empirically verified in many cases of practical
interest. Many new applications continue to be discovered,
for example, the recent one being the distribution of extreme
components of the eigenmodes of quantum chaotic systems
[4]. In contrast to the questions about the distribution of ex-
trema, one of the problems being addressed in the last few
years is the distribution of the returns intervals for the ex-
treme events when the underlying time series displays long
memory [5-9]. This is primarily motivated by the fact that
many of the natural and socioeconomic phenomena, e.g.,
daily temperature, DNA sequences, river run-off, earth-
quakes, stock markets, etc., display long memory or long-
range correlation [10,11]. Long memory implies slowly de-
caying auto correlation function of the power-law type such
that the system does not exhibit typical time scales. In this
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case, the intervals between extreme events are likely to be
correlated as well. On the contrary, it is known that for an
uncorrelated time series, intervals between extreme events
are also uncorrelated and are exponentially distributed. The
question is how the presence of long-range correlation modi-
fies the return interval distribution of extreme events? A defi-
nite answer to this question would shed new light on many
problems across various disciplines.

Return interval distributions are interesting and useful for
several reasons, the most important being that many prob-
lems in diverse fields can be formulated in terms of return
interval statistics with wide ranging applications. For in-
stance, the problem of recurrence time interval between
earthquakes above a given magnitude [12], x-ray solar flare
recurrences [13], statistics of acoustic emission from rock
fractures [14], interarrival packet times on computer and cel-
lular networks [15], and the classical problem of Poincare
recurrences in Hamiltonian systems [16,17] can all be formu-
lated as extreme event questions involving return interval
distribution. In a nonstationary time series, it is often difficult
to reliably estimate its temporal statistical properties such as
the autocorrelations or higher order correlations. Thus, return
interval distributions are also a useful tool to characterize
temporal properties of such systems.

Let x(r) denote a sequence of random variable with mean
(x)=0, where t is the time index. We will call an event ex-
treme if x(7) > g where ¢ is some threshold value. The return
interval r is the time between successive occurrence of ex-
treme events. Assuming that x(z) is sampled at discrete inter-
vals, with respect to threshold g, we have a well-defined
series of return intervals, ry, k=1,2,3,...,N. This is sche-
matically shown in Fig. 1. If the random variables x(z) are
uncorrelated, then the return intervals r, are also uncorrelated
and they are exponentially distributed as

1
P(r)= @E_r/w‘ﬂ (1)

In order to use later, we also define the average return inter-
val dependent on threshold ¢ to be
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FIG. 1. This schematic diagram shows the return intervals for a
threshold value g=2 as a function of time 7.

1 N
(r),= lim K/z . (2)
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In contrast to an uncorrelated time series, a long-range cor-
related series has an autocorrelation function that displays
power law of the form

Cn=@+nx())~77 0<y<lI, (3)

where (-) denotes the temporal average and vy is the autocor-
relation exponent. The work done in the last few years show
that the long-range correlation does indeed affect the return
interval distribution of extreme events [5-9]. Empirical re-
sults in a series of papers [5-9] have shown that, in the
presence of long-range correlation, the return interval distri-
bution becomes a stretched exponential given by

P,(R) =A(y)e BOR (4)

with scaled return intervals being defined as R=r/{r). Both
A(7y) and B(7y) are constants that depend on 7. They can be
fixed by normalizing both the probability and the average
return interval to unity. However, more recent studies on
return times in long-range correlated data are reported in
Refs. [18,19], where a Weibull distribution is found to be a
good representation of empirical results. It has also been
shown that the return intervals themselves are long-range
correlated.

However, an analytical justification for the stretched ex-
ponential distribution in Eq. (4) or the Weibull distribution is
still lacking and the main contribution of this paper is to
partly fill this void. In this context, it must be noted that
deviations from the stretched exponential distribution in Eq.
(4) have been noted for return intervals shorter (R<<1) than
the average. For short return intervals, i.e., R<<1, empirical
results display a power law with the exponent ~(y—1) [7],
which is not explained by Eq. (4). While the return interval
distribution is expected to depend on the threshold ¢, the
stretched exponential form does not explicitly reveal this de-
pendence. This paper addresses these questions using a com-
bination of analytical and numerical results. First, from the-
oretical arguments, we obtain an approximate expression for
the return interval distribution, which modifies Eq. (4) from a
purely stretched exponential form to a product of power law
and stretched exponential. Second, we systematically study
the dependence of return interval distribution on the thresh-
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old g and show that our analytical result holds good in the
limit of g> 1. In general, the return interval distribution de-
pends on the value of threshold g.

In the study of global seismic activity above some mag-
nitude M, the distribution F(7) of recurrence times 7 is of
current interest [ 12,20-23] since this would help characterize
and understand the spatiotemporal organization of earth-
quakes. Recently, several authors have proposed a scaling
ansatz of the form

F(r) = §f<r/?>, (5)

for the earthquake recurrence intervals and f(7) being the I
distribution [12] was claimed to be universal for all earth-
quake catalog. However, recently Saichev and Sornette
[20-22] have analytically derived a different form for f(7)
and have shown that it arises as a consequence of Gutenberg-
Richter and Omori laws and, contrary to earlier claims, is not
strictly universal. Taken together, these results should pro-
vide a cautionary note that recurrence intervals for long
memory series are not easily susceptible to generalization
and universality. Our results on recurrence interval distribu-
tion presented below are not based on fundamental laws of
seismicity and hence cannot be directly applied to them.
However, we will discuss some of the common qualitative
features in both of them in a later section.

In the next section, we obtain an analytical expression for
the return interval distribution for stationary Gaussian dis-
tributed time series with long memory and in the subsequent
section we present our numerical results. Further, we system-
atically study the dependence of the return interval distribu-
tion on the threshold used to define the extreme event. Fi-
nally, we present discussions and conclusions.

II. RETURN TIME DISTRIBUTION

We consider a given long-range correlated time series x(z)
with the autocorrelation exponent 7y. At any instant r=t, if
x(ty) > q, i.e., it exceeds the threshold g, then it is taken to be
an extreme value. We assume that x(¢) is a realization from a
Gaussian distributed, stationary, fractional noise (FN) pro-
cess. If x(r) is continuously sampled, then the distribution of
return intervals is singular since FN processes are discontinu-
ous almost everywhere. This is to be expected since every
time x(z) crosses the threshold g, there will be infinite cross-
ings with infinitely small return intervals. Hence, the mean
return interval is also zero. However, if we assume that x(z)
is sampled at intervals of 7, then we have that x,=x(k7). If
we denote return intervals by r and if »> 7, then we can
meaningfully discuss about the distribution of return inter-
vals. In this case, the mean return interval (r)>0.

The starting point is the theorem due to Newell and
Rosenblatt [24] obtained in the context of zero crossing
probabilities for Gaussian processes. It states that for a sepa-
rable Gaussian stationary process X(f) with mean (X)=0 and
autocorrelation C(7) —0 as 7— o, the probability g(7) that
X(t)>0 for 0=t=Tis

gM=0(T"%, T—wo, a>0. (6)
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The conditions of this theorem are satisfied for the long-
range correlated noise process x(¢) under consideration. At
this point, we emphasize that specifying the autocorrelation
function for a Gaussian process implies that the coefficients
for the underlying autoregressive or moving average pro-
cesses (or for any linear stochastic process) can be uniquely
determined in principle. However, the power-law type auto-
correlation would imply that the order of these processes
would be infinite due to the long-range nature of the tempo-
ral dependencies. Hence the result obtained in this work will
be valid for a class of linear Gaussian stochastic processes
with long-range correlations. In addition, note also that the
power-law autocorrelation function does not fully character-
ize all the dependencies in the data, if these do not stem from
a Gaussian process. Hence, non-Gaussian processes with
identical autocorrelations might differ in their return time
statistics (see the discussion later on dichotomic series and
Hamiltonian dynamics).

Thus, our probability model is the statement that, for a
stationary Gaussian process with long memory, given an ex-
treme event at time =0, the probability to find an extreme
event at time r=r is given by

P,(r) = ar D = gy~ (1-7) (7)

where 1/2<<H<1 is the Hurst exponent [25], 0<y<1, and
a is the normalization constant that will be fixed later. We
take P,.(r) to be a continuous function of r with (r)>0. We
have also used the well-known relation between Hurst expo-
nent and autocorrelation exponent; y=2-2H. Equation (7)
implies that after an extreme event it is highly probable to
expect the next event to be an extreme one, too; and this is a
reasonable proposition for a persistent time series. Notice
also that for an uncorrelated time series H=1/2. This leads
to P(r) in Eq. (7) becoming independent of r, as would be
expected for an uncorrelated time series. We have assumed
P,.(r) to be some continuous function of r. We might also
point out that the assumption in Eq. (7) implies that it is a
kind of renewal process, i.e., after every extreme event one
resets the time and the process begins afresh independent of
the previous return interval. Thus, the independence of return
intervals is already built in to this assumption. Further, the
range of y being considered guarantees that the process de-
cays strongly enough for the process to stop after a finite
return interval.

Next we calculate the probability that given an extreme
event at time =0, no extreme event occurs in the interval
(0,r). For this, we divide the interval r into m subintervals
indexed by j=0,1,2,...(m—1) and we calculate this prob-
ability in each of the intervals. For the jth subinterval, using
Eq. (7), the probability of extreme event is given by

N 4 N (A1 B
2m|\m m

This can be easily obtained as the area under the probability
curve P,(r) [Eq. (7)] lying between (j+1)r/m and jr/m.
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After simplifying this expression, the probability that no ex-
treme event occurs in the jth subinterval is given by

~(1-v)
1—hu>=1—%(,§1) "G )04 0 )

At this point, we make an approximation and assume that the
probability of no extreme event occurrence in each subinter-
val is an independent event. Then, the probability P,,,.(r)
that no extreme event occurs in any of the m subintervals in
(0,r) is simply the product of probabilities (i.e., product of
probability for no extreme event in each of the subinterval),

m—1

Proex(r) = lim [T 1-n()). (10)

m—o j=(

We require the probability P(r)dr that given an extreme
event at =0, no extreme event occurs in (0,r) and an ex-
treme event occurs in the infinitesimal interval r+dr. This is
simply the product of P,,,, with the probability P,, that an
extreme event takes place in the infinitesimal interval dr be-
yond r. This can be assembled together as

P(r)dr = Prwex(r)Pex(r)dr
= lim [1 - ¢m,r][l - ¢m,r(2_7+ 1)]

X[1-¢,,377+277]...
X{1 =, [m7+(m—- D" Par YYar, (11)
where

¢m,r=‘—’(1>_y. (12)

2\m

The value of m can be arbitrarily large and Eq. (11) can be
simplified and rewritten as

Y
P(r)dr= lim exp[— g(L) {ZH,(W”__II)+m'(1'7)}:|ar'(1'7)dr,
m

(13)

where an”__ 11) is the generalized Harmonic number [26]. In
order to take the limit m — oo, we note that
(y=1)
lim 2=~ 0<y<I. (14)
m—oo M Y
Using this Eq. (14) in Eq. (13) and taking the limit, we
obtain the following result for the distribution of return in-
tervals:

P(r)dr=ar Ve~ @ gy (15)

The constant a will be fixed by normalization as follows: we
demand that the total probability and the average return in-
terval (r) be normalized to unity,

I:fooP(r)dr:I (16)

0

and
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(ry= f”’ rP(r)dr=1. (17)
0

However, the distribution in Eq. (15) is already normalized
and hence Eq. (17) will be used to determine the value of a.
The requirement that (r)=1 is equivalent to transforming the
return intervals r in units of (r). Performing the integrals
above, the normalized distribution in the variable R=r/{r)
turns out to be

P(R) = '}/|:F(1Ly) ] yR_(l—)’)e—[F(l + v/9)]"RY (1 8)
Y

where I'(+) is the I' function. First, we discuss some of the
salient features of this distribution. By simple manipulation,
this can be recast in the forms of standard Weibull distribu-
tion which is one of the standard forms for the distribution of
extreme events [3]. In recent works reported in Refs. [18,19],
Weibull distribution was found to best represent the empiri-
cal results for the distribution of extreme event return inter-
vals obtained from the observed time series such as tropical
temperature and river discharges. The case y=1 defines the
crossover to short-range or uncorrelated time series. If we
put y=1 in the distribution in Eq. (18) above, we recover the
exponential distribution, P(R)=exp(—R). In the region R
<1, i.e., for the return intervals much below the average, the
dominant behavior can be seen by taking the logarithm on
both sides of Eq. (18) leading to

loge P(R) = lOge(ng) - (1 - 7)1Oge R- gyRy’ (19)

where we have used gY:[F(l—;Y)]y. For R<1, the second
term dominates the distribution and thus we obtain a power
law with an exponent (y—1),

P(R) R Y (R<1). (20)

This power-law behavior with exponent (y—1) for short re-
turn intervals has already been noted in the numerical results
presented in Ref. [7]. Thus, our approach analytically shows
the emergence of a power-law regime for short R in contrast
to the stretched exponential distribution. On the other hand,
for R> 1, the logarithmic term in Eq. (19) can be dropped
and the return interval distribution behaves essentially simi-
lar to a stretched exponential distribution,

P(R) x 3R (R>1). (21)

Thus, stretched exponential is a good approximation for R
> 1. This partly explains why a pure stretched exponential
distribution as in Eq. (4) deviates, for R<<1, from the simu-
lated return interval distributions in the earlier works [5-9].
Finally, we also note that Eq. (18) can also be derived by
other methods without actually discretizing the interval r as
we have done.

As shown above, the return interval distribution in Eq.
(18) does reproduce the empirical results already known in
the literature but is nevertheless approximate in the follow-
ing sense. It is known that there exist correlations among the
return intervals and they are particularly strong as y—0.
Thus, every return interval depends on the value of previous
return interval. This is also well documented in the literature
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as the conditional probability P(R|R,) to find return interval
R, given that the previous return interval was R, [7-9]. This
conditional probability shows interesting features and devi-
ates from the case of uncorrelated return intervals. Equation
(18) does not take into account these correlations among
intervals and in fact is derived on the assumption that return
intervals are independent. This is a gross approximation
though and in the absence of any other definitive model for
the correlations among intervals, this is a simple and analyti-
cally tractable choice. Based on this argument, one can ex-
pect Eq. (18) to describe the return interval statistics in the
regime where the correlations are not highly dominant, for
(ry>1 [27]. Secondly, note that even though threshold ¢
plays a crucial role as we will describe in the next section, it
does not play any role in Eq. (18). Threshold ¢ is related to
(r) such that the higher the value of g, the larger (r) is,
though it is not a linear relation. Thus, the theoretical argu-
ments leading to Eq. (18) would best describe an asymptotic
limit of g>1 or (r)>1.

Using Eq. (18) in practice can lead to strong divergence
for r— 0. From a physical standpoint, this represents a prob-
lem that can be understood based on the fact that there can-
not be zero return intervals, but they can be arbitrarily small.
By definition >0, and if r,,, is the shortest return interval
then its corresponding scaled version would be r,,;,/{r). If
the original signal is sampled at equal time intervals, 7,,,, can
be scaled to unity and the shortest scaled return interval
would be 1/{r). The modification of Eq. (18) should be done
by replacing the lower limit in the integrals in Eqs. (16) and
(17) by 1/{r) instead of 0. This also reflects the general idea
that all power laws in practice have a lower bound and the
return interval distribution such as Eq. (18) that displays a
power-law type regime will necessarily have a lower cutoff.

We will go back to Eq. (15) and rewrite the return interval
distribution as

f(r) = Br—(l—y)e—(A/ﬂ/)rY, (22)

where A and B are constants that would now depend on both
v and the average return interval. As usual, both these con-
stants will be fixed by demanding that probability and scaled
average return interval normalize to unity. This leads to the
following set of integrals:

f f(rydr= fe"’ =1, (23)
XO

* Bsy( . T(1/v,p)
L rf(r)dr=%<e erTzf) =1, (24)

where so=1/(r), p=As}/vy, and I'(.,.) is the incomplete I
function [28]. The algebraic equations to be solved for A and
B are transcendental in nature and a closed form solution
does not seem possible except for some special values. By
further manipulation of Egs. (23) and (24), we obtain
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FIG. 2. (Color online) The simulated return interval distribution
(circles) and theoretical distribution in Eq. (22) (solid lines) for
long-range correlated time series with autocorrelation exponent 7y as
indicated in (a)—(e). This figure displays probability density of re-
turn intervals for a threshold of g=3.0 with average return interval
(ry=743.0 for all the cases shown above.

1 e’T'(1/y,p)
s_: 1 7, (25)
0 P

If p=p, is the solution of Eq. (25) for a definite {r), then the
constants can be obtained as

A0
5

B=Aeb, (26)

In the simulations shown in this paper, we have numerically
solved for constants A and B in Eq. (22) for various values of
(r) using Egs. (25) and (26).

III. NUMERICAL RESULTS

In this section, we display the numerical results for the
return interval distribution of long-range correlated time se-
ries drawn from a Gaussian distribution with zero mean and
unit variance. The long-range correlated data were generated
using the Fourier filtering technique [29]. We generate 2%
~3 X 107 data points for each value of vy and then compute
their return interval distribution. The numerical results are
displayed in Fig. 2 as a log-log plot for g=3 along with the
theoretical distributions given in Egs. (18) and (22). The
agreement with the theoretical distribution is good and as
expected becomes better as y— 1. Similar good agreement is
also obtained for the values of y not shown here. The simu-
lated results in Fig. 2 does not cover a larger range in log;o R
because of the large value of threshold ¢ chosen correspond-
ing to an average return interval of (r)=743.0. To overcome
this problem, we will need extremely large sequences of ran-
dom time series. As we have argued in the previous section,
the theoretical distribution can be expected to agree with the
data when threshold ¢ or equivalently the average return in-
terval is large. Thus, as we reduce g below 2.5, there are
deviations from the theoretical distribution which are sys-
tematically studied in the next section.
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FIG. 3. (Color online) The return interval distribution focused
on the power-law regime with autocorrelation exponent 7 is indi-
cated in (a)—(d). The numerical distribution (circles) is nearly a
straight line with the slope (—1+7). A straight line with slope
(=1+7) is a shown as solid (red) line for comparison. For all the
cases, ¢>3.0 corresponding to (r)>740.0.

In Fig. 3, we show the power-law regime indicated by Eq.
(20). In this figure, we focus on the region R<<1 where we
expect the power law to appear. For each value of y in Fig. 3,
we have drawn a straight line (shown in red) with the slope
(=1+y). Quite clearly, the numerical data show a remarkably
good agreement with the theoretical slope. As y—0, the
power-law regime holds good in a larger range of R; for
instance, see the case of y=0.1 and 0.3. On the other hand,
as seen in the case of y=0.7, the power-law region becomes
shorter and the stretched exponential regime begins to domi-
nate as y— 1. This is an indication that the return interval
distribution makes a transition from predominantly
(stretched) exponential behavior to predominantly a power-
law type curve as y—0. It must be pointed out that the
agreement with theoretically expected slope (—1+7%) is
reached only for ¢> 1. This is to be expected since the de-
rived distributions in Egs. (18) and (22) do not take into
account the correlations among the return intervals. In the
next section, we study how the slope in the power-law re-
gime changes with threshold ¢ in the numerically simulated
long-range correlated data.

IV. RETURN INTERVAL DISTRIBUTION AND
THRESHOLD FOR EXTREME EVENTS

In this section, we will empirically examine the relation
between the return interval distribution, especially in the
power-law regime, and the threshold ¢ that define the ex-
treme events. Intuitively, we can expect that if the threshold
is higher, extreme events will be fewer and hence the return
intervals will be longer. Thus, larger ¢ leads to larger average
return intervals. Here we address the question of how the
return interval distributions in Egs. (18) and (22) are modi-
fied by changes in threshold value g. One clear indication is
that, approximately for ¢<<2, the simulated return interval
distributions deviate systematically from Eqs. (18) and (22),
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FIG. 4. (Color online) The return interval distribution for the
simulated data (circles) for y=0.1 plotted for various values of
threshold ¢ (a)—(f). A straight line with slope (—=1+ ) is shown as a
solid (blue) line for comparison. Note that as ¢ increases, the initial
part of the distribution moves closer to a slope of (—1+7).

in particular for R<<1. To study this, we plot the return in-
terval distribution for the simulated data in a log-log plot as
shown in Fig. 2 and measure the slope in a linear region for
R <1 for various values of g. The result is displayed in Fig.
4 for y=0.1. It is seen that as g increases, the initial part of
the distribution, i.e., R<1 or log R<O0, is closer to being a
straight line with slope (—1+17). A similar behavior is seen
for all the values of <y of our interest.

In order to see this variation of the slope of the initial part
of the distribution with ¢, we plot in Fig. 5(a) the measured
slope s,,(¢) against the threshold ¢ for various values of 7.
The slope is measured in the linear region in log-log plot for
R<1. For a given value of y=1,, the slope increases mono-
tonically to reach a saturation value of (—1+7v,) as g— .
Once again we point out that this is in agreement with our
expectation that the weakly correlated regime would agree
with the distribution obtained in Eqs. (18) and (22). For the
Gaussian distributed data that we use, at ¢g=3, the average
return interval is (r)~744.0. Beyond g=3 with 2% data
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FIG. 5. (Color online) (a) The measured slope s,, in the power-
law regime as a function of ¢ for y=0.1 (circles), 0.3 (squares), 0.5
(triangles), and 0.7 (plus). (b) The function &(q,y)=s,,/(y—1) as a
function of ¢ for the same values of 7y as in (a).
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points the number of returns intervals are not sufficient for
reliable statistics. All this would imply that in order to take
into account the effect of ¢, the power law proposed in Eq.
(20) could be modified as

P(R) R—(l—‘)’)(?(q,)’)’ (27)

with the restriction, suggested by the numerical results in
Fig. 5(a), that 6(q,y)—1 as g—c°. Clearly, the measured
slope is simply given by s,,=—(1—7)6(q,y). Thus, we can
directly visualize the function 6(g,y) if we plot s,,(q)/(y
—1) as a function of ¢. This is shown in Fig. 5(b). As we
anticipated, the function 6(q,7y) tends towards unity as g
— . The autocorrelation exponent 7y controls the rate at
which the limiting value of unity is reached. The rate at
which convergence to unity is reached is quite slow for ¢
> 1. To numerically realize the convergence to unity would
require us to simulate large sequences of random numbers
that are computationally expensive at present. We believe
that the behavior displayed in Figs. 5(a) and 5(b) is related to
a more fundamental question of how the autocorrelation ex-
ponent of a long-range correlated time series changes with
the threshold ¢ applied to define extreme events. Obviously,
every time we choose a subset of events from a larger set,
such as the extreme events, implicitly some kind of thresh-
olding is applied. Since the power-law regime varies with g
and if the distribution has to remain normalized, then the
stretched exponential part would also be modified. However,
this might be difficult to visualize numerically. The central
premise of this section is to show that Egs. (18) and (22)
represent return interval distributions in the limit when the
threshold or average return interval is large. We have shown
through simulations the dependence of return interval distri-
butions on threshold g. This explains why we have chosen
g=3 to illustrate our result in Fig 2. Thus, in principle, the
exact return interval distribution should depend on (r), espe-
cially for short return intervals, i.e., R<<1.

V. LONG-RANGE PROBABILITY PROCESS

Apart from corrections arising due to the dependence on
g, the return interval distribution derived in this paper suffers
due to an approximation arising from the assumptions of the
independence of return intervals. This assumption makes the
analysis tractable but does not reflect the reality since we
know that the intervals are indeed correlated. In this section,
we argue that the deviations from the numerical simulations
evident in Fig. 2 can be attributed to the presence of corre-
lations in the return interval data. We do this by simulating
the probability process in Eq. (7) that forms the basis for the
analytical result in Egs. (18) and (22). If the simulated data
agree with the analytical result, then we could attribute the
deviations seen in Fig. 2 to the correlations present in the
return intervals.

In order to numerically simulate the probability process in
Eq. (7), we first determine the constant ¢ by normalizing it in
the region k,,;,,=1 and k,,,,. The normalized probability dis-
tribution corresponding to Eq. (7) is
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FIG. 6. The simulated return interval distribution (circles) from
the probability process in Eq. (7) compared with the theoretical
distribution (solid line) given in Eq. (22). The value of autocorrela-
tion exponent vy is shown in (a)—(d).

_ Y -y
T 1)k 7, (28)

max

P(k) =

where k=1,2,3.... We generate a random number §; from a
uniform distribution at every k and compare it with the value
of P(k). A random number is accepted as an extreme event if
&< P(k) at any given value of k. If &= P(k), then it is not
an extreme event. By this procedure, we generate a series of
extreme events following Eq. (7). We then compute the re-
turn intervals and its distribution after scaling it by the aver-
age return interval. In Fig. 6, we show the return interval
distribution obtained by simulating our probability process
along with the distribution given by Eq. (22). The agreement
with the theoretical distribution is excellent, including for the
values of y not shown here. Hence, if the long-range corre-
lated data had independent return intervals, then we would
have obtained nearly perfect agreement with Eqs. (18) and
(22). This implies that the remaining disagreement between
the theoretical and numerical results seen in Fig. 2 can be
attributed to the presence of correlations among the return
intervals. On the other hand, if the probability process in Eq.
(7) was an incorrect assumption, it may not have been pos-
sible to obtain the results displayed in Fig. 2.

VI. DISCUSSIONS
A. Earthquake recurrence time distribution

As pointed out earlier, the recurrence interval distribution
in earthquakes is currently being vigorously debated. The
central question is about the claims of existence for a univer-
sal form for f(7) in Eq. (5) for the return interval distribution
of earthquakes above some magnitude M. In a recent work,
based on widely used (epidemic-type aftershock sequence)
ETAS model of seimicity, Saichev and Sornette have shown
that the form of f(7) can be derived based from Gutenberg-
Richter and Omori laws and is not universal across all spatial
regions and catalogs. In contrast, Corral had proposed that
f(7) is universal and is I" distributed. Apart from claims of
universality or otherwise, both these forms for f(7) agree

PHYSICAL REVIEW E 78, 051113 (2008)

with seismic data within numerical errors for large return
intervals 7>1. However for short return intervals, the
asymptotic form of f(7) proposed by Saichev and Sornette
contains a power law 7! that is in reasonably good agree-
ment with the empirical seismic data. This power law arises
as a consequence of Omori law which describes, as a func-
tion of time ¢, the rate of aftershocks after a main shock. The
Omori law for large earthquakes predicts 1/# with p~1.
This can be interpreted in the following sense: if a main
shock occurred at time =0, the Omori law is the probability
distribution for the occurrence of aftershock at some time 7.
In this sense, it is analogous to our probability statement in
Eq. (7). Notice, however, that the results in our work are not
constrained by the Gutenberg-Richter law which makes a
quantitative statement about the probability that a triggered
earthquakes has a magnitude greater that M. In contrast,
events in our probabilistic model are generated from a sta-
tionary Gaussian distribution. Thus, the return interval distri-
bution derived in Refs. [20-22] has certain similar qualita-
tive features but is quantitatively different from Eq. (22)
obtained in this paper. This is not entirely surprising because
the recurrence distribution depend on the details of temporal
dependencies which are not completely characterized by the
power-law type autocorrelations.

For instance, consider the case of Poincare recurrence in
Hamiltonian dynamics [16]. The Poincare recurrence theo-
rem states that nearly all the trajectories arising from some
small region of phase space will return to it infinitely many
times. The distribution of these return times are of consider-
able research interest since they can characterize the chaotic
systems. This problem is the Hamiltonian systems analog of
the return interval distribution for the time series. For com-
pletely chaotic systems, the distribution of return intervals is
exponential, i.e., P(7) ~exp(—7) [16]. Most Hamiltonian sys-
tems are not completely chaotic but are mixed ones, imply-
ing that chaotic and regular regions coexist. However, in the
presence of “sticky islands,” the regions where the trajecto-
ries could become trapped in phase space for long times due
to the presence of islands of regularity, the autocorrelations
display long memory. However, the return interval distribu-
tion is not described by Eq. (22) in this paper. It has been
rigorously shown by considering the detailed dynamics that
the asymptotic return interval distribution is given by P(7)
~ 777 with y>2 [16]. This is another example that illustrates
the peculiar nature of return interval statistics in the presence
of long-term memory.

Another illustrative example that clarifies the results ob-
tained in this paper is provided by the dichotomic noise [30]
defined by x(¢) assuming discrete values +1 or —1 with mean
(x(#))=0. At certain switching times ¢,, the process switches
from one state to another or vice versa. Further we consider
switching times #; to be a stationary point process with 7;
=t;,;—1; being the independent intervals between consecutive
switching times. If we assume the asymptotic autocorrelation
to have a power-law form, i.e., 77 (y being the autocorrela-
tion exponent), then it can be shown that the distribution of
7, the analog of our return interval distribution takes the form
f(7)~ 77772, This is clearly different from Eq. (22) obtained
in this paper. First, x() is not Gaussian distributed and hence
does not satisfy our assumptions in the first place. In fact, the
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numerical results in Ref. [8] show that the distribution of x(7)
does have some effect on the return interval distribution. In
contrast to the fractional Brownian motion case, the dichoto-
mic process also has a well-defined spatial and temporal
scale which might play a role in determining its recurrence
statistics.

B. Conclusions

We have studied the distribution of return intervals for the
extreme events in long-range correlated time series. An ap-
proximate analytical expression for this distribution has been
obtained starting from the empirically established fact that
return intervals are long-range correlated. This distribution is
a product of a power law and a stretched exponential,
namely, a Weibull distribution, and explains the observed
power law for short return intervals. For large return inter-
vals, the distribution is dominated by a stretched exponential
decay. The works reported earlier have empirically proposed
stretched exponential form for the return interval distribution
which is now shown to be valid in the domain of large return
intervals. As pointed out earlier, more recent studies have
shown that Weibull distribution is a good representation for
the return interval distribution of the experimentally ob-
served long-range correlated data [18,19]. Thus, our theoret-
ical analysis is supported by the empirical results in [18,19].
Further, we have also carefully studied the role played by the
threshold g or equivalently the average return interval in the
return time statistics. We show that it modifies the return
interval distribution, especially in the power-law regime of
short return intervals. We believe that the results obtained in
this paper explain most of the empirically observed features
in the return time distributions of long-range correlated time
series drawn from Gaussian distribution. As discussed be-
fore, in the simulations reported in this work, we have used
Gaussian distributed random numbers. As studied in Ref. [7],
it is natural to ask if the exponential or power law distributed
data would modify the results of this paper. The numerical
results in Ref. [7] reveal that some of the results of this paper
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could be modified. This appears to be especially true when
the time series is sampled from power-law distribution. The
question of verifying the results of this paper with a mea-
sured time series is underway and would be reported else-
where.

As pointed out before, the inter-event time distribution
has applications across many disciplines. Hence, it appears
in different settings in different areas. In the statistical litera-
ture, in a related problem of zero crossings, i.e., the probabil-
ity that X(#)>0 for 0=¢t=T has been considered. Under
certain conditions, for a stationary Gaussian process, the up-
per bound for zero crossing probability is shown to be a
stretched exponential [24]. This result does not strictly apply
to the case of recurrence interval statistics because the zero
crossing probability does not make statements about occur-
rence or nonoccurrence of another zero crossing after the
interval 7. A return interval, by definition, requires two
crossings separated by an interval with no crossings. Finally,
we would like to remark that the analytical distribution ob-
tained in this paper appears to share some qualitative features
with the universal scaling form proposed recently [12] in the
context of earthquakes but appears to be more generally
valid [31-33]. Thus it is likely that the exact return interval
distribution might incorporate corrections to the one obtained
in this paper. Indeed, if the exact distribution is known, it
will also become possible to determine the precise time
scales over which power law and exponential decay operate.
This, in turn, should help address questions of hazard esti-
mation for extreme events more carefully and, needless to
say, this has enormous interest in the insurance industry [2]
and as a tool for a decision support system [34].
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