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We reconsider the problem of percolation on an equilibrium random network with degree-degree correla-
tions between nearest-neighboring vertices focusing on critical singularities at a percolation threshold. We
obtain criteria for degree-degree correlations to be irrelevant for critical singularities. We present examples of
networks in which assortative and disassortative mixing leads to unusual percolation properties and new
critical exponents.
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I. INTRODUCTION

Real-world networks are correlated �1–5�. Correlations
between degrees of vertices in a network essentially charac-
terize its structure. Various real-world networks are markedly
different in respect of degree-degree correlations �5–9�. In
particular, social networks show assortative mixing, i.e., a
preference of high-degree vertices to be connected to other
high-degree vertices, while technological and biological net-
works are mostly disassortative, i.e., their high-degree verti-
ces tend to be connected to low-degree ones �9�. However,
even the simplest correlated networks with only pair corre-
lations between the nearest-neighbor degrees are still poorly
understood. Our aim is to find when the critical singularities
for correlated networks of this kind coincide with those for
well-studied uncorrelated networks and when and how much
they differ.

At the present time it is well established that the small-
world effect and heterogeneity influence the cooperative dy-
namics and critical phenomena of models defined on the top
of complex networks �10�. However, numerous studies were
devoted mostly to more simple, uncorrelated networks. In an
uncorrelated network with a heavy-tailed degree distribution,
critical singularities of a continuous phase transition are
characterized by model-dependent critical exponents which
differ from the standard mean-field ones and the critical ex-
ponents of two- and three-dimensional lattices, see, for ex-
ample, Refs. �11–13�. The critical behavior depends on an
asymptotic behavior of a degree distribution at large degrees.
In the case of percolation on an uncorrelated complex net-
work this dependence was demonstrated in Refs. �14,15�.
One should expect, however, that for dynamical processes
taking place in a complex network, correlations are impor-
tant. The simplest particular kind of correlations in a network
are correlations between degrees of two nearest neighbors in
a network—so-called degree-degree correlations. In this
work we consider only these specific, though representative,
correlations. Investigations of percolation �9,16� and epi-
demic spreading �17,18� demonstrated that the degree-degree
correlations strongly influence these phenomena. The birth
and growth of the giant connected component significantly
depends on the type of correlations—whether the degree-
degree correlations are assortative or disassortative. Com-
pared to an uncorrelated network with the same degree dis-

tribution, the assortative correlations increase the resilience
of a network against random damage, while the disassorta-
tive correlations diminish this resilience.

One can construct an equilibrium network, where only
degree-degree correlations are present—the maximally ran-
dom network with given degree-degree correlations. This is
impossible for nonequilibrium, in particular, growing net-
works. Growing networks necessarily demonstrate a wide
spectrum of correlations and not only pair correlations be-
tween degrees of the nearest neighbors. This type of hetero-
geneity may result in an anomalous critical effect at the birth
point of a giant connected component �19–26�. This transi-
tion resembles the Berezinskii-Kosterlitz-Thouless phase
transition in condensed matter �27,28�. The transition is ex-
plained by a specific large-scale inhomogeneity of nonequi-
librium networks and related correlations. The large-scale in-
homogeneity here means the difference in properties of
vertices according to age �29,30�.

One should note that degree-degree correlations may also
arise in an equilibrium network if self-loops and multiple
connections are forbidden. In particular, this was demon-
strated in Ref. �31� for the static model of scale-free net-
works �32�. Noh �33� observed an unusual critical behavior
in an exponential random graph model with tunable degree-
degree correlations.

The earlier investigations �9,16–18� mostly focused on
the effect of degree-degree correlations on the percolation
and epidemic thresholds. In the present paper we investigate
the effect of degree-degree correlations in equilibrium net-
works on critical singularities at the percolation threshold.
We demonstrate that the critical behavior is determined by
the spectrum of a so-called branching matrix and a degree
distribution. The eigenvalues of this matrix are real and can
be ordered in descending order. The largest eigenvalue deter-
mines the percolation threshold and can be both finite and
infinite �see Fig. 1� depending on a degree distribution in
agreement with Refs. �9,16�. We derive necessary and suffi-
cient conditions for degree-degree correlations to be irrel-
evant for critical singularities. We give examples of strongly
correlated networks with assortative and disassortative mix-
ing in which at least one of these conditions is not fulfilled.
These networks demonstrate new critical singularities, see
Table I. In particular, we propose analytically treatable assor-
tative networks with an unbounded sequence of eigenvalues
in the infinite size limit and show that this peculiarity of the
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spectrum leads to a new critical behavior. Remarkably, this
network may be robust against a random damage even if the
second moment of its degree distribution is finite. This is in
contrast to uncorrelated networks which are robust only if
the second moment of a degree distribution diverges. We also
study specific disassortative networks demonstrating new
critical singularities. Furthermore, these networks are fragile.
Remarkably, these new singularities and the fragility take
place despite that the second moment of their degree distri-
bution may be divergent and the largest eigenvalue is finite.
Our results are summed up in Table I and Figs. 5 and 6
which display phase diagrams of two model networks with
strong assortative and disassortative mixing.

The paper is organized as follows. In Sec. II we give a
general description of correlations in a network and intro-

duce the branching matrix. In Sec. III we introduce a basic
equation describing percolation on a degree-degree corre-
lated network and reconsider the effect of assortative and
disassortative mixing on the percolation threshold. In Sec. IV
we find criteria for degree-degree correlations to be irrel-
evant for critical singularities. Section V introduces a simple
model of degree-degree correlated networks which have a
modular structure and an unbounded sequence of eigenval-
ues of the branching matrix. In Sec. VI we demonstrate that
these networks have new critical singularities. Disassortative
networks with unusual critical properties are studied in Sec.
VII. A detailed analysis of the spectrum, its relationships
with structural coefficients of a correlated network, and cal-
culation of the entropy of the model network are presented in
AppendixesA–C, respectively.

II. DEGREE-DEGREE CORRELATIONS

We consider a random locally treelike network of N ver-
tices in which only pair correlations between nearest-
neighbor degrees q and q� are present. We assume that there
are vertices with degrees q=q1, q2 , . . . ,qcut, and in total there
are Nd different values of degrees. This correlated network is
completely described by a given symmetric joint degree-
degree distribution, P�q ,q��= P�q� ,q�, otherwise the net-
work is homogeneously random. The degree distribution
P�q� can be calculated from P�q ,q�� as follows:

�
q�

P�q�,q� = qP�q�/�q� , �1�

where the brackets �¯� denote an average over the degree
distribution P�q�, for example, �q�=�qqP�q�. Below for
brevity we use the notations z1��q� and z2��q�q−1��. It is
convenient to introduce the conditional probability,

d)

�� =

c)

�� =��

b)

8

��

a)

��

8

��

FIG. 1. Schematic representation of eigenvalues �crosses� of the
branching matrix, Eq. �4�, in the limit N→�. There are four situa-
tions: �a� the largest eigenvalue �1 is nonzero while all other eigen-
values are zero, �i=0 for i�2; �b� both the largest eigenvalue �1

and the second largest eigenvalue �2 are finite; �c� �1 diverges but
�2 is finite; �d� the sequence of eigenvalues is unbounded. Case �a�
takes place for uncorrelated networks but also can occur in specific
disassortative networks. Cases �b�–�d� occur only in correlated
networks.

TABLE I. Critical behavior of the order parameter y� �p− pc��, where p is an occupation probability, in
correlated networks with a degree distribution P�q�	q−�. �1 and �2 are the largest and second largest
eigenvalues of the branching matrix, Eq. �4�. “Weakly” correlated networks, both assortative and disassorta-
tive, have the same critical behavior as uncorrelated network with the identical degree distribution, i.e.,
correlations are irrelevant. Model �44� with assortative mixing has a new critical exponent � in the range
−1	
�0. Here, the parameter 
 determines the average degree of the nearest neighbor of a vertex with q
connections, q̄nn�q�=const+q−
. At 
�0 this model is “weakly” correlated. Model �62� with disassortative
mixing has a new critical behavior at 
�0. For this model, q̄nn�q�=1+q−
. The �� ,
� phase diagrams of
models �44� and �62� are shown in Figs. 5 and 6, respectively.

Network �
Region on

�� ,
� plane � pc=1 /�1 �

Uncorrelated or
“weakly” correlated

��4 �1 ,�2	� �0 1

3	�	4 �1 ,�2	� �0 1 / ��−3�
2	�	3 �1=� , �2	� 0 1 / �3−��

Strongly assortative ��3+
 I �1 ,�2=� 0 �2−�+
� /


2	�	3+
 II �1 ,�2=� 0 1 / �3−��

Strongly disassortative ��4−3
 I �1	� , �2=0 �0 1

3−2
	�	4−3
 II �1	� , �2=0 �0 �1−
� / ��−3+2
�
2	�	3−2
 III �1=� , �2=0 0 �1−
� / �3−�−2
�

GOLTSEV, DOROGOVTSEV, AND MENDES PHYSICAL REVIEW E 78, 051105 �2008�

051105-2



P�q�
q� =
z1P�q,q��

qP�q�
, �2�

that if an end vertex of an edge has degree q, then the second
end has degree q�. The functions P�q ,q�� and P�q� 
q� are
normalized:

�
q,q�

P�q,q�� = �
q�

P�q�
q� = 1. �3�

In uncorrelated networks the conditional probability does not
depend on q: P�q� 
q�=q�P�q�� /z1. We define a nonsymmet-
ric branching matrix as follows:

Bqq� = �q� − 1�P�q�
q� . �4�

This matrix has the following property:

q�q − 1�P�q�Bqq� = q��q� − 1�P�q��Bq�q. �5�

According to definition �4�, an entry Bqq� of this matrix is
equal to the branching coefficient q�−1 of an edge, which
emanates from a vertex with degree q and has a vertex with
degree q� at the second end, multiplied by the probability
P�q� 
q� that the second end has degree q�. In Secs. III and
IV we will show that the structure of the spectrum of this
matrix determines the critical properties of the percolation.
Relationship of this spectrum with clustering coefficients and
the mean intervertex distance in a correlated network is con-
sidered in Appendix B.

Using the branching matrix we can calculate the average
branching coefficient B�q� of an edge which emanates from a
vertex of degree q,

B�q� = �
q�

Bqq�. �6�

The coefficient B�q� is related to the average nearest-
neighbor’s degree of the vertices of degree q,

q̄nn�q� = �
q�

q�P�q�
q� = B�q� + 1. �7�

A mean branching coefficient B̄ is equal to

B̄ =
1

z1
�

q

B�q�qP�q� =
z2

z1
=

�q2�
�q�

− 1. �8�

It only depends on the degree distribution P�q�. An integral
characteristic of degree-degree correlations is given by the
Pearson coefficient �9�,

r =
1

z1
2�
q

�B�q� − B̄�q�q − 1�P�q� , �9�

where


2 = �
q

�q − 1�2qP�q�
z1

− ��
q

�q − 1�
qP�q�

z1
�2

=
�q3�
�q�

−
�q2�2

�q�2

is for normalization. The Pearson coefficient is positive for
assortative mixing and negative for disassortative mixing.

In an uncorrelated complex network, q̄nn�q� does not de-

pend on q, q̄nn�q�= B̄+1. In contrast, in networks with assor-

tative mixing, q̄nn�q� increases with increasing q while in
disassortative networks it decreases. For example, q̄nn�q�
shows a power-law decay q̄nn�q��q−0.5 for the Internet �5,6�.
Recursive scale-free networks, growing by the linear prefer-
ential attachment mechanism, have growing asymptotics
q̄nn�q�	 ln q at large q at ��3 and decaying q̄nn�q� as a
power law at 2	�	3 �21,30�.

III. TREE ANSATZ EQUATIONS AND PERCOLATION
THRESHOLD

A key quantity in the percolation problem is the probabil-
ity xq that if an edge is attached to a vertex of degree q, then,
following this edge to its second end, we will not appear in a
giant connected component �16�. The number of unknown
order parameter components xq is equal to the number of
different degrees, Nd. In contrast, only a one-component or-
der parameter x describes percolation on an uncorrelated
complex network �34,35�.

Let p be the probability that a vertex is retained in a
randomly damaged network. Within a tree-ansatz theory,
which assumes that a network has a locally treelike structure,
equations for the probabilities xq and the relative size S of a
giant connected component have the following form �16�:

xq = 1 − p + p�
q�

P�q�
q��xq��
q�−1, �10�

1 − S = 1 − p + p�
q

P�q��xq�q. �11�

Equations �10� and �11� directly generalize equations derived
for percolation on an uncorrelated complex network �34,35�,
where xq=x, see also Refs. �2,3,10�. The set of Eqs. �10�
determines unknown probabilities xq for q=q1 ,q2 , . . . ,qcut.
Newman �9� originally derived these equations using gener-
ating functions, and numerically solved them for various net-
works. The analysis of Eqs. �10� shows that the birth of the
giant connected component is a continuous phase transition.
Below the percolation threshold, i.e., at p	 pc, these equa-
tions only have a trivial solution xq=1, and there is no giant
connected component. A giant connected component is
present above the percolation point, p� pc, where there is a
solution with xq	1. Introducing a parameter yq=1−xq, we
rewrite Eq. �10� as follows:

p�
q�

Bqq�yq� − yq = p �
q�=3

qcut

�
n=2

q�−1 �q� − 1

n
��− yq��

nP�q�
q� .

�12�

One can solve this set of equations near the critical point,
�= p / pc−1�1 when yq�1.

First we study the percolation threshold for a degree-
degree correlated network. We will use the spectral proper-
ties of the branching matrix, Eq. �4�, so let us remind the
reader of some basics. Eigenvalues �i and eigenvectors �q

�i�

associated with these eigenvalues are defined by the equation
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�
q�

Bqq��q�
�i� = �i�q

�i�, �13�

where the index i labels the eigenvalues, i=1,2 , . . . ,Nd. We
consider the case of positive entries, Bqq��0. The following
statements hold. �i� The largest eigenvalue �1 is positive. �ii�
The entries �q

�1� of the maximal eigenvector are positive,
�q

�1��0. �iii� All eigenvalues �i are real and can be ordered,
�1��2� ¯ ��Nd

. �iv� The eigenvectors ��i� associated
with these eigenvalues form a complete orthonormal basis
set. That is,

�
q

w�q��q
�i��q

�j� = �i,j , �14�

w�q��
�

�q
����q�

��� = �q,q�, �15�

where w�q�=q�q−1�P�q� /z1 is a weight function, �i,j and
�q,q� are the Kronecker symbols. Properties �i� and �ii� follow
from the Perron-Frobenius theorem, see, for example, Ref.
�36�. Properties �iii� and �iv� are proved in Appendix A. One
can show that for an uncorrelated network there is a single
largest eigenvalue and an �Nd−1�-degenerate zero eigen-
value,

�1 = z2/z1, �i�2 = 0. �16�

The percolation threshold corresponds to a critical probabil-
ity pc above which a nontrivial solution of Eq. �12�, yq�0,
appears. Taking into account only the linear terms, we get the
following condition:

yq = p�
q�

Bqq�yq�. �17�

We represent yq as a linear combination of the mutually or-
thogonal eigenvectors which we call modes,

yq = �
i=1

Nd

ai�q
�i�. �18�

The amplitudes ai are unknown functions of p. It is obvious
that ai=0 at p	 pc. Substituting Eq. �18� into Eq. �17� and
using the orthogonality Eq. �14� of the eigenvectors, we ob-
tain an equation ai= p�iai. One can see that a nontrivial so-
lution a1�0 appears when p�1=1. So the mode associated
with �1 is critical. This gives the following criterion for the
percolation threshold found in Refs. �9,16�:

pc�1 = 1. �19�

Thus, the generalization of the Molloy-Reed criterion to un-
damaged correlated networks, i.e., at p=1, is the following
condition: If the largest eigenvalue �1 of the branching ma-
trix, Bqq�, is larger than 1, then the correlated network has a
giant connected component. In uncorrelated networks the
criterion �19� is reduced to the well-known one, z2 /z1=1.

In Appendix A we prove that at a given degree distribu-
tion P�q�, the largest eigenvalue �1

�as� of an assortative net-
work is larger then z2 /z1 while in a disassortative network it
is smaller,

�1
�dis� 	

z2

z1
	 �1

�as�. �20�

We have the following lower and upper boundaries for �1
�see Appendix A�:

1

z2
�

q

B�q�q�q − 1�P�q� � �1 � max
q

B�q� . �21�

Suppose that a degree distribution is such that z2 /z1=1. Then
inequality �20� leads to the following statements. �i� An un-
correlated network with this degree distribution is at the birth
point of a giant connected component. �ii� An assortative
network with this degree distribution has a giant connected
component. �iii� A disassortative network with this degree
distribution has no giant connected component. According to
criterion �19� and inequality �20�, percolation thresholds in
randomly damaged assortative and disassortative networks
with the same degree distribution satisfy the inequality

pc
�as� 	 z1/z2 	 pc

�dis�. �22�

Therefore, assortative mixing enhances resilience of a corre-
lated network against random damage while a disassortative
mixing decreases it �9�.

If the largest eigenvalue �1 diverges in the infinite net-
work, then the percolation threshold pc tends to zero. In this
case the giant connected component of a correlated network
cannot be eliminated by a random removal of vertices �16�.
In an assortative network, in accordance with inequality �20�,
this takes place when the second moment z2 diverges. This
criterion �z2→�� of the robustness of an uncorrelated net-
work was found in �14,37�. Remarkably, �1 can diverge even
if an assortative network has a finite z2 but degree-degree
correlations are sufficiently strong. An example of an assor-
tative network of this kind is given in Sec. V. On the other
hand, Vázquez and Moreno �16� found a network with strong
disassortative mixing, which has a finite percolation thresh-
old and is fragile against a random damage even if the sec-
ond moment z2 diverges.

IV. CRITICAL BEHAVIOR OF “WEAKLY” CORRELATED
NETWORKS

In this section we derive necessary and sufficient condi-
tions for degree-degree correlations to be irrelevant for criti-
cal singularities at the percolation transition. These condi-
tions are the following:

�I� The largest eigenvalue �1 of the branching matrix must
be finite if �q2� is finite, or �1→� if �q2�→�.

�II� The second largest eigenvalue �2 must be finite.
�III� A sequence of entries �q

�1� of the maximum eigenvec-
tor of this matrix must converge to a finite nonzero value at
q→�, see Eq. �30�.

Let us solve Eq. �12� near the percolation transition. We
use the fact that the eigenvectors �q

�i� of the branching matrix

B̂ form the complete orthogonal basis set, see Eqs. �14� and
�15�. Substituting Eq. �18� into Eq. �12�, we get a set of
nonlinear equations for unknown amplitudes ai,
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�p�i − 1�ai = p�iSi�a� . �23�

Here Si�a� is a function of the amplitudes a= �a1 ,a2 , . . . �,

Si�a� =
1

z1
�
q=3

qcut

�
n=2

q−1 �q − 1

n
��− yq�nqP�q��q

�i�. �24�

Let us find ai in the leading order in ��1 under condi-
tions �I� and �II�. Substituting Eq. �18� into Eqs. �23� and
�24� and taking into account only the quadratic terms in ai,
we get a set of approximate equations for the amplitudes ai,

�p�i − 1�ai = p�i�
m,n

Mimnaman, �25�

where

Mimn =
1

2z1
�

q

q�q − 1��q − 2�P�q��q
�i��q

�n��q
�m�. �26�

Let us first consider a degree-degree correlated network with
finite coefficients Mimn in the infinite size limit N→�. In the
leading order in �, Eq. �25� has a solution

a1 

�

M111
+ O��2� , �27�

ai 
 −
�ia1

2Mi11

��1 − �i�
� O��2� for i � 2. �28�

One can see that the amplitude a1 of the critical mode �1 has
the standard mean-field dependence. It is much larger than
the amplitudes ai of the modes i�2 which we call transverse
modes. Therefore, near the percolation threshold the order
parameter yq=1−xq is mainly determined by the critical
mode �q

�1� associated with the largest eigenvalue. The trans-
verse modes give a smaller contribution,

yq � a1�q
�1� + O�a1

2� . �29�

Above we assumed that the coefficient M111 is finite. This
assumption takes place if the sequence of entries �q

�1� con-
verges at q→qcut→�, i.e., limq→� �q

�1�	�. If this limiting
value is nonzero,

0 	 lim
q→�

�q
�1� 	 � , �30�

then the third moment �q3� of the degree distribution must be
finite, �q3�	�. Equation �30� is the condition �III� formu-
lated above. Thus we conclude that under conditions �I�–�III�
the percolation in a correlated scale-free network with �
�4 has the standard mean-field critical behavior, Eq. �27�,
with the critical exponent �=1. In Sec. VII we will show that
the case limq→� �q

�1�=0, i.e., the condition �III� is broken
down, corresponds to a strongly correlated network.

Consider the case 3	��4 under conditions �I�–�III�. In
this case it is necessary to take into account all orders in a1 in
Eq. �23�. The reason is that the coefficients of the expansion
over a1 diverge as N→�. It is this divergence that leads to
the nonstandard critical behavior of percolation on an uncor-
related complex network �14,15�. We assume that the in-
equality a1�ai for all i�2 is also valid at 3	��4. Below

we will confirm this assumption. We expand the function
Si�a� over the amplitudes ai of the transverse modes and save
only linear terms in ai,

Si�a� 
 si�a1� + �
j�2

sij�a1�aj + ¯ , �31�

where

si�a1� � Si�a1,0,0, . . . � , �32�

sij�a1� � � �Si�a�
�aj

�
a=�a1,0,0,. . .,�

. �33�

The function si�x� is given by the following series:

si�x� = �
n=2

qcut−1

Ki�n��− x�n, �34�

where

Ki�n� =
1

z1
�

q=n+1

qcut �q − 1

n
�qP�q���q

�1��n�q
�i�. �35�

Similarly, the function sij�x� is

sij�x� = �
n=2

qcut−1

Kij�n��− x�n, �36�

Kij�n� =
n

z1
�

q=n+1

qcut �q − 1

n
�qP�q���q

�1��n−1�q
�i��q

�j�. �37�

At 3	��4 the functions si�x� and sij�x� are singular func-
tions of x because the coefficients Ki�n� and Kij�n� diverge as
qcut�N�→�. Using the method of summation used in �14,38�
we obtain asymptotic results,

si�x� � bix
�−2,

sij�x� � bijx
�−3. �38�

Here the numerical coefficients bi and bij, where i , j
=1,2 , . . ., depend on a specific model of a correlated net-
work. Substituting Eqs. �24� and �38� into Eq. �23� we obtain
a set of nonlinear equations

�p�i − 1�ai = p�i�bia1
�−2 + a1

�−3�
j�2

bijaj� �39�

for i=1,2 , . . .. They have an asymptotic solution

a1 � � �

b1
�1/��−3�

, �40�

ai � −
bi�ia1

�−2

��1 − �i�
� O����−2�/��−3�� . �41�

In the case 3	��4 the amplitude a1 of the critical mode
�q

�1� also is much larger than the amplitudes of the transverse
modes, i.e., a1�ai for all i�2. So, in the leading order, we
get yq�a1�q

�1�. The critical exponent � is equal to 1 / ��
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−3� as for an uncorrelated network with the identical degree
distribution.

Now consider the case 2	��3 under conditions �I�–
�III�. According to Eq. �20�, in an assortative network with a
divergent second moment z2 the largest eigenvalue �1 di-
verges in the limit N→�. The percolation threshold is pc
=0, and a giant connected component is present at any p
�0. One can show that at p�1 the order parameter yq and
the size of giant connected component S are

yq � p��q
�1�, �42�

S � p1+�, �43�

where �=1 / �3−��. This is the same singularity as was found
in uncorrelated networks with 2	�	3 �14,15�. This result
is also valid for disassortative networks with �1=�.

The main conclusion of this section is that under condi-
tions �I�–�III�, a correlated complex network has the same
critical behavior as an uncorrelated random network with the
identical degree distribution. Our results are summed up in
Table I.

Degree-degree correlations may be strong and violate one
of these conditions. In Secs. VI and VII we will give ex-
amples of such networks and new critical singularities.

V. EXACTLY SOLVABLE MODEL OF A CORRELATED
NETWORK

In this section we introduce a simple model of a corre-
lated network which allows analytical treatment. This toy
model permits us to check general results of the percolation
theory derived above and to study an effect of strong assor-
tative mixing. This model is also interesting due to its clear
modular structure.

Let us consider a correlated network with a given degree
distribution P�q� and a degree-degree distribution P�q ,q��
which is factorized at q�q� as follows:

P�q,q�� = �q,q��f�q� + 1��2�q�P2�q�

+ �1 − �q,q����q�P�q���q��P�q�� . �44�

Compare this with an uncorrelated network where P�q ,q��
=qP�q�q�P�q�� /z1

2 which corresponds to ��q�=q /z1. The
function f�q� is non-negative for assortative mixing. In this
case vertices at the ends of an edge have the same degree
with a higher probability rather than different degrees. In the
limit f�q�→� we have a set of disconnected random
q-regular modules. For disassortative mixing, we choose
−1	 f�q��0, then the probability to have different degrees
at the ends of an edge is higher than to have the same degree.

For a given degree distribution P�q� and a function f�q�,
the substitution of Eq. �44� into Eq. �1� gives the following
equation for the function ��q�:

��q� =
q

z1�

2

1 + �1 + 4qf�q�P�q�/�z1���1/2 , �45�

where the parameter � must be found self-consistently from
the equation

� = �
q

��q�P�q� . �46�

For model �44�, eigenvalues � and eigenvectors �q
��� of the

branching matrix, Eq. �4�, are determined by the following
exact equations:

1 = z1�
q

�q − 1�
q

�2�q�P�q�
� − ��q�

, �47�

�q
��� =

z1��q�n���
q�� − ��q��

. �48�

Here we have introduced a function

��q� =
�q − 1�

q
z1f�q��2�q�P�q� . �49�

n��� is a normalization constant determined by Eq. �14�.
Choosing a function f�q� and degree distribution P�q�, we
obtain a correlated network with a specific spectrum of the
eigenvalues of the branching matrix.

For model �44� the average branching parameter B�q� de-
fined by Eq. �6� is equal to

B�q� =
z1��q�

q
�
q�

�q� − 1���q��P�q�� + ��q� . �50�

Assuming that P�q�f�q��1 at large q, we obtain the
asymptotic behavior, ��q��q / ��z1�. Therefore, B�q�=const
+��q� at q�1. If ��q��q−
 and −1�
	0, B�q� increases
with increasing q.

Model �44� has a modular structure. Modules are formed
by vertices with equal degrees q. The number of modules is
equal to the number of different degrees, Nd. In the limit
f�q�→� for all q, this network consists of disconnected
modules. Each module is a q-regular random graph. In this
limit, the Pearson coefficient r=1, which corresponds to a
perfectly assortative network �9�. If f�q� is large but finite we
get weakly connected modules.

Equations �47� and �48� show that the largest eigenvalue
�1 is larger than max ��q�. All other eigenvalues lie in the
range: min ��q�	�	max ��q�. For example, if the func-
tion ��q� is a monotonously increasing function, then there
is only one eigenvalue in every interval ���qi� ,��qi+1��. If
max ��q�	�, then �2 is finite because �2	max ��q�. �1 is
finite at �q2�	� and diverges at �q2�→�. Equation �48�
shows that the maximal eigenvector satisfies Eq. �30�. Thus
conditions �I�–�III� in Sec. IV are fulfilled if max ��q� is
finite. In this case model �44� belongs to the same universal-
ity class as an uncorrelated random complex network with
the identical P�q�, i.e., degree-degree correlations does not
affect the critical behavior.

In Fig. 2 we present the results of numerical calculation of
the largest and the second largest eigenvalues of the branch-
ing matrix for a scale-free degree distribution, P�q�=Aq−4,
and uniform assortative mixing f�q�= f �0. One can see that
�1 and �2 are finite even correlations are strong, f�q�= f �1.

GOLTSEV, DOROGOVTSEV, AND MENDES PHYSICAL REVIEW E 78, 051105 �2008�

051105-6



In order to check our predictions, Eqs. �27� and �28�, for
the amplitudes of critical and transverse modes at the perco-
lation threshold, we solved numerically Eq. �10� for model
Eq. �44�. We considered a simple network consisting of two
groups of vertices with degrees q1=4 and q2=11 and the
following degree distribution: P�q1�=0.6, P�q2�=0.4. In this
situation the branching matrix has only two modes—a criti-
cal mode and a transverse one. The resulting dependence of
the size S of a giant connected component on p is shown in
Fig. 3. A giant connected component emerges at pc=1 /�1.
One can also see a nonmonotonous behavior of dS�p� /dp
which takes place when the occupation probability p crosses
1 /�2. Figure 4 shows that the amplitudes of the critical and
transverse modes near the percolation point behave in agree-
ment with Eqs. �27� and �28�, i.e., a1� �p− pc� and a2� �p
− pc�2.

VI. CRITICAL BEHAVIOR OF STRONGLY ASSORTATIVE
NETWORKS

Let us consider the case when the function ��q� is un-
bounded, i.e., max ��q�=�. Then the sequence of eigenval-
ues �i also is unbounded. In particular, both �1 and �2 are
infinite. The condition �II� is not fulfilled. For example, we
can choose the function ��q�=�0q−
. It is unbound at −1
�
	0 and bounded at 
�0. In the latter case, model �44�
has the same critical behavior as an uncorrelated network
with the identical degree distribution. In Fig. 5 this region of
parameters 
 and the degree distribution exponent � is de-
fined as region I.

In order to study percolation in model �44� for −1�

	0, we rewrite Eq. �10� in the following form:

yq =
p��q�
q − 1

�1 − �1 − yq�q−1� +
z1��q�v

q
, �51�

where the parameter v plays the role of an effective field,

v = p�
q

��q�P�q��1 − �1 − yq�q−1�

= �
q

qyq

z1��q�f�q���1 + �
q

1

f�q�� . �52�

At p�1 and qcut�1 these equations have an approximate
solution

yq =
p��q�
q − 1

+
z1��q�v

q
, at q � qp,

0 20 40 60 80 100
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�2

�1

� i
/�
0

f
FIG. 2. Dependence of the largest, �1, and the second largest,

�2, eigenvalues of the branching matrix B̂ on the parameter f in the
uniform case f�q�= f for model �44� with a scale-free degree distri-
bution P�q�=Aq−4, �q�=2.3, �q�q−1��=11.3. Other eigenvalues are
non-negative and lie below �2. The eigenvalues are normalized in
respect to �0=z2 /z1.
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FIG. 3. Relative size S of a giant connected component versus
the occupation probability p for correlated network �44� having two
groups of vertices with degrees q1=4 and q2=11, P�q1�=0.6 and
P�q2�=0.4. The curves were obtained by numerical solution of Eq.
�10� in the following cases: �i� f�q1�= f�q2�=0, i.e., an uncorrelated
network �solid line�; �ii� an assortative network with f�q1�= f�q2�
=10 �dotted line�; �iii� an assortative network with f�q1�= f�q2�
=100 �dashed line�. Arrows indicate the positions of 1 /�2 for �ii�
and �iii�.
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FIG. 4. Amplitudes a1 and a2 of critical and transverse modes,
respectively, versus p− pc in an assortative network with degree-
degree distribution �44� and the same parameters as for the dotted
curve in Fig. 3, f�q1�= f�q2�=0. The percolation threshold is pc

=1 /�1. The arrow shows the point p=1 /�2.
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=
z1��q�v

q�1 − p��q��
, at q � qp, �53�

where a characteristic degree qp is determined from the equa-
tion p��qp�=1 which gives

qp = ��0p�1/
 � 1. �54�

Within this solution we have �q−1�yq�1 at q�qp, though
yq�1. This enables us to use the approximation

1 − �1 − yq�q−1 � 1. �55�

For the degree distribution P�q�=Aq−� with ��3, a self-
consistent solution of Eq. �52� is

v �
Ap

z1��� − 2�qp
�−2 � p�2−�+
�/
. �56�

The leading contribution to v is given by a sum over degrees
q�qp. Substituting solution �53� into Eq. �11�, we obtain the
size of a giant connected component,

S � pv � p�2−�+2
�/
. �57�

Interestingly, the main contribution to S comes from degrees
q	qp.

For a slowly increasing function ��q�=�0 ln q �which
corresponds to 
→0�, we have qp=exp�1 / �p�0��. Then, at
an arbitrary ��3, we obtain from Eq. �56� the following
results:

v � pe−��−2�/�p�0�, �58�

S � pv � p2e−��−2�/�p�0�. �59�

On the other hand, for 2	�	3 we note that if qcut→�, then
the series Eq. �52� is a singular function of v. Then, Eq. �52�
takes the form

v � apv�−2 +
Ap

z1��� − 2�qp
�−2 , �60�

where a=O�1� is a model-dependent parameter. Here the
first singular term is given by the sum over q	qp under the
condition that qpv�1. The second term is given by degrees
q�qp. At ��3+
 we arrive at the solution, Eq. �56� while
at 2	�	3+
 we obtain

v � p� �61�

with �=1 / �3−��. The size of a giant connected component
is S� pv� p1+�. This is exactly the behavior that was found
for an uncorrelated scale-free network for 2	�	3 �14,15�.
It means that degree-degree correlations are irrelevant at
2	�	3+
.

Our results are summed up in Fig. 5 and Table I. In region
I, degree-degree correlations are irrelevant. They become rel-
evant and lead to new critical exponents in the region of
parameters ��3+
 and −1	
	0 �region II in Fig. 5�
where model �44� has an unbounded sequence of eigenvalues
of the branching matrix.

VII. CRITICAL BEHAVIOR OF STRONGLY
DISASSORTATIVE NETWORKS

Vázquez and Moreno �16� introduced networks with the
following degree-degree distribution:

P�q�,q� =
1

z1
�1 − gq��q�P�q���1 − �q�,1��q,1 +

1

z1
�1 − gq�qP�q�

��1 − �q,1��q�,1 +
1

z1
2G

gq�q�P�q��gqqP�q�

��1 − �q�,1��1 − �q,1� , �62�

where G��q�1gqqP�q� /z1. The fraction of vertices of de-
gree 1 is fixed by the following condition: P�q=1�
=�q�1�1−gq�qP�q� /z1. In this model, a vertex of degree
q�1 is connected to a vertex of a degree q�=1 with prob-
ability 1−gq, and this vertex �q�1� is connected to a vertex
of degree q��1 with probability gqgq� /G. From Eq. �6� we
obtain that the average nearest-neighbor’s degree of the ver-
tices of degree q is B�q��gq. These networks are disassorta-
tive for any monotonic decreasing function gq.

One can show that the branching matrix has the largest
eigenvalue

�1 =
1

z1G
�
q�1

gq
2q�q − 1�P�q� . �63�

All other eigenvalues are zero, �i=0 for i�2. Remarkably,
this spectrum is similar to that of an uncorrelated network,
see Eq. �16�. The maximal eigenvector is

�q
�1� = n1gq, �64�

where n1 is for normalization. Using this result, we find the
local clustering coefficient C�q�, Eq. �B3�, of model �62�,

C�q� =
�1

2

Nz1
2G

q−2
. �65�

-1

0

-0.5

�

IIII

�3 42

I

I

0.5

FIG. 5. Phase diagram in the plane �� ,
� of model �44�. Here �
is the degree distribution exponent, P�q��q−�, and 
 is the expo-
nent of the function ��q��q−
. In region I the critical behavior of
the model is the same as that for an uncorrelated network with the
identical degree distribution. In region II the sequence of eigenval-
ues is unbounded, and this model demonstrates a new critical ex-
ponent, see Table I. The boundary between regions I and II is de-
fined by the equation 
=min�0,�−3�.
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Let us study the case of a scale-free degree distribution
P�q��q−� and choose

gq = q−
 �66�

with 
�0. Zero exponent 
=0 corresponds to an uncorre-
lated network. If 
�0, then �q

�1�→0 at q→�. It means that
condition �III� in Sec. IV is not fulfilled.

The dependence of the percolation threshold pc on the
parameters � and 
 was found in �16�. Let us study the
critical behavior of model �62�. From Eq. �23� we find that
the amplitudes ai=0 for i�2. Therefore, the order parameter
is completely determined by the critical mode, yq=a1�q

�1�.
The amplitude a1 is determined by the following equation:

�p�1 − 1�a1 = p�1s1�a1� , �67�

where the function s1�x� is given by Eq. �34�. First we study
the region of parameters 
 and �, where


 � max�0,
4 − �

3
�, � � 2 �68�

�region I in Fig. 6�. Based on Eqs. �26� and �63� one can see
that in this region, the coefficient M111 and �1 are finite.
Therefore, the percolation threshold is nonzero, pc=1 /�1
�0, i.e., this network is fragile against a random damage.
Equation �67� has a solution a1��� with standard mean-field
exponent �=1. Remarkably, if 
�2 /3, then this standard
critical behavior takes place at all ��2. Region I includes a
subregion with 2	�	3 where the second moment �q2� of
the degree distribution diverges. This is in contrast to an
uncorrelated network with 2	�	3, which has pc=0 and
exponent �=1 / �3−��.

Region II in Fig. 6 is defined by the inequalities

3 − �

2
	 
 	

4 − �

3
, 2 	 � 	 4. �69�

In region II, �1 is finite while M111=�. This points out that
the function s1�x� is a singular function. The asymptotic be-
havior of this function is the following: s1�x��x2−�, where
�= �4−3
−�� / �1−
��0. Equation �67� gives a1��� with
the exponent

� =
1 − 


� − 3 + 2

. �70�

Region III in Fig. 6 is defined by the inequalities

0 	 
 	
3 − �

2
, 2 	 � 	 3. �71�

In this region both �1 and M111 diverge. Therefore, pc=0 and
the network is robust against random damage. To find the
order parameter we directly solve Eq. �10�. The exact solu-
tion is yq=ygq where y satisfy

y =
p

z1G
�
q�1

gqqP�q��1 − �1 − ygq�q−1� . �72�

The series in y on the right-hand side has an asymptotic
behavior �y1−1/�, y�1, where

� =
1 − 


3 − 2
 − �
. �73�

This leads to a solution y� p�. The resulting size of a giant
connected component is S� py.

Thus, strong disassortative correlations can dramatically
change both the percolation threshold and the critical behav-
ior. In a broad region of parameters � and 
, see Fig. 6 and
Table I, the critical properties of model �62� with disassorta-
tive mixing differ from those of a corresponding uncorrelated
network.

VIII. CONCLUSIONS

We have studied critical phenomena at the percolation
transition in equilibrium complex networks with degree-
degree correlations. Our consideration is based on the as-
sumptions that a network is locally treelike, i.e., clustering is
negligibly small, and that only degree-degree correlations
between the nearest-neighboring vertices are present. The
origin of degree-degree correlations is not relevant for our
approach. These correlations can be intrinsic �i.e., they im-
plicitly follow from other features of a network� or directly
defined in a given network model.

We have demonstrated that both assortative and disassor-
tative mixing affect not only the percolation threshold but
can also change critical behavior at this percolation point.
We have found necessary and sufficient conditions for a cor-
related network to have the same critical behavior as an un-
correlated network with the identical degree distribution.
These conditions result from the fact that critical singulari-
ties at the percolation point are determined not only by a
degree distribution, as for uncorrelated networks, but also

2 3 4
0

0.5

�

�

I

III

II

1

FIG. 6. Phase diagram in the plane �� ,
� of model �62�. Here �
is the degree distribution exponent, P�q��q−�, and 
�0 is the
exponent of the function g�q��q−
. In region I this model shows
the standard mean-field critical singularity with the critical expo-
nent �=1. In regions II and III this model demonstrates a new
critical behavior with the critical exponent depending on 
, see
Table I. The boundaries between regions I and II, and II and III, are
defined by the equations 
= �4−�� /3 and 
= �3−�� /2,
respectively.
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spectral properties of the branching matrix. The resulting
critical behavior of a correlated network belongs to the same
universality class as percolation on an uncorrelated network
if the following conditions are fulfilled: �I� The largest eigen-
value �1 of the branching matrix is finite if �q2� is finite, or
�1→� if �q2�→�; �II� the second largest eigenvalues of the
branching matrix is finite; �III� the sequence of entries of the
eigenvector associated with the largest eigenvalue converges
to a nonzero value. In this situation, one can say that degree-
degree correlations �assortative or disassortative� are irrel-
evant for critical phenomena though they change the value of
a percolation threshold. The critical exponents are com-
pletely determined by asymptotic behavior of degree distri-
bution at large degrees.

Degree-degree correlations become relevant if at least one
of these conditions is not fulfilled. We have proposed two
simple models of correlated networks with strong assortative
and disassortative mixing, where correlations dramatically
change the critical behavior. As a result, the critical exponent
becomes model dependent and hence nonuniversal. The ad-
vantage of these models is that they allow us, first, to change
gradually from weak to strong mixing, and, second, to obtain
the exact analytical solution of the percolation problem. In
the assortative networks, proposed in this work, strong assor-
tative mixing leads to an unbounded sequence of eigenvalues
of the branching matrix, i.e., condition �II� is not fulfilled,
which results in new critical singularities. Remarkably, in
these networks the percolation threshold can be zero despite
a finite second moment �q2� of a degree distribution, in con-
trast to uncorrelated networks. �In uncorrelated networks,
pc=0 only if �q2�→�.� We have also found an unusual criti-
cal behavior in a network with strong disassortative mixing
where condition �III� is not fulfilled. Here the situation is just
opposite to the strongly assortative network. Namely, in con-
trast to uncorrelated networks, the considered disassortative
network can be fragile against random damage even if �q2�
→�. Moreover, we have shown that in a wide range of
model parameters, strong disassortative mixing results in
new critical singularities.

Many real-world networks and network models have non-
zero clustering and long-range degree correlations. Intrinsic
degree correlations are present, for example, in the static
model of scale-free networks with degree exponent 2	�
	3 �31� and in some other models without self-loops and
multiple connections. Unfortunately, these networks are clus-
tered, and it is unknown whether their degree-degree corre-
lations are short or long range. A generalization of the theory
to networks with long-range degree correlations and nonzero
clustering is a challenging problem �10�.

We believe that our general conclusions concerning a
strong influence of degree-degree correlations on critical sin-
gularities are true for various models of statistical physics
defined on the top of correlated networks.
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APPENDIX A: SPECTRAL PROPERTIES
OF THE BRANCHING MATRIX

Here we describe general properties of the eigenvalues �i

and eigenvectors �q
�i� of the branching matrix �4�. According

to the Perron-Frobenius theorem, a real positive matrix B̂ has
a positive real eigenvalue �1 such that �1� 
�i
 for any ei-

genvalue �i of B̂, see, e.g., Ref. �36�. Furthermore, there is an
eigenvector with positive entries �q

�1��0 corresponding to
�1. �1 is the largest eigenvalue. The eigenvector associated
with �1 is called a maximal eigenvector. If this matrix is
positive then the largest eigenvalue is simple, i.e., nongener-
ate.

One can show that a symmetric matrix

B̃q,q� =��q��q − 1�
qP�q�

P�q,q����q��q� − 1�
q�P�q��

�A1�

has the same eigenvalues �i as the nonsymmetric matrix B̂,

i.e., �q�B̃qq��̃q�
�i�=�i�̃q

�i�, where eigenvectors �̃q
�i� are related

to the eigenvectors �q
�i� as follows:

�̃q
�i� = �q�q − 1�P�q�/�q��1/2�q

�i�. �A2�

This relationship between the nonsymmetric matrix B̂ and

the symmetric matrix B̃ allows us to obtain the following
spectral properties. First, since all eigenvalues of a symmet-

ric real matrix are real, all eigenvalues �i of B̂ are also real.
They can be ordered as follows: �1��2� ¯ ��Nd

. Second,

the eigenvectors �̃�i� form a complete orthonormal basis set,

�
q

�̃q
�i��̃q

�j� = �i,j , �A3�

�
�

�̃q
����̃q�

��� = �q,q�. �A4�

Using relation �A2� we obtain Eqs. �14� and �15�. Because

the maximal eigenvalue �1 of the positive matrix B̂ is non-
degenerate, this eigenvalue is strictly larger than the second
largest eigenvalue �2. In other words, there is a gap between
�1 and the second largest eigenvalue �2, �1−�2�0. A value
of this gap is determined by a specific form of a joint degree-
degree distribution P�q� ,q�.

The largest eigenvalue �1 of a non-negative branching
matrix Bqq� has the following upper boundary �36�:

�1 � max
q

B�q� . �A5�

Using the equation
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�1 = max
�q�0

�
q,q�

�q��q� − 1�P�q�,q��q − 1��q

�
q

�q
2q�q − 1�P�q�

�A6�

which directly follows from Eq. �13�, we can find a lower
boundary. Substituting �q=1, we get

1

z2
�

q

B�q�q�q − 1�P�q� � �1. �A7�

Unfortunately, no results are known for the second largest
eigenvalue �2.

For an uncorrelated network, P�q� ,q�=q�P�q��qP�q� /
�q�2. In this case the matrix B̂ has the entries

Bqq� = �q� − 1�q�P�q��/�q� � Bqq�
�0� . �A8�

The largest eigenvalue of this matrix is

�1 = z2/z1. �A9�

The normalized maximal eigenvector has equal entries

�q
�1� = �z1/z2�1/2 �A10�

for all q. There is also an �Nd−1�-degenerate zero eigen-
value, �2= ¯ =�Nd

=0. In this case the gap, �1−�2, in the
spectrum is equal to z2 /z1. Any vector � orthogonal to ��1�

in the sense of Eq. �3� is an eigenvector associated with this
zero eigenvalue.

Let us consider a network in which a joint degree-degree
distribution P�q� ,q� slightly deviates from q�P�q��qP�q� /
�q�2, i.e.,

max
q


B�q� − B̄


B̄
� 1, �A11�

where the branching coefficient B�q� and the mean branching

coefficient B̄ are defined by Eqs. �6� and �8�.
In order to find the largest eigenvalue, we write B̂= B̂�0�

+�B̂, where the matrix B̂�0� is given by Eq. �A8�, and �B̂

= B̂− B̂�0� is a perturbation. In the first order of the perturba-
tion theory we obtain:

�q
�1� � AB�q�/B̄ , �A12�

�1 �
1

z2
�

q

B�q�q�q − 1�P�q� . �A13�

Here A is a normalization constant. Equation �A13� agrees
with the lower boundary in Eq. �A7�. Let us analyze these
results. First, the entries �q

�1� of the maximal eigenvector are
positive and lie in a bounded range. Second, we can rewrite
the right-hand side of Eq. �A13� as

�1 � B̄ +
1

B̄��
q,q�

�q� − 1�P�q�,q��q − 1� − B̄2� = B̄ + r
2/B̄ .

�A14�

We see that degree-degree correlations give a contribution
which is proportional to the Pearson coefficient r, Eq. �9�.
Therefore, assortative mixing increases �1 while disassorta-
tive mixing decreases it. As a result we get inequality �20�.
With increasing degree-degree correlations the magnitude of
the second largest eigenvalue �2 increases gradually from

zero. Therefore, in a weakly correlated network the matrix B̂
has a finite gap �1−�2�0 which depends on a specific
degree-degree distribution P�q ,q��.

APPENDIX B: RELATIONSHIP BETWEEN THE MATRIX

B̂ AND NETWORK PARAMETERS

Many structural parameters of correlated networks can be
related with the spectrum of the branching matrix. The local
clustering coefficient C�q� of a vertex with degree q is de-
fined as follows: C�q�� t�q� / �q�q−1� /2�, where t�q� is the
number of triangles �loops of length 3� attached to this ver-
tex, and q�q−1� /2 is the maximum possible number of such
triangles. The clustering coefficient C and the mean cluster-

ing C̄ are given by the following equations:

C =
1

z2
�

q

�q − 1�P�q�C�q� ,

C̄ = �
q

P�q�C�q� . �B1�

According to Ref. �40�, we can rewrite C�q� in the following
form:

C�q� =
�B̂3�qq

Nq�q − 1�P�q�
, �B2�

where B̂ is the branching matrix �4�. Using this equation and
Eq. �15�, we find relationships between the clustering coef-
ficients and the eigenvalues �i and eigenvectors �q

�i� of the
branching matrix,

C�q� =
1

N�q��i=1
�i

3��q
�i��2, �B3�

C =
1

Nz2
�
i=1

�i
3, �B4�

C̄ =
1

N�q��i=1
�i

3�
q

P�q���q
�i��2. �B5�

For an uncorrelated network, C�un�=z2
2 / �N�q�3� �41�. In a net-

work with assortative mixing the largest eigenvalue �1 is
larger than z2 /z1 according to Eq. �20�. Therefore, the clus-
tering coefficient C�as� is larger than C�un�. Similarly, in net-
works with disassortative mixing the clustering coefficient
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C�dis� is smaller then C�un�. Thus, we obtain an inequality

C�dis� 	
z2

2

N�q�3 	 C�as�. �B6�

Using Eq. �15�, we obtain a useful relation between the
average branching coefficient B�q�, Eq. �6�, and the eigen-
values �i and eigenfunctions �q

�i�,

B�q� = v1�1�q
�1� + �

i�2
vi�i�q

�i�, �B7�

where vi=�qw�q��q
�i�. This relation shows that the degree

dependence of B�q� is determined by the eigenvectors �q
�i�,

mainly by the maximal eigenvector �q
�1�. Note that if �1

→�, then B�q→��→� but not vice versa.
The average number, Nl�q� 
q�, of vertices with degree q�

at a distance l from a vertex of degree q can also be related

with the branching matrix B̂,

Nl�q�
q� =
q�B̂l�qq�

q� − 1
. �B8�

The mean intervertex distance �̄ of the correlated network
can be found from the equation

N = 1 + �
q�

�
n=1

�̄

Nl�q�
q� = 1 + �q��
�

W����
n=1

�̄

�n, �B9�

where

W��� =
1

�q�2��
q

qP�q��q
������

q

q�q − 1�P�q��q
���� .

�B10�

In a network with a finite gap between the largest and the
second largest eigenvalues, �2, the leading contribution into
the right-hand side is given by the terms with �1. As a result

we obtain the following estimate of �̄ for a correlated net-
work:

�̄ �
ln N

ln �1
. �B11�

Note that an uncorrelated network has a mean intervertex

distance �̄� ln N / ln�z2 /z1�. Using �20� we find that for a
given degree distribution P�q� a network with assortative

mixing has a smaller intervertex distance �̄�as� than an uncor-
related network, while a network with disassortative mixing

has a larger �̄�dis�,

�̄�as� 	
ln N

ln�z2/z1�
	 �̄�dis�. �B12�

APPENDIX C: ENTROPY OF A CORRELATED
NETWORK WITH A MODULAR STRUCTURE

Here we describe a statistical ensemble of assortative net-
works with degree-degree correlations, Eq. �44�. The prob-
ability Pa�aij� that an edge between vertices i and j of de-
grees qi and qj is present �aij =1� or absent �aij =0� is

Pa�aij� =
z1�2

N
�1 + f�qi��qi,qj

���aij − 1�

+ �1 −
z1�2

N
�1 + f�qi��qi,qj

����aij� . �C1�

Here aij are the entries of the adjacency matrix, � and f�q�
are parameters. For an uncorrelated network �the configura-
tion model�, we have �=1 and f�q�=0. A positive f�q� re-
sults in assortative mixing. Let a sequence of degrees �and so
a degree distribution P�q�� be given. Then the probability of
realization of a graph with a given adjacency matrix aij is the
product of probabilities Pa�aij� over all pairs of vertices,

P��aij�� =
1

Z �
i=1

N−1

�
j=i+1

N

Pa�aij��
i=1

N

���
j

aij − qi� . �C2�

The � functions fix degrees of the vertices. Z is a normaliza-
tion factor,

Z = exp�N�
q

P�q�ln� 1

q!
� q�

��q�
�q� −

1

2
Ng� . �C3�

where g= �q��1+�2+�2�qP2�q�f�q��. In fact, Z is the parti-
tion function of this network ensemble �compare with a par-
tition function for other network ensembles in Ref. �39��.
The function ��q� is given by Eq. �45�. At a given �q�, pa-
rameters � and f�q� are coupled. The condition of the maxi-
mum of the entropy ln Z with respect to the parameter �
leads to Eq. �46�.

The average of a physical quantity A��aij�� over the net-
work ensemble is given by

�A�en =� A��aij��P��aij���
i=1

N−1

�
j=i+1

N

daij . �C4�

In particular, for a graph with a given adjacency matrix aij,
the degree-degree distribution P�q ,q�� is given by an aver-
age over edges,

P�q,q�� =
1

Nz1
�
i,j

�qi,q
aij�qj,q�. �C5�

Averaging this function over the network ensemble, we ob-
tain Eq. �44�.
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