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A formula to calculate the transport coefficients of the causal dissipative hydrodynamics is derived by using
the projection operator method (Mori-Zwanzig formalism) [T. Koide, Phys. Rev. E 75, 060103(R) (2007)].
This is an extension of the Green-Kubo-Nakano (GKN) formula to the case of non-Newtonian fluids, which is
the essential factor to preserve the relativistic causality in relativistic dissipative hydrodynamics. This formula
is the generalization of the GKN formula in the sense that it can reproduce the GKN formula in a certain limit.
In this work, we extend the previous work so as to apply to more general situations.
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I. INTRODUCTION

Hydrodynamic models have been extensively applied to
analyze the collective aspects of relativistic heavy-ion colli-
sions. These analyses have mainly been done so far for ideal
fluids [1]. The effect of dissipation (viscosity and heat con-
duction) to this problem has started only recently and it is
less well understood yet. One of the reasons for this is that,
in addition to technical difficulties in numerical implementa-
tions, a relativistic extension of the dissipative hydrodynam-
ics is not trivial at all conceptually [2-10]. A naive covariant
extension of the Navier-Stokes equation leads to the problem
of relativistic acausality and instabilities of the theory
[9,11-13].

An essential factor to solve this problem is to introduce a
memory effect with a finite relaxation time in the definition
of irreversible currents [7,10,14,15]. An important point here
is that, with the presence of memory effects, the fluid be-
comes non-Newtonian, that is, the irreversible current is not
simply proportional to the thermodynamical forces.

This raises several serious questions in applying the
causal dissipative hydrodynamics to various phenomena at
relativistic energies. The crucial one, we will focus in this
paper, is that we cannot use the Geen-Kubo-Nakano (GKN)
formula to calculate the transport coefficients, because the
derivation depends on the Newtonian property of the fluid.
See the discussion in Appendix A. To obtain the transport
coefficients of the causal dissipative hydrodynamics, a new
formulation should be developed.

One possible approach to obtain the transport coefficients
in the presence of memory effects is the so-called projection
operator method (POM). The POM was originally proposed
to obtain master equations and generalized Langevin equa-
tions from microscopic dynamics by implementing system-
atic coarse-grainings in terms of projection operators for
macroscopic variables [16-23]. It is also known that the
POM is useful to obtain the microscopic expressions of vari-
ous transport coefficients [20-22,24]. In the POM, the trans-
port coefficients are related to the memory function of the
generalized Langevin equation. Except for trivial cases, it is
very difficult to evaluate the memory function exactly and
some appropriate approximations are needed. A common
method is to neglect a part of the projection operator in the
memory function (as explained later). In the following, we
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call such an approximation as the Q approximation. It is
known that the formula for the transport coefficients ob-
tained with the Q approximation in the POM are equivalent
to those of the GKN formula [20-22,24]. It is further known
that the coarse-grained equation of a conserved quantity ob-
tained by the POM with the Q approximation becomes a
usual diffusion equation [20-22,25]. That is, the use of the Q
approximation in the POM leads to the behaviors of New-
tonian fluids.

Recently, one of the present authors discussed the coarse-
graining procedure in the POM without using the Q approxi-
mation [24-26]. There, it was shown that the equation for a
conserved number becomes a telegraph-type equation when
the Q approximation is not introduced [25]. Note that the
telegraphic equation is derived when a memory effect is in-
troduced in a diffusion equation [25]. This indicates that we
can apply this method to construct the causal dissipative hy-
drodynamics in the POM, defining the microscopic expres-
sions of the transport coefficients for non-Newtonian fluids
in a consistent manner. Following this idea, new formulas of
the transport coefficients for the causal dissipative hydrody-
namics have been derived [24]. This new formula differs in a
essential way from those obtained using the GKN formula
with the Newtonian case, although it can reproduce the GKN
formula under a limit where the Q approximation is valid.

In this paper, we present a more detailed version of the
work of Ref. [24] and derive more general expressions of
transport coefficients, in particular, the shear viscosity of the
causal dissipative hydrodynamics. This paper is organized as
follows. In Sec. II, for the sake of later convenience, we
review briefly the projection operator method to derive the
generalized Langevin equation. In Sec. III, the so-called
Mori projection operator is introduced. We calculate explic-
itly the memory function in Sec. I'V. This result is the gener-
alization of the formula obtained in Ref. [24] and one of the
main results of this paper. By using this general expression,
we define the causal shear viscosity coefficient and the re-
laxation time in Sec. V. The result of this section is com-
pletely same as that of Ref. [24]. The relation between our
formula and the GKN formula is discussed in Sec. VI. In
Sec. VII, we apply the the result to an exactly solvable model
to confirm the validity of our exact expression of the
memory function. In Sec. VIII, we reinvestigate the result of
the Sec. V and propose another possible definition of the
causal shear viscosity coefficient. The Sec. IX is devoted to
concluding remarks.
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II. PROJECTION OPERATOR METHOD

It should be emphasized that the projection operator
method (POM) was firstly proposed by Nakajima [16], al-
though it is often refereed as the Mori-Zwanzig formalism
due to the extensive use and developments done by these
authors. This approach has been studied so far in various
contexts of physics and chemistry [20-22]. In particular,
Mori introduced the so-called Mori projection operator to
describe the dynamics near thermal equilibrium and derived
a generalized Langevin equation from microscopic models
[18]. The generalized Langevin equation (the Mori equation)
gives the basis of the various development of statistical phys-
ics. Kawasaki, for example, developed the mode coupling
theory which describes the dynamical critical phenomena by
using the technique of the generalized Langevin equation
[27]. The mode coupling theory is recently used to discuss
the glass dynamics [28]. It is considered that the POM is a
promising method to establish a new coarse-grained dynam-
ics such as the dynamical density functional theory [29,30].
The formulation of the projection operator method has been
polished up by several authors [31-38]. The derivation dis-
cussed here follows [36].

In a quantum mechanical system, the time evolution of an
operator is governed by the Heisenberg equation of motion

%O(I) =i[H,0(1)]=iLO(¢) (1)

—0(1) = ™M 00(1y), ()

where L is the Liouville operator and 7, is an initial time at
which we prepare an initial state. In the following, we set
to=0. We consider here an isolated system so that the Hamil-
tonian is independent of time. Note that Eq. (2) is also valid
for classical cases provided that the commutator of the Liou-
ville operator is interpreted as the Poisson bracket.

In order to derive coarse-grained equations such as hydro-
dynamical equation of motion from a microscopic theory, we
should construct a closed system of equations expressed only
by those variables with macroscopic properties of the sys-
tem. However, the Heisenberg equation of motion contains
the information not only of gross variables associated with
macroscopic (hydrodynamic) time scales, but also of micro-
scopic variables. In the POM, the latter variables are pro-
jected out by introducing an appropriate projection operator
P (to be specified later). We denote its complementary op-
erator by Q(=1-P). They should satisfy,

P2=p, (3)

PO=0QP=0. (4)

Here, the projection operators are time-independent. To de-
scribe real nonequilibrium processes, in general, the projec-
tion operator should be time dependent. However, for the
purpose of the present paper, simple time-independent pro-
jection operators are suffice as the definition of the transport
coefficients of the relativistic dissipative fluid.
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From Eq. (2), one can see that the time dependence of
operators is determined by e’’. This operator obeys the fol-
lowing differential equations:

d . . .
Zte'“ =ML = (P + Q)iL. (3)

Multiplying the operator Q from the right, we have

d . . ‘
d—te‘L’Q =eMPiLO + ™' QILOQ. (6)

Equation (6) can be solved for ¢/“'Q,

13
eiLtQ= QeiLQt_,’_f dTeiLTPl.LQeiLQ(I_T). (7)
0
Substituting Eq. (7) into the last term in Eq. (5) and operat-
ing O(0) from the right, we obtain the so-called time-
convolution (TC) equation

d 4 teo .
ZO(r):e’L’PiLO(O)+ f dre™ D PiLOe™CTLO(0)
0

+0e™24L0(0). (®)

The first term on the right-hand side of the equation is called
the streaming term and usually corresponds to collective
modes such as plasma wave, spin wave and so on. The sec-
ond term is the memory term that causes dissipation. The
third term represents the noise term. The second term and
third terms are related through the fluctuation-dissipation
theorem of second kind, which will be discussed later.

Discussion of this section has been done in the Heisen-
berg picture and the generalized Langevin equation (8) is
derived. We can develop the similar discussion in the
Schrodinger picture and obtain master equations. As we
pointed out, to discuss more complex nonequilibrium pro-
cesses, we have to change the basis of the projection with
time. Then, the projection operator is explicitly time-
dependent. As for the operation of the time-dependent pro-
jection operator, see Ref. [37], and references therein.

It is also possible to derive another form of the general-
ized Langevin equation, which is called the time-
convolutionless (TCL) equation. There are some cases where
we cannot implement the Markov approximation in the TC
equation. The ¢* theory is one of the examples, and the
Markov equation is derived from the TCL equation. See Ref.
[38] for details.

III. MORI PROJECTION OPERATOR

In the above derivation of the TC equation, we have not
specified the projection operator P. As a matter of fact, there
are many possible projection operators that extract the
slowly varying components from dynamics. Suppose that the
macroscopic dynamics can be described by the time evolu-
tions of n-gross variables. Then we have to define the pro-
jection operator to project any time evolution onto the space
spanned by these n-gross variables. For example, in the case
of usual hydrodynamics, the time evolutions are described by
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the dynamics of the energy density, velocity field and num-
ber density. Then we have five variables which form a com-
plete set for hydrodynamics (two scalar fields and one vector
field).

Strictly speaking, there is no general criterion to prepare a
complete set of gross variables. It is, however, suggested that
there are three candidates for gross variables [18,27]: (i) Or-
der parameters (if there exists phase transitions), (ii) density
variables of conserved quantities, and (iii) their products.
Once we find out a complete set of the gross variables, any
macroscopic variables should be approximately given by a
linear combination of these gross variables (see below). We
can use the Mori projection operator to implement this
coarse graining.

Let us represents
n-dimensional vector

a set of gross variables by a

AT=(A,A,, ... A,). 9)

Then, the Mori projection operator P is defined as

P0=E Cii,

i=1,

(10)

for an arbitrary operator O, where the coefficient c; is given
by

n

;=2 (0.A))(A,AN). (11)
J=1 '
The inner product is Kubo’s canonical correlation
£ ax NHyr ,~\H
(X,Y)= ETr[pe Xe MY, (12)
0

where p=ePH/Ti[e P"] with the temperature 8~!. The in-
verse of the canonical correlation is defined by

2 (AA); (A A =8, (13)
J

As for the physical meaning of the Mori projection opera-
tor, see, for example, Refs. [18,26].

IV. THE EXACT EXPRESSION OF THE MEMORY
FUNCTION

Substituting the Mori projection operator into Eq. (8), the
TC equation is reexpressed as follows:

%A(t) =iAA(r) - f dr2(DA(l - 1)+ &@1), (14)
0
where
iA=2 LA AD(AAT)], (15)
k
(16)

)

By =— 0> LQe™ LA, A})(A.A")],
k
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&(1) = Qe YIILA,. (17)
The TC equation using the Mori projection operator is called
the Mori equation.

The important information of dissipation is given by the
memory function Z(f). As a matter of fact, transport coeffi-
cients are defined by it. However, the calculation of the
memory function is not simple because the expression of the
memory function has the projection operator Q [see Eq.
(16)]. As a matter of fact, the projection operator Q is ap-
proximately replaced with 1 to estimate the memory function
in many textbooks [20-22],

E() ~ - 6() 2 (iLe™ LA, A])(AA)] . (18)
k

As mentioned in the Introduction, we call this procedure the
Q approximation.

Recently, Okada et al. calculated the memory function of
the Ising model and found that the memory function can be
expressed in terms of the combination of the usual time cor-
relation functions [39]. Afterwords, Koide applied the same
procedure to microscopic models and discussed the effect of
the Q approximation [25,26]. The coarse-grained dynamics
of conserved quantities of the model are, usually, considered
to be given by the diffusion equation. As a matter of fact,
when we apply the Q approximation, we can derive the dif-
fusion equation in the model. When we do not apply the O
approximation, however, the coarse-grained dynamics is
given by the telegraph-type equation instead of the diffusion
equation [25]. More interestingly, if the model has a con-
served quantity, we can derive the sum rule associated with
the conserved law. It was shown that the telegraph-type
equation derived with the memory effect is consistent with
the sum rule, while the diffusion equation (Q approximation)
breaks it [25,40].

The same idea is used to define the transport coefficients
of the causal dissipative hydrodynamics by using the sim-
plest Mori projection operator that is defined with only one
gross variable [24]. In this section, we extend the discussion
of Ref. [24] to more complex cases where the Mori projec-
tion operator is defined with n-gross variables.

To calculate the coarse-grained time-evolution operator,
we introduce the following operator:

B(t)=1+2 (i) f dt, -+ f n_ldtni"(tl)i”(tz)---ZP(tn),
n=1 0 0

(19)

(20)

with
LP(t) = e 'LipLetl, (21)

Then, the matrix Z(¢) is rewritten as
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Zij(0) == 0)[iLe™ B(1) QiLAATN(A, A]) !

=-0(1) [X(t)]ij - [X(O)X(f)]ij

+ E (_ l)nf dtl T ftn_l dtn[X(tn)X(tn—l - tn) e
0 0

n=1

XX(t; - )X (1 =1)];

-2 (=1 f tdrl f d,[X(0)X(t,)
n=1 0 0

XX(t,y = 1,) - X(t) - )X (1 - W[ (22)

See Appendix B for detailed discussion. By using the
Laplace transform, the above expression can be rewritten as
the following simple form:

= (s) =~ XE(s) ——— + X(0)XH(s) ———
1 +XE(s) 1 +X5(s)

. (23)

where the functions XX(s) and XX(s) are given by the
Laplace transform of the following correlation functions:

X;0) = 3 [LAM.AAAT
k

X;;(0) = 2 [GL)A{().A{)(A,AT); . (24)
k

This is the exact expression of the memory function without
using the Q approximation. One can see that if we set n=1,
the expression (23) reproduces the result of the previous re-
sult of Ref. [24]. The expression of the transport coefficients
are derived by employing approximations to this memory
function, as will will see in the next section.

V. SHEAR VISCOSITY OF CAUSAL DISSIPATIVE
HYDRODYNAMICS IN N=1 FORM

We apply the formula to define the shear viscosity coeffi-
cient of causal dissipative hydrodynamics. For simplicity, we
consider a particular case of shear flow, where the fluid ve-
locity points in the x direction and varies spatially in the y
direction [22,24]. Then, the energy-momentum tensor obeys
the following equation of motion:

J J J
Eyox(y’t) == 5ﬁx(y9t) =- 57Tyx(y’t)’ (25)

where 7# is the traceless part of the energy-momentum ten-
sor

n*lz(afa;—iwa,,)ﬁf (i,j.k1=1,2,3).  (26)

To define the shear viscosity coefficient, we introduce the
Fourier transform of 7%*(y,?), and set 0(0):70X(k),,0). And
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following the usual derivation of the shear viscosity coeffi-
cient of the GKN formula, we choose Tox(ky,O) as a unique
gross variable [22,24]. In this case, the Mori projection op-
erator is defined by

PO = (07 Y{)x(_ ky70))(70x(ky’ 0)’ ']'OJC(_ ky’ 0))_l]0x(ky’0) >
(27)
where O is an arbitrary operator. We will discuss later a more
involved case where we need two gross variables to define

the Mori projection operator.
Then, the TC equation (8) is given by

gTO"(ky,t):iA(ky)TOX(ky,t)— f d7=(kyt — DT (ky, 7)
0

+ &k, 1), (28)
where
iA(k,) = GLT*(k,,0),T" (- k,,0))(T*"(k,,0), 7" (- k,,0)) ™",
(29)
= ! = st
Bk =5~ N El(k,,s)e"ds, (30)
&(k,.1) = Qe™ LT (ky.1). (31)

The Laplace transform of the memory function EL(ky,s) is
given by

EL(ky,s) =— XL(ky,s) (32)

1+ Xt(kys)

where

X(ky,t) = GLT (ky 1), T (= ky, 0)) (1% (k,, 0), T (- k,,0)) 7",

X(ky,t) = (GL)*T*(ky.1), T (- k,,0))
X(T%(k,,0),T(- k,,0))~". (33)

In this derivation, we used

X(0) = (iLT*(k,,0),7% (- k,,0)) = 0. (34)

So far, everything is exact formally. Now we carry out the
coarse grainings of the time scale to break the time-reversal
symmetry. For this purpose, first of all, we separate the
memory function into the two terms as follows [24-26]:

gT""(ky,t) =— f drQ(ky.t = DT (k. 7)

0
- f td@(ky,t—T)TO"(ky,T). (35)
0

Here, we dropped the noise term. The frequency function
and the renormalized memory function are defined by

d )
Qz(ky,t) =i f 2_w Im[EX(k,,— iw+ €)]e™™,  (36)
Ju )
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d .
D (ky,1) =f ﬁ Re[EL(ky,— iw+e)le™, (37)

respectively.

To introduce the coarse graining in time, we have to know
the temporal behavior of the two functions. The behavior of
the two functions have been investigated for some special
cases, such as the chiral order parameter in the Nambu-Jona-
Lasinio model [26], exactly solvable model of many har-
monic oscillators [26] and the nonrelativistic model with a
conserved density [25]. For all these cases, the two functions
exhibit common properties; the frequency function con-
verges to a finite value and the renormalized memory func-
tion vanishes at late time. Inspired by these examples, we
introduce an important assumption that these features for the
temporal behavior of the two functions are valid in general.
That is, the renormalized memory function relaxes rapidly
and vanishes at large ¢, while the frequency function con-
verges to a finite value after short time evolution. In prin-
ciple, the validity of the assumption should be checked for
more general examples by implementing numerical calcula-
tions. Once we accept the above assumption, we may intro-
duce the following Ansdtzse for the memory functions incor-
porating these basic features essentially [26]:

2
Q%(k,.1) = Dy k2, Dlkyt) ——81),  (38)
) 6 ) -
where
1 )
Dy =— lim Q°(k,,1), (39)
Y ky t—oo .
1 o0
—= f dt®(ky,1). (40)
0

Tk .

The factor kf is introduced for the later convenience [see Eq.
(43)]. The above ansatzs are shown to be consistent with the
final value theorem of the Laplace transformation [24-26].
That is, when the renormalized memory function converges
to zero at late time, its Laplace transform CI)L(ky,s) should
satisfy [41] )

lim ®(k,,7) = lim s®*(k,,s) = 0. (41)
t—» : s—0 i
Similarly, for the frequency function
Dy k; =1im O?(k,.1) = lim s(Q%)(k,.5). (42)
y t—0 s—0

Using these expressions, we have the equation for the
energy momentum tensor component

d ! 1
—T%(k,.t) == Dy k; f drwu(k,) = —T%(k,1). (43)
&t Y 0 Tky

Here, we expressed the x component of the fluid velocity as
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(k) = Tk )w., (44)
where w is an enthalpy density [24].

On the other hand, as pointed out before, the time evolu-
tion of the energy-momentum tensor in causal dissipative
hydrodynamics is given by a kind of the telegraph equation.
In particular, in the special case discussed here (the fluid
velocity points in the x direction and varies spatially in the y
direction), the linearized equation of the causal dissipative
hydrodynamics is given by the following telegraph equation
[7,10]:

i 14 N &
L INSERNELE
ot TOt

+ 2 o (45)

This equation defines the causal shear viscosity coeffi-
cient "V and corresponding relaxation time 7. By compar-
ing Eq. (43) with Eq. (45), we obtain the expression for the
causal shear viscosity coefficient and the respective relax-
ation time as

7N = klimo 2wDy T, (46)
v :
T= klimo Te» (47)

which are the results obtained in Ref. [24]. In this derivation,
it is assumed that the projection operator is defined by only
one gross variable. We will reconsider this derivation in Sec.
VIIIL

VI. GREEN-KUBO-NAKANO FORMULA

We obtained an expression of the causal shear viscosity
coefficient for non-Newtonian fluids. On the other hand, it is
well known that the shear viscosity coefficient of Newtonian
fluids is given by the GKN formula. In this section, we dis-
cuss the relation between our formula and the GKN formula
[24].

As was mentioned before, it is known that, when we ap-
ply the Q approximation, the GKN formula is reproduced in
the projection operator method [42]. When we apply the Q
approximation, the memory function is given by [20,22],

Zl(k,,s) = - X (k,,s). (48)
On the other hand, when the correlation function X%(k,,s) is
very small, the memory function (32) is then expanded as
follows:
El(ky,s) = = X (ky,s) + X (kyy )X (kyos) = . (49)
That is, the correlation function XL(ky,s) represents the cor-
rection to the Q approximation.
As a matter of fact, in the Q approximation, we can derive

the relativistic Navier-Stokes equation and then our formula
reproduces the GKN formula of the shear viscosity coeffi-

cient. First of all, the correlation function X(k},,t) is rewritten
as
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XL(k,s)=J dte“"ﬁ(t)%fd3xd3xle_ik"‘kz(7'r‘)‘5(x,t),7'r0(5(x1,O))(Y{)X(XI,O),70"(0,0))_1
0

=—Lf dtfd3xd3x1e_‘g’_ik‘xk2J AP (X, 7)1 5(X1,0))re (T7°(x,0),7°(0,0)) ', (50)
108 0

where
<7Ta'8(xat) Waﬁ(xl7s)>ret == la(t - s)(['ﬂ-aﬂ(x’t)’ Waﬂ(xl’s)]>eq'
(51)

In this derivation, we used the relation [43]
L. 2
(7TMV,7TPU)=? AMPAVO'_AMO'AVP_ EAMVAPU' . (52)

where L is a scalar function and
A==y, (53)

with u,, the four-velocity of the fluid in the Landau frame.

The correlation function X“(k,—iw+ €) is real in the low mo-
mentum limit. Then, the frequency function vanishes and the
equation of the energy-momentum tensor (43) is given by the
linearized relativistic Navier-Stokes equation

d !
ETOX - nNskiTm =0, (54)
where the Navier-Stokes shear viscosity coefficient is
1
lim — = - 7K. (55)
k—0 Tk

By using the expression of 7, the Navier-Stokes shear vis-
cosity coefficient is expressed by using the time correlation
function as follows:

7= [ s [ .m0

X(1%%(x,,0),7°%(0,0))7". (56)

Except for the normalization factor (7%(x,,0),7°(0,0))"!,
this expression is nothing but the GKN formula of the shear
viscosity coefficient [42,43]. That is, our new formula can
reproduce the result of the GKN formula when the correla-

tion function X*(k,,s) disappears in the low momentum
limit. In this sense, our formula is the generalization of the
GKN formula.

As was pointed out, the vanishing XL(ky,s) corresponds to
the Q approximation. So far, because the exact expression of
the memory function (23) was not known, we could not dis-
cuss whether the Q approximation is applicable in the low
momentum limit or not. Now the validity of the Q approxi-
mation can be quantitatively estimated by calculating the

correlation function XL(ky,s). In fact, it is already known that

there are examples where the Q approximation cannot be
applicable [25,26].

VII. MODE-COUPLING THEORY
OF DENSITY FLUCTUATIONS

So far, we discussed the simplest case where the system
has only one gross variable. In this section, we will consider
a more complex case where we need two gross variables to
define the Mori projection operator. Such a situation will
occur, for example, in a glass dynamics [28]. Glass is a high
density system and a particle is thickly surrounded by other
particles. The energy and momentum of the particles are con-
tinuously exchanged by collisions. However, it is difficult for
particles to move away from the initial position because the
space around has already occupied by others. This is called
jamming. In a glass dynamics, we usually choose the gross
variables as the fluctuations of density of particles and the
corresponding current.

We consider a classical N-particle system, where the
Hamiltonian is given by [28]

2
p; 1
H= E 2 + _2 ¢(rg,')~ (57)
. 2m 2 j
Then, the corresponding Liouville operator is given by
) 1 J dp(r;;) d
i=—2<m~—>—2<——L—-. (58)
m-; o) e\ ory op;

In this case, the Fourier transform of the fluctuations of the
particle number density p,(f) is given by

Sp(t) = 2 ™7 - (2m)° k), (59)

where p=N/V and V is the volume of our system. In this
system, the number of particle is a conserved quantity and
the fluctuations of the density should satisfy the equation of
continuity

pi(1) = ilklj(2). (60)

Here, we define the current
1 A .
Jk==2 (k- p)e™i, (61)
m
where k=Kk/|k|. Then, we choose the set of the gross vari-
ables as follows:
0
A =< P “). (62)
Jk

By substituting into Eq. (8), we obtain the evolution equation
of A. We further multiply AT from the right and take the
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thermal expectation value. Then the evolution equation of
the correlation function is given by

2 ) =iaC() - f BEGCi-D.  (63)
at 0
where
(Opx(1) Sp_i)e. <5Pk(f)j-k>e>
_ B q q
C(t) <A([)A >eq <<jk(t)5p—k>eq Uk(t)j—k>eq -
(64)

Because of the equation of continuity (60), these four corre-

lation functions are not independent. It should be noted that,

in the usual discussion of the glass dynamics, we do not

consider the thermal equilibrium environment discussed here

and the calculation of the memory function is more involved.
The coefficient of the streaming term is given by

0 ik
iN=| ik ,
mpBS(k)

(65)

where the static structure factor is S(k)=ﬁ(p_k(0)pk(0)). By
using Eq. (23), we found that the upper components of the
matrix of the memory function vanish,

Ehs) = ( (66)

0 0 )
Elil(s) Eliz(s) .
Because of [§i(t),A;.k]=0, the noise term disappears.
We will concentrate on the element in the lower column
of the matrix. Then, we can obtain the following two equa-
tions:

k2 t
F(k,t)+f dT[EZl(T)(ik)F(k,Z—T)

iF(k )+
o> 7 mPBS(Kk) 0

+E22(T)§F(k,t-7’):| =0. (67)

2

%F(k,t)+ 9 Flkr) + f dT[EZI(T)(ik)%F(k,t—T)

mpBS(k) dt 0
P
+ :22(7');17(1@5 -7 |=0. (68)
Here, we introduce the following function:
1
F(k, 1= ]T/<5pk(l) 5p—k>eq' (69)

From the consistency of the two equations, one can find
that Z,,(7) should vanishes. As a matter of fact, this is
shown by using the following exact relation:

(&(0,8) = (§(=0,8)*=[E®) - (A,AN];.

This relates the memory function and the noise term and is
called the fluctuation-dissipation theorem of the second kind
[26]. From this relation, one can show that Z,,() also should
disappear when =,,(¢) vanishes. The correlation functions,
then, should satisfy the following relation:

(70)
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Eh(s) o {X5,(5) = [X(0)XE(5) ]y M1 + X5o(5)] = {X5(s)
~ [X(0)XX(5) ]po} X5 (5) = 0. (71)

By using this relation, we can simplify the remaining
memory term

1 X5(s) = [X(0)XX(s)]
Enls)=- "
1 +X5,(s)
s’ F(k,s) — sS(K) + k*FL(k,s)/[mBS(k)]
T sFL(k,s) — S(k)

(72)

This is the result obtained by using our expression of the
memory function (23).

In the case discussed here, however, all correlation func-
tions are expressed by the unique correlation function F(k,?)
and we do not need to use Eq. (23) to calculate the memory
function. From Eq. (67), the Laplace transform of the equa-
tion is

2
mpBS(K)

X [sF(k,s) - F(k,0)]. (73)

S2FL(k,5) — sF(k,0) — E(k,0) = — F(k,s) = E5,(s)

The expression of the memory function that is obtained by
solving the equation above is same as Eq. (72). This means
the consistency of our formula.

VIII. SHEAR VISCOSITY OF CAUSAL DISSIPATIVE
HYDRODYNAMICS IN N=2 FORM

In the previous derivation of the causal shear viscosity, we
assumed that the macroscopic motion can be projected onto
the space spanned by the unique gross variable Tox(ky). If
this assumption is correct, the memory function converges to
a constant rapidly and we can define the causal shear viscos-
ity coefficient and the relaxation time as was done in Sec. V.
The memory functions are calculated so far for several ex-
amples and the behaviors are consistent with this assump-
tion.

However, there is another suggestion for the definition of
the projection operator. In the wake of the discussion of the
extended thermodynamics [6], Ichiyanagi proposed that the
Mori projection operator should be defined by using not only
usual hydrodynamic variables but also the corresponding
currents [44], although any calculable formula was not
given. In this section, we rederive the formula for the causal
shear viscosity coefficient following his idea.

The set of the gross variables are given by

T%(k ))
A= ( 2. (74)
T (ky)
By substituting into Eq. (8), we have
a X . X
570 (ky,1) = — ik, T (k,.1), (75)
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a t
ETyx(ky,t) = - l.kyRkyIOX(ky,t) - J;) dTEzz(T)Tyx(ky,t - ’T),

(76)
where
Re, = (k). T (- k)T (k). T (= k)™ (77)

The memory function is given by

=L (g) = X5, (s) + ikyRkVX?Z(S) ~ XE (s) + X5, (s)
=pls)=- : == :
1+ X5(s) 1+ X5(s)

(78)

with the Laplace transforms of the following correlations:

X(7) = ((]Ox(ky,[), TOX(— ky)) (T()x(ky’t)’Tyx(_ ky)) )
(T (kyo 1), T(= k) (T (kyo1), T (= k)
0 (T)’X(ky)’Tyx(_ ky))_l >
. J
X(0)=-X(@), (79)
X(t) = %X(t) (80)

Here, we omitted the noise term.

It should be noted that we still define Kubo’s canonical
correlation by Eq. (12), where the expectation value is cal-
culated by the usual thermal equilibrium state. This is differ-
ent from the original idea of Ichiyanagi and the extended
thermodynamics, where the concept of the thermodynamic
variables are extended and hence we have to use a nonequi-
librium state to calculate the expectation value. However,
when we restrict ourselves to the nonequilibrium states
whose deviation from equilibrium is still small, then the ex-
pectation values can be evaluated at the equilibrium, since
the effect of the nonequilibrium expectation should be higher
order and we assume that it is negligible.

Equation (75) is the equation of continuity. If we can de-
rive the causal dissipative hydrodynamics from the Heisen-
berg equation of motion, Eq. (76) should be reduced to the
telegraph equation

J_. 7" 1
1) == = (i )y, ) =~ (ko). (81)

It should be noted that when we combine this equation with
the equation of continuity, we can reproduce Eq. (45). To
obtain the telegraph equation from Eq. (76), we assume that

the memory function =,, is Markovian; the memory func-
tion quickly vanishes with time,

(1) = —8(0), (82)
Tky

where
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1 o]
— J dTEQz. (83)
Tk, 0

By substituting them into Eq. (76), we obtain
J

(.
oy t) = = iRy ) = —T (k). (84

By comparison with the telegraph equation, we identify

the causal shear viscosity coefficient and the relaxation time
as follows:

7'=klim0 T (85)
7 = lim 2R, 7. (86)

Note that these formula look different form those in the
previous section, formulas (47) and (46). We know that the
two approaches (n=1 and n=2) shown in this paper are com-
pletely equivalent if no approximation is introduced, that is,
the coupled equations (75) and (76) gives exactly same result
as Eq. (28). We even checked the consistency of the two
approaches by solving the coupled harmonic oscillator model
which is exactly solvable [26].

To use formulas (85) and (86), we have to calculate three
correlation functions, while we need two correlation func-
tions in formulas (47) and (46). Thus we should usually use
formulas (47) and (46) to estimate the causal shear viscosity
coefficient in causal dissipative hydrodynamics. However,
when the calculated memory function does not satisfy the
condition (38), we have to use formulas (85) and (86).

IX. CONCLUDING REMARKS

In this paper, we derived the general expression of the
memory function extending the result of Ref. [24]. By using
the expression, we define the shear viscosity coefficient and
the corresponding relaxation time of the causal dissipative
hydrodynamics. Our formula is the generalization of the
GKN formula because, when the Q approximation is justified
in the low momentum limit, the GKN formula is reproduced.

Phenomenologically, the causal hydrodynamics is derived
by introducing the memory effect to the relation between
irreversible currents and thermodynamic forces. Thus the
vanishing relaxation time limit 7— 0O corresponds to the limit
of the Newtonian fluid and hence the causal dissipative hy-
drodynamics is reduced to the relativistic Navier-Stokes
equation (the Landau-Lifshitz theory). Thus it is sometimes
expected that the causal shear viscosity coefficient is still
approximately given by the calculation of the GKN formula,
when the relaxation time is not large. However, this expec-
tation is not trivial. As was discussed in this paper, the new
formula reduced to the GKN formula in the Q approxima-
tion. In this limit, as is shown in Eq. (55), the causal shear
viscosity coefficient 7NN vanishes and the expression of the
relaxation time 7 is reduced to that of the shear viscosity
coefficient in the GKN formula. That is, what is approxi-
mately given by the GKN formula is not the causal shear
viscosity coefficient but the relaxation time.
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By using the idea of the AdS/CFT (anti-de Sitter/
conformal field theory) correspondence in the string theory,
we can calculate the correlation function of the energy-
momentum tensor in N=4 supersymmetric Yang-Mills
theory [45]. From this result, we obtain 7/s=1/(4m) with s
being the entropy density and many people expect that this
gives the minimum of the shear viscosity coefficient of the
relativistic fluid of quarks and gluons. It should be, however,
noted that the 7 here is not 77"~ but 75, that is, this discus-
sion is true only for Newtonian fluids, because, to derive the
result, the expression of the GKN formula of the shear vis-
cosity coefficient is used. Thus, when we discuss the causal
dissipative hydrodynamics, we cannot use this value as the
limit of the causal shear viscosity coefficient. The lower
bound of the shear viscosity coefficient may exist even for
the causal hydrodynamics. This will be predicted by using
our formula instead of the GKN formula.

There are several approaches to derive the relativistic hy-
drodynamics consistent with causality. However, as far as we
know, the telegraph equation plays an essential role to solve
the problem of acausality in all theories, and the difference
of the theories comes from the nonlinear terms. Thus the
formula discussed here is applicable even for other causal
dissipative hydrodynmaics, the Israel-Stewart theory [3]. See
Ref. [10], for more discussions about the relationship be-
tween different theories The effect of non-linearity, in gen-
eral, can change the coefficients of the linear terms. To dis-
cuss the effect of nonlinearity to the transport coefficients,
we have to consider the nonlinear response [46]. In the pro-
jection operator method, this is implemented by generalizing
the projection operator including nonlinear terms. However,
the quantitative effect has not been known so far.

On the other hand, the telegraph equation may be not
unique solution of the problem of acausality in hydrodynam-
cis. For example, there are different approaches to solve this
problem in diffusion processes [47]. However, to our best
knowledge, there is no formulation of causal dissipative hy-
drodynamics in these alternative scenarios. It should also
worth mentioning that we have not so far encountered any
problem in implementing numerical simulations of the causal
dissipative hydrodynamics [8,10].

It should be mentioned that the projection operator ap-
proach discussed here and the usual linear response theory
do not have explicit Lorentz covariance, because we intro-
duce a thermal equilibrium background. That is, when the
transport coefficients of relativistic fluids are calculated, we
assume the existence of a local rest frame where the dynam-
ics of macroscopic quantities are determined in a non-
relativistic way, together with an appropriate boundary con-
dition.
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APPENDIX A: THE GREEN-KUBO-NAKANO FORMULA

In this appendix, we gives the short review of the GKN
formula. As for the calculations of the GKN formula for

PHYSICAL REVIEW E 78, 051107 (2008)

relativistic fluid, see, for example, Ref. [48], and references
therein.

We consider the system whose Hamiltonian is given by H.
By applying an external force, the total Hamiltonian is
changed from H to H+H,(t), with

He (1) == AF(1), (A1)

where A is an operator and F(¢) is the c-number external
force.

We consider the current J induced by the external force.
From the linear response theory, we obtain

1
(Jy= f dsV(t—s)F(s), (A2)
where the response function is given by
B .
W(r) = J ANA(= INJ(1))eq- (A3)
0

This is the exact result in the sense of the linear approxima-
tion. This formula, also, is called the GKN formula. How-
ever, in particular, when we define transport coefficients of
hydrodynamics, we do not use this expression.

In these cases, first, we assume the linear relation between
currents and the external force, J(f)=DggnF(7) with the
transport coefficient Dggy. The formula to define the expres-
sion Dggy is the GKN formula which is discussed in this
paper. For this, we see that we should ignore the memory
effect (time-convolution integral) in Eq. (A2),

(Jy = f"“ dsWV(s)F(1). (A4)
0
Then the GKN formula is
DGKN = foo ds‘{,(s) . (AS)
0

Thus this formula is applicable only when there is a pro-
portional relation between a current and a force, as in New-
tonian fluids. This is the reason why we cannot use the GKN
formula to calculate the transport coefficients of the causal
dissipative hydrodynamics.

In principle, it is possible to derive the transport coeffi-
cients of the causal dissipative hydrodynamics from Eq.
(A2). Instead of J(r)=DggnF (1), we assume the following
telegraph equation:

aJ(1) = - iJ(t) + 2F(t). (A6)
TR TR
From Eq. (A2), we can derive the following equation:
dJ(1) =V (0)F(r) + f dsdW(s)F(1). (A7)
0

In the second term, we ignore the time-convolution integral.
We further assume the GKN formula to reexpress the first
term. Then we finally obtain
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(1) = YO s+ f ’ dso W (s)F (). (A8)

Dgxn 0

By comparing this equation with Eq. (A6), we can derive the
expression of D and .

Exactly speaking, we considered here the current induced
by the external force. However, the shear viscosity is induced
not by the external force but by the difference of the bound-
ary conditions. Thus the discussion is not applicable to the
problems discussed in this paper.
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APPENDIX B: THE DERIVATION OF EQ. (22)

In this appendix, we derive Eq. (22). By using Egs. (16)
and (19), we obtain
ij

Ej(0=- 00> (iLe™B(r)QiLA, AD(A.AT)] . (B1)
k

The first three terms can be calculated as follows:

(iLe™QiLA, AT (A, AT =X(1) - [X(0)X(1)];, (B2)
(iLef“(— i) f t dse‘iLsPLeiLSQiLAi,AJT) (A A =- f t ds{[X(s)X(t - 5)1;; — [X(0)X()X(t = 5)];;}, (B3)
0 0

t s
(iLe’L’ J ds e 1 PiLe f dsze"LSZPiLe‘L“ZQiLAi,A}')(A M

0 0

= J ds, f IR (5)[X(s) = 52Xt = 51) Ty~ [XOX ()X s ~ 5K (1= 5] (B4)
0 0

In short, the nth order term is given by

t Sn—1 o o
(iLe"L’(— i) f dsy - f ds,L"(s)) - LP(sn)QiLAi,AJT) (A4
0 0

= (_ l)nft dS] Tt dsn[X(Sn)X(sn—l -

0

BE “X(S1 —Sz)X(t—Sl)]ij

- (= l)nf dsy--- J " dsn[Xs(O)X(sn)X(sn—l =5, X(Sl - Sz)X(l‘— Sl)]ij~ (B5)
0 0

By using this result, we can calculate

J

2 (LQeM LA AD(ALAD™ = [X()]1 - [X(OX ()], - f

H[X()X (1 = 9111 ~ [XO)X ()X (1 = 5)];1}

—f dlf ldsz{[X(Sz)X(Sl—Sz)X(l‘—Sl)]n—[X(O)X(Sz)X(S1 —Sz)X(t—S1)]11}+
0 0

In short, the Laplace transform of Eq. (22) is given by

[=40)]11 = (xu%
1+ X%(s)

(B6)

—Mo»‘ém%) . (B7)
1+X5s)/

The other components of the matrix are calculated in the same way.
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