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One-dimensional Brownian motion starting from the origin at time t=0, conditioned to return to the origin
at time t=1 and to stay positive during time interval 0� t�1, is called the Bessel bridge with duration 1. We
consider an N-particle system of such Bessel bridges conditioned never to collide with each other in 0� t
�1, which is the continuum limit of the vicious walk model in watermelon configuration with a wall. Distri-
butions of maximum values of paths attained in the time interval t� �0,1� are studied to characterize the
statistics of random patterns of the repulsive paths on the spatiotemporal plane. For the outermost path, the
distribution function of maximum value is exactly determined for general N. We show that the present N-path
system of noncolliding Bessel bridges is realized as the positive-eigenvalue process of the 2N�2N matrix-
valued Brownian bridge in the symmetry class C. Using this fact, computer simulations are performed and
numerical results on the N dependence of the maximum-value distributions of the inner paths are reported. The
present work demonstrates that the extreme-value problems of noncolliding paths are related to random matrix
theory, the representation theory of symmetry, and number theory.
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I. INTRODUCTION

Random walk �RW� models are important in physics,
chemistry, and computer sciences. They can be used effec-
tively when we explain basic concepts of statistical physics
�1�, stochastic processes in physics and chemistry �2�, and
stochastic algorithms �3�. In particular, RW models have
been used to provide simple and useful models to discuss
various physical phenomena in far from equilibrium, such as
interface dynamics �4–6�, polymer networks �7–9�, wetting
and melting transitions �10�, and so on. If we take the proper
spatiotemporal continuum limit, called the diffusion scaling
limit, of the RW models, Brownian motion �BM� models are
obtained. By virtue of the limit procedure, the BM models
are enriched with mathematics. The following example of a
conditional BM will demonstrate this statement �11–13�.

Consider the one-dimensional standard BM B�t�, t�0,
where �B�t��=0 and �B�s�B�t��=min�s , t�. The BM condi-
tioned to stay positive B�t��0, 0� t��, is called the three-
dimensional Bessel process, abbreviated as BES�3�, since it
is equivalent in distribution with the radial part of the three-
dimensional BM and its transition probability density is
given by a special case of the modified Bessel function �see
Sec. II A below and 3.3 C in �14�, VI.3 in �15�, and IV.34 in
�16��. When we consider the case that it starts from the origin
at time t=0 and returns to the origin at time t=1, this con-
ditional BES�3� is called the three-dimensional Bessel bridge
with duration 1 starting from 0, since as illustrated by Fig. 1,
the path drawn on the �1+1�-dimensional spatiotemporal
plane seems to be a bridge over the time axis. �Note that by
the scaling property between space and time of BM, no gen-
erality is lost by setting the time duration be 1.� Let r�t�, 0
� t�1, denote the three-dimensional Bessel bridge. By sym-

metry, we can expect that the height of the bridge attains its
maximum value with the highest probability at time t=1 /2.
The probability density for r�t��dx at time t=1 /2 is readily
calculated as

pBESb�1/2,x� = 8	 2

�
x2e−2x2

, 0 � x � � �1�

�see below Eq. �15��, which gives the moments ��r�1 /2��s�
=2−s�s+1�!! if s is even and ��r�1 /2��s�= �2 /	��2−s/2��s
+1� /2�! if s is odd. The shape of the present bridge is, how-
ever, randomly deformed, and as we can see in Fig. 1 the
time 0�	�1, at which r�t� attains its maximum, will fluc-
tuate around the mean time �	�=1 /2. We define

H1
�1� = max

0�t�1
r�t� = r�	� .

We can show that the probability density for H1
�1��dh is

given as

pH1
�1��h� = 8


n=1

�

e−2n2h2
�4n4h3 − 3n2h�, 0 � h � � , �2�

which gives the moments
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FIG. 1. A sample of path of the three-dimensional Bessel bridge
with duration 1. In this example the time 	, at which the height of
the bridge attains its maximum, is less than 1 /2.
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��H1
�1��s� =

s�s − 1�
2s/2 
�s/2���s�, s = 0,1,2, . . . ,

with the gamma function 
�z�=�0
�e−uuz−1du. Here ��s� is Ri-

emann’s zeta function,

��s� = 

n=1

�
1

ns ,

which is an important special function in number theory
�12,17�. In the present paper, as multivariate generalization
of the Bessel bridge �18�, we study the N-path systems of the
three-dimensional Bessel bridges with duration 1, condi-
tioned never to collide with each other in 0� t�1; r�N��t�
= (r1

�N��t� ,r2
�N��t� , . . . ,rN

�N��t�), 0� t�1, with the conditions
r�N��0�=r�N��1�=0 and 0�r1

�N��t��r2
�N��t�� ¯ �rN

�N��t�, 0
� t�1.

The systems of RWs with nonintersecting condition were
introduced by Fisher as mathematical models to describe the
wetting and melting transitions and named vicious walk mod-
els �10�. They have been used not only to discuss the dynam-
ics of domain walls and melting of commensurate surfaces
�19�, but also to study polymer networks �8,9�, the related
enumerative combinatorial problems �20–22�, and nonequi-
librium critical phenomena �23�. In general the noncolliding
diffusion particle systems are obtained as the diffusion scal-
ing limits of the vicious RW models �24–26�. In particular,
the version of the vicious RW model, whose continuum limit
is the noncolliding Bessel bridges, r�N��t�, 0� t�1, is called
the N-watermelons with a wall �9,21,22,26,27�.

In the discrete mathematics the one-dimensional RWs
conditioned to visit only nonnegative sites N0= �0,1 ,2 , . . . �
is called the Dyck paths and the asymptotics of the average
height of the Dyck paths in the long-step limit was studied
by de Bruijn, Knuth, and Rice �28�. Recently Fulmek gener-
alized this classical result by evaluating the asymptotics of
the average height of the 2-watermelons with a wall �29�. In
this calculation, he showed the fact that the number-
theoretical special functions, such as Jacobi’s theta function
and the double Dirichlet series, are useful to describe the
asymptotics. Motivated by this important observation, the
present authors �13� studied the N=2 case of the noncollid-
ing Bessel bridges, r�2��t�= (r1

�2��t� ,r2
�2��t�), which is the con-

tinuum limit of the 2-watermelons with a wall, and clarified
that this phenomenon is indeed the generalization of the re-
lationship between the maximum-value distribution of the
three-dimensional Bessel bridge and Riemann’s zeta function
mentioned above.

We will report in this paper both the exact results and the
numerical results on the maximum-value distributions of N
paths in the noncolliding Bessel bridges. The main exact
result is the following determinantal expression for the
maximum-value distribution of the outermost path �i.e., the
height of the continuum limit of watermelons�,

HN
�N� = max

0�t�1
rN

�N��t� , �3�

for the N-path system r�N��t�= (r1
�N��t� ,r2

�N��t� , . . . ,rN
�N��t�);

P�HN
�N� � h� =

�− 1�N

2N2
� j=1

N �2j − 1�!

� det
1�j,k�N

 

n=−�

�

H2�j+k−1��	2nh�e−2n2h2� , �4�

where Hn�x� denotes the nth Hermite polynomial defined by

Hn�x� = n! 

k=0

�n/2�
�− 1�k�2x�n−2k

k!�n − 2k�!
, �5�

with �a�=the largest integer that is not greater than a. �We
can see that, since H2�x�=4x2−2, Eq. �4� with N=1 and the
relation pH1

�1��h�=dP�H1
�1��h� /dh give the result �2�.� The

long-step asymptotics of all moments of the height of the
N-watermelons with a wall have been fully studied for arbi-
trary N�1 by Feierl �30,31�. We will show that our result �4�
for the distribution functions of the continuous model is con-
sistent with the results by Feierl for the moments of his dis-
crete model. Quite recently Schehr et al. �32� showed their
study on the same problem and others by the path-integral
technique, a different method both from ours and Feierl’s.
They also reported an expression for the maximum-value
distribution �Eq. �5� in their paper �32��, which is different
from �4�. We will show that the equivalence of these two
expressions is guaranteed by the functional equation satisfied
by Jacobi’s theta function �3�x ,y�.

Dyson introduced a matrix-valued BM, M�t�= �Mjk�t��, t
�0, in the space of Hermitian matrices. If the matrix size is
N, the N diagonal elements Mjj�t�, 1� j�N, the N�N
−1� /2 real parts of the upper-triangle elements, Re�Mjk�t��,
1� j�k�N, and the N�N−1� /2 imaginary parts of them,
Im�Mjk�t��, 1� j�k�N, are given by independent one-
dimensional standard BMs, the total number of which is N2.
Dyson showed that the N eigenvalues of M�t� behaves as an
interacting diffusion particle system on the real axis R, in
which the long-ranged repulsive forces work between any
pair of particles with the strength proportional to the inverse
of the distance of two particles �33�. This eigenvalue process
is called Dyson’s BM model, and it has been proved to be
equivalent in distribution with the system of N-BMs condi-
tioned never to collide with each other �34,35�. The corre-
spondence between eigenvalue processes of matrix-valued
diffusion processes and noncolliding particle systems has
been studied �35–39�. In the present paper we will use the
fact that the N-noncolliding Bessel bridges can be realized as
the positive-eigenvalue process of the 2N�2N matrix-
valued Brownian bridge, whose distribution at each time 0
� t�1 is related to the random matrix theory �40� with a
special symmetry called the class C in �41,42�. Figure 2
shows a sample of paths of the N=10 noncolliding Bessel
bridges realized by this eigenvalue process. One can imagine
that it is very hard to simulate such paths all starting from the
origin and returning to the origin with noncolliding condition
by direct computer simulation. The present paper will dem-
onstrate that the relationship between the random matrix en-
sembles and the noncolliding particle systems �39� provides
a practical method to study such conditional processes effec-
tively by computer simulations. We will report the numerical
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evaluation of the maximum-value distributions of not only
the outermost path rN

�N��t�, but also inner paths rk
�N��t�, k

=1,2 , . . . ,N−1.
Both from the viewpoints of statistical physics and of ran-

dom matrix theory �18,40�, the study of the N→� limit is
interesting and important for noncolliding paths �43–45�. For
the average value of the maximum values of the outermost
path, we can read the following behavior from the numerical
work by Bonichon and Mosbah for the watermelons with a
wall �46�,

�HN
�N�� � 	1.67N − 0.06, N → � . �6�

Recently, Schehr et al. �32� gave an argument that the nu-
merical data of Bonichon and Mosbah, relation �6�, shows
only a preasymptotic behavior at large N and the true asymp-
totics should be

�HN
�N�� � 	2N, N → � . �7�

In the present paper, we report the numerical study of the N
dependence of the maximum-value distributions systemati-
cally not only for the outermost path, but also for all inner
paths, and discuss the N→� asymptotics based on our nu-
merical data.

The paper is organized as follows. In Sec. II A, after giv-
ing brief explanations of the three-dimensional Bessel bridge
and the Karlin-McGregor formula �47�, we define the
N-noncolliding Bessel bridges by giving the transition prob-
ability densities. A matrix representation of the symmetry
class C is shown in Sec. II B and the matrix-valued Brown-
ian bridge in the symmetry class C is introduced. The
equivalence in distribution between its positive-eigenvalue
process and the noncolliding Bessel bridges is then stated.
The problems studied in this paper is announced in Sec. II C.
In Sec. III A the exact expression of the distribution function
of the maximum value for the outermost path, which is the
same as Eq. �5� in �32�, is derived by our method �Lemma 1�.
This exact expression is then transformed into two kinds of
determinantal expressions �Proposition 2 and Theorem 4� in
Sec. III B, one of which is Eq. �7� given above. The key
lemma in the transformation is a set of equalities between
infinite series involving the Hermite polynomials �Lemma 3�
derived from the functional equation of Jacobi’s theta func-
tion �3�x ,y�. The numerical study is reported in Sec. IV.
Concluding remarks are given in Sec. V. Appendixes are
used to give proofs of some formulas.

II. MODELS AND PROBLEMS

A. Transition probability density
of noncolliding Bessel bridges

Let B�t�, t�0, be the one-dimensional standard BM start-
ing from the origin; B�0�=0. For any series of times t0�0
� t1� t2� ¯ � tM, M =1,2 , . . ., the probability that the BM
stays in interval �am ,bm� at each time tm, m=1,2 , . . . ,M, is
given by

P�B�tm� � �am,bm�,m = 1,2, . . . ,M�

= �
a1

b1

dx1�
a2

b2

dx2 ¯ �
aM

bM

dxM

� �
m=0

M−1

p�tm+1 − tm,xm+1�xm� ,

where the transition probability density p�t ,y �x� from the
position x to y during time period t is given by the probabil-
ity density of the normal distribution with mean 0 and vari-
ance t,

p�t,y�x� =
1

	2�t
exp�−

�y − x�2

2t
�, t � 0, x,y � R .

We consider the situation that an absorbing wall is set at the
origin and BM is absorbed if it arrives at the wall. By the
reflection principle of BM �14�, the transition probability
density of such an absorbing BM is given by

pabs�t,y�x� = p�t,y�x� − p�t,− y�x�

=
1

	2�t
�e−�y − x�2/�2t� − e−�y + x�2/�2t�� �8�

for x ,y�0, t�0. The survival probability of the absorbing
BM starting from x�0 for the time period T is then given by

N�T,x� = �
0

�

pabs�T,y�x�dy ,

whose asymptotics in x /	T→0 is easily evaluated as

N�T,x� �	 2

�

x
	T

in
x

	T
→ 0.

The transition probability density of the BM under the
condition that it stay forever in the positive region R+= �x
�R :x�0� is then given by

pBES�3��t,y�x� � lim
T→�

N�T − t,y�pabs�t,y�x�
N�T,x�

=
y

x
pabs�t,y�x�

�9�

for x�0, y�0, 0� t��. The diffusion process whose tran-
sition probability density is given by �9� is called the three-
dimensional Bessel process, abbreviated as BES�3�, for the
following reasons. Consider the d-dimensional BM, B�d��t�
= (B1�t� ,B2�t� , . . . ,Bd�t�), whose coordinates are given by in-
dependent one-dimensional standard BMs �Bj�t�� j=1

d . The dis-
tance from the origin of the d-dimensional BM,

FIG. 2. A sample of paths of N=10 noncolliding Bessel bridges
with duration 1, all starting from 0 and returning to 0, realized by
the eigenvalue process.
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R�d��t� = �B�d��t�� = 	�B1�t��2 + �B2�t��2 + ¯ + �Bd�t��2,

can be regarded as a diffusion process in R+� �0� and its
transition probability density is given by

pBES�d��t,y�x� =
y+1

x

1

t
e−�x2+y2�/�2t�I� xy

t
� �10�

for x�0, y�0, t�0 with

 =
d − 2

2
,

where I�z��
n=0
� �z /2�2n+ / �
�n+1�
�+n+1�� is the

modified Bessel function with the gamma function 
�z�
=�0

�e−uuz−1du. The process R�d��t� is called the d-dimensional
Bessel process BES�d� �14–16�. The transition probability
density �9� of the BM conditioned to stay positive is equal to
�10� with d=3, i.e., =1 /2, since I1/2�z�= �ez−e−z� /	2�z.

Consider the space of all configurations of N particles in
R+ with a fixed order of positions,

WN
C = �x = �x1,x2, . . . ,xN� � R+

N:x1 � x2 � ¯ � xN� ,

which is called the Weyl chamber of type CN in representa-
tion theory �48�. For x= �x1 ,x2 , . . . ,xN�, y= �y1 ,y2 , . . . ,yN�
�WN

C, t�0, consider the determinant

det
1�j,k�N

�pBES�3��t,yj�xk�� = �
j=1

N
yj

xj
det

1�j,k�N
�pabs�t,yj�xk�� ,

where the equality is given by the relation �9� and multilin-
earity of determinant. By the theory of Karlin and McGregor
�47� �see also �49� with �50,51��, the probability that an
N-particle system of BES�3�’s starting from the configuration
x�WN

C can keep the order of N-particle positions by avoid-
ing any collision of particles for time period T�0 is given
by

NN
C�T,x� = �

0

�

dy1 ¯ �
0

�

dyN det
1�j,k�N

�pBES�3��T,yj�xk�� .

By the Markov property of diffusion processes, if we assume
that the configuration at time t=1 is fixed to be y�WN

C, for
0� t1� t2�1, the transition probability density from x�1�

�WN
C at time t1 to x�2��WN

C at time t2 is given as

py
�N��t1,x�1�;t2,x�2�� =

det
1�j,k�N

�pBES�3��1 − t2,yj�xk
�2��� det

1�j,k�N
�pBES�3��t2 − t1,xj

�2��xk
�1���

det
1�j,k�N

�pBES�3��1 − t1,yj�xk
�1���

=

det
1�j,k�N

�pabs�1 − t2,yj�xk
�2��� det

1�j,k�N
�pabs�t2 − t1,xj

�2��xk
�1���

det
1�j,k�N

�pabs�1 − t1,yj�xk
�1���

. �11�

Let �x�2=
 j=1
N xj

2 and define

hN
C�x� = �

1�j�k�N

�xk
2 − xj

2��
�=1

N

x� �12�

for x= �x1 ,x2 , . . . ,xN��WN
C. Since we have known the asymptotics

det
1�j,k�N

�pabs�t,yj�xk�� �
t−N�2N+1�/2e−�x�2/�2t�

2N�2N−1�/2� j=1
N �
�j�
�j + 1/2��

hN
C�x�hN

C�y�

in �y�→0 �the =1 /2 case of Eq. �33� in �39��, Eq. �11� gives the following:

p�N��t1,x�1�;t2,x�2�� � lim
�y�→0

py
�N��t1,x�1�;t2,x�2�� = �1 − t2

1 − t1
�−N�2N+1�/2hN

C�x�2��
hN

C�x�1��

� det
1�j,k�N

�pabs�t2 − t1,xj
�2��xk

�1��� exp�−
�x�2��2

2�1 − t2�
+

�x�1��2

2�1 − t1�� , �13�

for x�1� ,x�2��WN
C and 0� t1� t2�1, and

p�N��0,0;t,x� � lim
�x�1��→0

p�N��0,x�1�;t,x� =
�t�1 − t��−N�2N+1�/2

��/2�N/2� j=1
N �2j − 1�!

�hN
C�x��2 exp�−

�x�2

2t�1 − t�� , �14�
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for x�WN
C and 0� t�1. The N-particle system of noncol-

liding three-dimensional Bessel bridges with duration 1 all
starting from the origin is defined as the diffusion process
such that its transition probability density is given by �13�
and �14�, and denoted by r�N��t�= (r1

�N��t� ,r2
�N��t� , . . . ,rN

�N��t�),
0� t�1. That is, for any sequence of times t0�0� t1� t2
� ¯ � tM �1, M =1,2 , . . ., and for any sequence of regions
�m�WN

C, m=1,2 , . . . ,M,

P�r�N��tm� � �m,m = 1,2, . . . ,M� = �
�1

dx�1�
¯ �

�M

dx�M�

� �
m=0

M−1

p�N��tm,x�m�;tm+1,x�m+1�� . �15�

Note that no generality is lost by setting the time duration to
be 1 by the scaling property between space and time of the
present N-particle system inherited from BM via BES�3�.
From now on we call r�N��t�, 0� t�1, simply the
N-noncolliding Bessel bridges for short. We remark that, if
we set N=1 and t=1 /2 in �14�, h1

C�x�=x and Eq. �1� is ob-
tained.

B. Matrix-valued Brownian bridge in symmetry class C

For N�1, let IN be the N�N unit matrix and define the
2N�2N matrix

J = � 0N IN

− IN 0N
� ,

where 0N denotes the N�N zero matrix. Let H�N� and
S�N ;C� be collections of all N�N Hermitian matrices and
all N�N complex symmetric matrices, respectively. Then
consider the following set of 2N�2N Hermitian matrices:

HC�2N� = �C = �H S

S† − tH
� ;H � H�N�,S � S�N;C�� ,

�16�

where tH denotes the transpose of H and S†� tS̄ denotes the
Hermitian conjugate of S. We can see that any element C
�HC�2N� satisfies the relation

tCJ + JC = 0, �17�

which means that C�HC�2N��H�2N� satisfies the sym-
plectic Lie algebra, symbolically written as HC�2N�
=sp�2N ,C��H�2N� �48�. Due to the additional symmetry
�17�, the 2N real eigenvalues of C�HC�2N� are given in the
form �= ��1 ,�2 , . . . ,�N ,−�1 ,−�2 , . . . ,−�N�, where � j �0, 1
� j�N. Altland and Zirnbauer studied HC�2N� as the set of
the Hamiltonians in the Bogoliubov–de Gennes formalism
for the BCS mean-field theory of superconductivity, with re-
garding the pairing of positive and negative eigenvalues
�� j ,−� j�, 1� j�N, as the particle-hole symmetry in the
Bogoliubov–de Gennes theory �41,42�. They called HC�2N�
�a representation of� the symmetry class C, since sp�2N ,C�
is denoted by CN in Cartan’s notation �52�.

The Brownian bridge with duration 1 starting from the
origin is defined as the one-dimensional standard BM start-

ing from 0 conditioned to return to 0 at time t=1 and denoted
by b�t�, 0� t�1. The transition probability density of b�t� is
given by

pBb�s,x;t,y� =
p�1 − t,0�y�p�t − s,y�x�

p�1 − s,0�x�
�18�

for 0�s� t�1, x ,y�R. Let bjk
� �t�, 0���2, 1� j�k�N,

and b̃jk
0 �t�, 1� j�k�N, be independent Brownian bridges

with duration 1 starting from the origin. Put

sjk
� �t� = �bjk

� �t�/	2 if j � k ,

bjj
� �t� if j = k ,

bkj
� �t�/	2 if j � k ,

�
for 0���2, and

ajk
0 �t� = � b̃jk

0 �t�/	2 if j � k ,

0 if j = k ,

− b̃kj
0 �t�/	2 if j � k ,

�
and consider the N�N matrices S��t�= (Sjk

� �t�)1�j,k�N, 0��
�2 and A0�t�= (ajk

0 �t�)1�j,k�N. Then the 2N�2N matrix-
valued BM is defined by

C�N��t� = �S0�t� + iA0�t� S1�t� + iS2�t�
S1�t� − iS2�t� − �S0�t� − iA0�t��

�, 0 � t � 1.

�19�

In order to define C�N��t�, we have used N�N+1� /2�3
+N�N−1� /2=N�2N+1� independent Brownian bridges. By
definition �19�, C�N��t��HC�2N�, 0� t�1, and C�N��0�
=C�N��1�=02N. That is, C�N��t� can be regarded as a Brown-
ian bridge in the �N�2N+1��-dimensional space HC�2N�.

At each time 0� t�1, C�N��t� can be diagonalized by a
unitary-symplectic matrix and we can obtain the eigenvalue
process ��N��t�= (�1

�N��t� , . . . ,�N
�N��t� ,−�1

�N��t� , . . . ,−�N
�N��t�)

with 0��1
�N��t�� ¯ ��N

�N��t�. Using the generalized Bru’s
theorem given in �39�, we can determine the transition prob-
ability density for the positive part of eigenvalue process
�+

�N��t�= (�1
�N��t� ,�2

�N��t� , . . . ,�N
�N��t�). The result is exactly the

same as Eqs. �13� and �14�. It implies that �+
�N��t��WN

C, 0
� t�1, with probability 1, and the present positive-
eigenvalue process �+

�N��t� is equivalent in distribution with
the noncolliding Bessel bridges r�N��t�. Figure 3 shows a
sample of paths of the eigenvalue process ��N��t�, 0� t�1,

FIG. 3. A sample of paths of the eigenvalue process ��N��t�, 0
� t�1, of the matrix-valued Brownian bridge C�N��t�, 0� t , �1, in
the symmetry class C for N=10.
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for N=10 generated by computer �see Sec. IV for detail�.
There we can see ten positive paths �+

�N��t� and their mirror
images with respect to the line �=0. The sample of paths of
the noncolliding Bessel bridges, r�N��t�, 0� t�1, shown in
Fig. 2 for N=10, is just obtained by the upper half of this
figure.

C. Problems

For the N-path system of noncolliding Bessel bridges,
r�t�, 0� t�1, we study the maximum values for each path
attained in the time interval t� �0,1�,

Hk
�N� � max

0�t�1
rk

�N��t�, 1 � k � N . �20�

The problem considered in the present paper is to clarify the
statistical property of the random variables Hk

�N�, 1�k�N.
We will report the exact expressions of the distribution func-
tion for the outermost path HN

�N� for general N�1 and the
numerical results for inner paths. The dependence of N is
studied, and the asymptotics in N→� will be discussed.

III. EXACT RESULTS FOR THE OUTERMOST
PATHS

A. Distribution function of HN
(N)

In this section we derive an exact expression for the dis-
tribution function of the maximum value of the outermost
path, P�HN

�N��h�. In order to that first we consider the ab-
sorbing BM in an interval �0,h� for h�0, in which two
absorbing walls are put at the origin and at the position x
=h. The transition probability density pabs

h �t ,y �x� for t�0,
0�x, y�h is the solution of the diffusion equation
�u�t ,y� /�t= �1 /2��2u�t ,y� /�y2 with the initial condition
limt→0u�t ,y�=��y−x� and with the Dirichlet boundary con-
ditions u�t ,0�=u�t ,h�=0, t�0. By the method of separation
of variables and the Fourier analysis, the unique solution is
determined as �see, for example, �53��

pabs
h �t,y�x� =

2

h


n=1

�

exp�−
n2�2

2h2 t�sin�n�

h
y�sin�n�

h
x� ,

�21�

for t�0, 0�x, y�h. Note that it is the different expression
of the function

pabs
h �t,y�x� = 


n=−�

�

�p�t,y�x + 2hn� − p�t,y�− x + 2hn��

=
1

	2�t



n=−�

� exp�−
1

2t
�y − �x + 2hn��2�

− exp�−
1

2t
�y − �− x + 2hn��2�� ,

which was used in our previous paper �13�.

Consider the two determinantal functions

q�N��t,y�x� = det
1�j,k�N

�pabs�t,yj�xk��, t � 0, x,y � WN
C

�22�

and

qh
�N��t,y�x� = det

1�j,k�N
�pabs

h �t,yj�xk��, t � 0, x,y � WN
h ,

�23�

where WN
h = �x� �0,h�N :x1�x2� ¯ �xN�. By the theory of

Karlin and McGregor �47�, q�N��t ,y �x� �qh
�N��t ,y �x�� is the

probability for the N-dimensional absorbing BM starting
from x�WN

C �x�WN
h � at time t=0 to survive during time

period t by avoiding any hitting with the absorbing bound-
aries of WN

C �WN
h � and to arrive at y�WN

C �y�WN
h � at time

t. Note that if we think that the N-dimensional vector x
= �x1 ,x2 , . . . ,xN� represents the positions of N particles on
R+, a hitting with the boundary of WN

C means a hitting of the
innermost particle x1 with the origin or any collision between
neighboring particles xj =xj+1, 1� j�N−1. Similarly a hit-
ting with the boundary of WN

h means x1=0, or any collision
of particles, or a hitting of the outer most particle xN with the
wall at x=h.

Consider the N-particle system of noncolliding BES�3�,
R̃�N��t�= (R̃1

�N��t� , ¯ , R̃N
�N��t�) starting from the configuration

x�WN
h at time t=0; R̃�N��0�=x, and arriving at the configu-

ration y�WN
h at time t=1; R̃�N��1�=y. Let H̃N

�N�

=max0�t�1R̃N
�N��t�. Then we can say that P�H̃N

�N��h�
=qh

�N��1,y �x� /q�N��1,y �x�. By definition of the
N-noncolliding Bessel bridges, r�N��t�, 0� t�1, given in
Sec. II A, we can conclude that

P�HN
�N� � h� = lim

�x�→0,�y�→0

qh
�N��1,y�x�

q�N��1,y�x�
. �24�

As shown in Appendix A, the method of the Schur function
expansion �39� gives the following asymptotics for
q�N��1,y �x� and qh

�N��1,y �x� in �x�→0, �y�→0:

q�N��1,y�x� = � 2

�
�N/2

�
j=1

N
1

�2j − 1�!
hN

C�x�hN
C�y�

��1 + O��x�, �y��� , �25�

qh
�N��1,y�x� = �2

h
�N��

h
�2N2��

j=1

N
1

�2j − 1�!�2

hN
C�x�hN

C�y�

� 

1�n1�n2�¯�nN

exp�−
�2

2h2 �n�2��hN
C�n��2

� �1 + O��x�, �y��� , �26�

where hN
C was defined by �12�. Then Eq. �24� gives the fol-

lowing result.
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Lemma 1. For N�1, h�0,

P�HN
�N� � h� = cNh−N�2N+1� 


1�n1�n2�¯�nN

�hN
C�n��2

�exp�−
�2

2h2 �n�2� , �27�

where cN=2N/2�N�4N+1�/2 /� j=1
N �2j−1�!.

Remark 1. This expression is exactly the same as Eq. �5�
in �32�, which was derived by the path-integral method using
a Selberg’s integral. Here we would like to put emphasis on
the resemblance between the summand of �27� and �14�. As
mentioned in Sec. II B, Eq. �14� is the same as the probabil-
ity density of the eigenvalue distribution of random matrices
in the class C �with variance t�1− t��. The exponent of the
factor h−N�2N+1� in �27� is the dimension of the space
HC�2N�. Another piece of evidence to show the hidden sym-
metry of the present maximum-value problem is the follow-
ing. The character of the irreducible representation corre-
sponding to a partition � of the symplectic Lie algebra is
given by �48�

sp��x� =

det
1�j,k�N

�xj
�k+N−k+1 − xj

−��k+N−k+1��

det
1�j,k�N

�xj
N−k+1 − xj

−�N−k+1��
. �28�

If we set nj =�N−j+1+ j, 1� j�N, and xj =1, 1� j�N, Eq.
�28� gives �see, for example, Eq. �3.33� in �25� and Eq.
�3.10� in �53��

sp��1,1, . . . ,1� =
hN

C�n�
� j=1

N �2j�!
.

The above observations imply that the maximum-value prob-
lems of noncolliding diffusion problems will be related to
some enumerative problems of combinatorics in the en-
sembles of irreducible representations of symmetry, which
can be regarded as a discrete version of random matrix en-
sembles. The wall restriction for paths �i.e., the stay-positive
condition for particles� is mapped onto the symplectic �the
class C� structure in the present case. As pointed out in �32�,
the trivial fact limh→�P�HN

�N��h�=1 for �27� gives a version
of Selberg integral �54,55�,

lim
�→0



n1=−�

�

¯ 

nN=−�

�

� �
1�j�k�N

���nj�2 − ��nk�2�2�
�=1

N

���n��2e−��n��2/2��

= �
−�

�

¯ �
−�

�

�
1�j�k�N

�xj
2 − xk

2�2�
�=1

N

�x�
2e−x�

2/2dx��

= �2��N/2N!�
j=1

N

�2j − 1�!, �29�

which is the special case with �=1 and �=3 /2 of Eq.
�17.6.6� in �40�.

B. Determinantal expressions and Jacobi’s theta function

From �27�, we can obtain the following determinantal ex-
pression for the distribution function of HN

�N�.
Proposition 2. For N�1, h�0,

P�HN
�N� � h� = cNh−N�2N+1� det

1�j,k�N



n=1

�

n2�j+k−1�e−�2n2/�2h2��
=

�− 1�N2−N/2�N�2N+1�/2

� j=1
N �2j − 1�!

h−N�2N+1�	N� �

2h2� ,

�30�

where

	N�u� = det
1�j,k�N

 � j+k−1

�uj+k−1��u�� with ��u� = 

n=−�

�

e−�n2u.

The proof is given in Appendix B.
Now we consider a version of Jacobi’s theta function

�3�x,y� = 

n=−�

�

qn2
z2n = 


n=−�

�

e2�ixn+�iyn2
, Im y � 0,

�31�

where we have set z=ex�i and q=ey�i. The following func-
tional equation is satisfied �see Sec. 10.12 in �56�, Sec. A.3.1
in �29��:

�3�x,y� = �3�x/y,− 1/y�e−�ix2/y	 i

y
. �32�

From this equation, we will obtain the following equalities.
Lemma 3. For �=0,1 ,2 , . . .,



n=−�

�

n�e−�n2/�2+2�i�n/�2
=

i���+1

2���/2 

n=−�

�

H��	�n� + 	��/��

�e−�	�n� + 	��/��2
, �33�

where H��x� is the �th Hermite polynomial defined by �5�.
Proof. Setting x= i�+�2u / �2��, y= i�2, � ,��R, in �32�

gives

�3�i� +
�2u

2�
,i�2� = �3� �

�2 −
iu

2�
,

i

�2�e���/� − i�u/�2���2 1

�
.

By definition �31�, this implies



n=−�

�

e−�n2/�2+�2�i�/�2+u�n = � 

n=−�

�

e−�	��n + 	��/� − i�u/�2	���2
.

�34�

We note that the generating function of Hermite polynomial
is given as

e2ux−u2
= 


n=0

�

Hn�x�
un

n!
.

Then �34� becomes
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�=0

�



n=−�

�
�nu��

�!
e−�n2/�2+2�i�n/�2

= �

�=0

�



n=−�

�

H��	�n� + 	��/��

�� i�u

2	�
�� 1

�!
e−�	�n� + 	��/��2

.

Since this equality holds for any value of u, Lemma 3 is
proved.

By setting �=0, �=h	2 /� and �=2� in Eq. �33� of
Lemma 3, we have the equalities



n=1

�

n2�e−�2n2/�2h2� =
�− 1��

2�+1/2�2�+1/2h2�+1 

n=−�

�

H2��	2nh�e−2n2h2

�35�

for �=0,1 ,2 , . . .. Then Eq. �30� is transformed into the fol-
lowing other determinantal expression, which was an-
nounced in Introduction.

Theorem 4. For N�1, h�0,

P�HN
�N� � h� =

�− 1�N

2N2
� j=1

N �2j − 1�!

� det
1�j,k�N

 

n=−�

�

H2�j+k−1��	2nh�e−2n2h2� .

�36�

As special cases of �36� with N=1 and N=2, we have

P�H1
�1� � h� = −

1

2 

n=−�

�

H2�	2nh�e−2h2n2

and

P�H2
�2� � h� =

1

24 � 3! 

n1=−�

�



n2=−�

�

e−2h2�n1
2+n2

2�

�detH2�	2n1h� H4�	2n1h�

H4�	2n2h� H6�	2n2h�
� .

Since H2�x�=4x2−2, H4�x�=16x4−48x2+12, and H6�x�
=64x6−480x4+720x2−120, they give

P�H1
�1� � h� = 


n=−�

�

�1 − 4h2n2�e−2h2n2
�37�

and

P�H2
�2� � h� = 


n1=−�

�



n2=−�

�

e−2h2�n1
2+n2

2��1 − 16h2n1
2 + 24h4n1

4

+ 24h4n1
2n2

2 −
32

3
h6n1

6 − 32h6n1
4n2

2 +
128

3
h8n1

6n2
2

−
128

3
h8n1

4n2
4� . �38�

From �37� we will obtain �2�. Equation �38� is exactly the
same as the result reported as Lemma 3.1 in our previous
paper �13�.

Remark 2. Since the derivative of the distribution function
P�HN

�N��h� with respect to h gives the probability density for
HN

�N��dh, the sth moment of HN
�N�, s=1,2 , . . ., is calculated

as

��HN
�N��s� = �

0

�

hs� d

dh
P�HN

�N� � h��dh

= s�
0

�

hs−1�1 − P�HN
�N� � h��dh , �39�

where the integral by part was done. If we insert the expres-
sion �30� into �39�, we have a determinantal expression for

TABLE I. Comparison of the values of mN
�N� and vN

�N� obtained
by the present numerical method and the exact values. The values
with “F” are read from Table 1 in �31� and those with “KIK” are
from Table 1 in �13�.

N mN
�N� vN

�N� F mN
�N� F vN

�N� KIK mN
�N� KIK vN

�N�

1 1.251 0.0774 1.2533 0.0737 1.253314 0.074138

2 1.819 0.0732 1.8222 0.0746 1.822625 0.073194

3 2.262 0.0704 2.2677 0.0720

4 2.641 0.0664 2.6460 0.0692

5 2.979 0.0640 2.9805 0.0656

6 3.280 0.0624

7 3.558 0.0600

8 3.817 0.0556

9 4.057 0.0570

10 4.291 0.0543

20 6.146 0.0409

30 7.597 0.0396

40 8.790 0.0384

50 9.841 0.0364

60 10.806 0.0354

70 11.678 0.0310

0

0 . 0 5

0 . 1

0 . 1 5

0 . 2

- 0 . 5 0 0 . 5 1 1 . 5 2 2 . 5 3

N
 /
 
N
T

H
( 1 )

FIG. 4. Comparison of the distribution of the maximum values
H1

�1� of the three-dimensional Bessel bridge between the numerical
simulation �plotted by circles� and the theoretical values �given by
curve�.
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the sth moment. It is essentially the same as the expression
of Feierl given to the dominant term in the long-step asymp-
totics of the moment of the height distribution of watermel-
ons with a wall. See the function �s

�p� given in Theorem 1 of
�31�. Moreover, the determinantal expression for the central
limit theorem of the height distribution of the watermelons
with a wall given by Feierl �Eq. �28� in Theorem 2� �31� can
be identified with our second determinantal expression �36�,
since the functions �k�z� used there are nothing but the Her-
mite polynomials. We have enjoyed the perfect coincidence
of the results obtained by the two different routes to the
problem. See �13� for more a detailed discussion on the re-
lationship between our treatment and that by Fulmek �29�
and Feierl �30,31,57�.

IV. NUMERICAL STUDY

A. Bessel bridge realized by eigenvalue process

We have prepared a computer program to generate
samples of paths of b�t�, 0� t�1, the Brownian bridge with
duration 1 starting from the origin, in which each sample
path is approximated by random walk with 10000 steps.

Assume that we have generated three independent Brown-
ian bridges, bj�t�, 0� t�1, j=1,2 ,3, by this computer pro-
gram. Then we consider the 2�2 matrix-valued process

C�1��t� = � b1�t� b2�t� + ib3�t�
b2 − ib3�t� − b1�t�

� . �40�

It is easy to see that the eigenvalue process of C�1��t� is given
by the positive and negative pairs of eigenvalues ��2��t�
= (�1

�1��t� ,−�1
�1��t�) with

�1
�1��t� = 	�b1�t��2 + �b2�t��2 + �b3�t��2. �41�

The positive eigenvalue process �41� gives the numerical re-
alization of r�t�, 0� t�1, the three-dimensional Bessel
bridge. Actually the sample of path of r�t� shown in Fig. 1
given in the Introduction was numerically drawn by this
method. In order to check the validity of the present numeri-
cal method to simulate the Bessel bridge, we have generated
1000 samples of paths and studied the distribution of their
maximum values H1

�1�=max0�t�1r�t� numerically. The ob-
tained result is plotted in Fig. 4. There the exact curve ob-
tained from Eq. �2� is also shown. The coincidence is excel-
lent.

B. Means and variances of HN
(N)’s

Note that the 2�2 matrix �40� can be considered as the
special case of �19� with N=1. If we prepare ten independent
Brownian bridges, �bj�t�� j=1

10 , numerically, we can simulate
the 4�4 matrix-valued Brownian bridge in HC�4�,

C�2��t� =�
b1�t�

1
	2

�b2�t� + ib3�t�� b5�t� + ib6�t�
1
	2

�b7�t� + ib8�t��

1
	2

�b2�t� − ib3�t�� b4�t�
1
	2

�b7�t� + ib8�t�� b9�t� + ib10�t�

b5�t� − ib6�t�
1
	2

�b7�t� − ib8�t�� − b1 −
1
	2

�b2�t� − ib3�t��

1
	2

�b7�t� − ib8�t�� b9�t� − ib10�t� −
1
	2

�b2�t� + ib3�t�� − b4�t�
� ,

which is the N=2 case of �19�. By tracing the two positive
eigenvalues �+

�2��t�= (�1
�2��t� ,�2

�2��t�), 0��1
�2��t���2

�2��t�, 0
� t�1, we can simulate the noncolliding paths of two Bessel
bridges, r�2��t�= (r1

�2��t� ,r2
�2��t�), and statistical data of H2

�2�

=max0�t�1r2
�2��t� can be obtained. In general, we can simu-

late the N-noncolliding Bessel bridges r�N��t�, 0� t�1, by
using numerical data of independently generated N�2N+1�
Brownian bridges �bj�t�� j=1

N�2N+1� and by tracing the N positive
eigenvalues of the 2N�2N matrix.

From now on, we use the notations

mk
�N� = �Hk

�N�� ,

vk
�N� = var�Hk

�N�� = ��Hk
�N� − mk

�N��2�, 1 � k � N , �42�

for the means and variances of maximum values of paths.
Table I shows the numerical results for the outermost paths
k=N up to N=70, where averages have been calculated over
1000 samples. The present numerical results are consistent
with the exact values, which can be read from the previous
papers by Feierl �31� and by the present authors �13�.

C. N\� asymptotics of the outermost paths

Now we study the N→� asymptotics of mN
�N�. We assume

the form

MAXIMUM DISTRIBUTIONS OF BRIDGES OF… PHYSICAL REVIEW E 78, 051102 �2008�

051102-9



mN
�N� = c0N0, N � 1. �43�

We have prepared a set of successive five results of the com-
puter simulation �mN1

�N1� ,mN2

�N2� ,mN3

�N3� ,mN4

�N4� ,mN5

�N5�� and fitted
them to the relation �43� to estimate the exponent 0 and the
coefficient c0 by a least-squares fitting. We have observed
that the estimated values of 0 and c0 change rather system-
atically as the values Nj, 1� j�5, increase. Figures 5 and 6
show the dependence of the estimated values of 0 and c0 on
N=N3. In these 1 /N plots �58� of the estimated values, we
made a linear fitting of the largest three plots as shown by the
lines in the figures and obtained the values 0=0.493 and
c0=1.42. They are consistent with Eq. �7�: 0=1 /2 and c0
=	2=1.414. . .. In Fig. 6 we can see that the plots in the
intermediate region 0.1�1 /N�0.2 give the values 1.25
�c0�1.3. They may correspond to the value 	1.67�1.29
found in the estimate �6� by Bonichon and Mosbah �46�,
which was claimed by Schehr et al. as the preasymptotic
behavior �32�. Figure 7 shows the log-log plot of mN

�N� versus
N, where the curve is obtained by fitting the function

mN
�N� = 	2N + c1N−1 with 1 =

1

6
�44�

to the data. The fitting parameter c1 is determined as c1
�0.253.

We have also studied the asymptotics of variance vN
�N� in

N→�. Figure 8 shows the log-log plot. By the least-squares
fitting, we have obtained

vN
�N� � 0.09N−0.23. �45�

The negative exponent implies vN
�N�→0 in N→�.

D. On inner paths

Using the numerical data of paths of N-noncolliding
Bessel bridges generated by the method mentioned in Sec.
IV B, we can examine the statistics of the maximum values
attained in the time interval �0, 1� of not only the outermost
paths, but also all inner paths. For example, the means mk

�N�

and the variances vk
�N� for all paths 1�k�N are given in

Table II for N=10.
Now we report our observation of the N dependence for

the maximum values of inner paths. Figures 9 and 10 show
the N dependence of the means and variances for the maxi-
mum values of the innermost path, H1

�N�. By the log-log plots,
we have obtained the following power-law behavior of the N
dependence:

m1
�N� � N−0.38, v1

�N� � N−1.17. �46�

Figure 11 shows the dependence of mk
�N� on k, which is the

index of paths counting from inner to outer. We can see that
all plotted curves in Fig. 11 have a common feature as a
function of k. This fact is clarified by Fig. 12, in which the
data collapse �5� is shown by plotting the quantity mk

�N� /mN
�N�

against k /N. The result implies that there is a universal func-
tion f�x� such that the following relation holds for suffi-
ciently large N,

TABLE II. Numerical values of mk
�10� and vk

�10� evaluated by
computer simulations.

k mk
�10� vk

�10�

1 0.547 0.00528

2 0.891 0.00778

3 1.240 0.00971

4 1.598 0.0126

5 1.958 0.0147

6 2.337 0.0170

7 2.735 0.0209

8 3.168 0.0262

9 3.659 0.0320

10 4.291 0.0553
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FIG. 5. 1 /N plot of the estimated values of 0.
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FIG. 6. 1 /N plot of the estimated values of c0.
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�N� vs N for N-noncolliding Bessel
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mk
�N�

mN
�N� � f� k

N
� . �47�

The scaling function f�x� has two regions separated by a
crossover point x*. For small x�x*, the scaling function f�x�
behaves as a linear function. On the other hand, for large x
�x*, f�x� does not behave as a simple linear function. We
have estimated the following by numerical fitting:

f�x� � �x �x � x*� ,

ax �x � x*� with a � 5.1.
� �48�

V. CONCLUDING REMARKS

In this paper we have reported the exact and the numerical
results on the maximum-value distributions of paths in the
N-noncolliding Bessel bridges. We have shown that the
present maximum-value problem for a version of vicious
walk model of statistical physics is related to random matrix
theory, the representation theory of symmetry, and number
theory. There are a lot of open problems. We will list some of
them here.

In expression �21� of the transition probability density pabs
h

of the absorbing BM in an interval �0,h�, a variable n�N
= �1,2 ,3 , . . . � was introduced to indicate modes in the Fou-
rier expansion. When we consider the N-path systems, a set
of N discrete variables n= �n1 ,n2 , . . . ,nN��NN is introduced.
Though the variables n are auxiliary, since the physical
quantities are given by the summations over n’s as shown in

�21�, �27�, �30�, and �36�, we have seen in the derivation of
Lemma 1 given in Appendix A that the discrete variables
n behave as duals of the continuous variables x
= �x1 ,x2 , . . . ,xN� and y= �y1 ,y2 , . . . ,yN�, which are physical
variables indicating the positions of particles. The correspon-
dence between the probability density of paths �14� given in
the form of that of eigenvalues of random matrices in class C
and the distribution function of the maximum value �27�
given in the form of the “partition function” of discrete vari-
ables implies some duality relation. The maximum- and
minimum-value problems of watermelons without wall re-
cently studied by Feierl �57� and by Schehr et al. �32� are
very interesting. Systematic study will be desired to clarify
the duality between the noncolliding path problems �18� and
their extreme-value problems not only for bridges �i.e., ex-
cursions, watermelon configurations� �44,45�, but also for
meanders �i.e., star configurations� �43�.

As shown in the Introduction, the distribution of the maxi-
mum value of the Bessel bridge H1

�1�=max0�t�1r�t� and that
of the position of Bessel bridge r�1 /2� at time t=1 /2 are
quite different from each other, because of large fluctuations
of the path. For example, the mean value of the maximum
�H1

�1��=	� /2�1.2533 is much bigger than �r�1 /2��=	2 /�
�0.7979. As shown by Fig. 8, however, the variance vN

�N�

will vanish in N→� as Eq. �45�. Then we expect

�HN
�N�� � �rN

�N��1/2�� in N → � .

It is known that
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FIG. 8. Log-log plot of vN
�N� vs N for N-noncolliding Bessel

bridges.
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�N� vs N for N-noncolliding Bessel

bridges.

0

2

4

6

8

1 0

0 1 0 2 0 3 0 4 0 5 0

N  =  1 0

N  =  2 0

N  =  3 0

N  =  4 0

N  =  5 0

m
k

(

N
)
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�rN
�N��t�� � 2	2Nt�1 − t�, 0 � t � 1 in N → �

�see, for example, Eq. �2.26� in �45�, in which we should put
a=0 and use the relation 	x=limN→��rN

�N��t�� /	2N�. Then
Schehr et al. concluded Eq. �7�. By taking the proper scaling
limit associated with N→�, the fluctuation of the outermost
path rN

�N��t�, 0� t�1, defines the Airy process �44,59–61�,
which obeys the Tracy-Widom distribution �62� at each time
0� t�1. The present study suggests to us to study the
maximum-value distribution of the Airy process.

We have used the exact expressions �27�, �30�, and �36�
for distributions of HN

�N� given in Sec. III to check the validity
of numerical calculations by our computer programs. As
mentioned in Remark 1, expression �27� seems to be a “par-
tition function” of some discrete statistical-mechanical
model with the Boltzmann weight exp�−�2�n�2 / �2h2��. Ex-
pression �30� reminds us of the bidirectional Wronskian so-
lutions of nonlinear equations. And as demonstrated below
Theorem 4, expression �36� is useful to reproduce the previ-
ous results reported in �12,13,29� for small N. Deeper under-
standing of these expressions in physics is desired. At the
present stage it is not obvious how to discuss the asymptotics

of these expressions in N→�. We hope that our determinan-
tal expressions �30� and �36� will be useful, since determi-
nantal formulas play important roles in random matrix theory
in analyzing the large-matrix limit �65�, when they are
equipped with proper mathematical tools—e.g., orthogonal
polynomials, Fredholm determinants, and so on �18,40�.

It will be a challenging open problem to analyze the
maximum-value distributions for the inner paths in the
present systems.

ACKNOWLEDGMENTS

One of the authors �M.K.� would like to thank Thomas
Feierl, Markus Fulmek, Michael Drmota, Christian Krat-
tenthaler, Hideki Tanemura, and Tomohiro Sasamoto for use-
ful discussions on the present problem. M.K. expresses his
gratitude for the hospitality of the Erwin Schrödinger Insti-
tute �ESI� in Vienna and acknowledges the ESI program
“Combinatories and Statistical Physics” as well as Michael
Drmota and Christian Krattenthaler. The authors thank
Grégory Schehr for sending their paper before publication.
M.K. is supported in part by a Grant-in-Aid for Scientific
Research �C� �No. 17540363� of Japan Society for the Pro-
motion of Science.

APPENDIX A: DERIVATION OF THE ASYMPTOTICS (25)
and (26)

By the multilinearity of the determinant,

q�N��1,y�x� = det
1�j,k�N

 1
	2�

�e−�yj − xk�2/2 − e−�yj + xk�2/2��
=

1

�2��N/2e−��x�2+�y�2�/2 det
1�j,k�N

�eyjxk − e−yjxk� .

Here

det
1�j,k�N

�eyjxk − e−yjxk� = 2N�
j=1

N

�xjyj� 

0�m1�m2�¯�mN

�
j=1

N
1

�2mj + 1�!
det

1�j,k�N
�yj

2mk� det
1�j,k�N

�xj
2mk� .

Now we change the variables in summation from mj to � j by � j =mN−j+1−N+ j, 1� j�N, and introduce the Schur function
�48,63,64�

s��x� =

det
1�j,k�N

�xj
�k+N−k�

det
1�j,k�N

�xj
N−k�

, �A1�

where the denominator is the Vandermonde determinant

det
1�j,k�N

�xj
N−k� = �

1�j,k�N

�xj − xk� . �A2�

The Schur function expansion is readily performed as �see �18,39��
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FIG. 12. Data collapse for the maximum values of inner par-
ticles for N-noncolliding Bessel bridges.
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q�N��1,y�x� = � 2

�
�N/2

e−��x�2+�y�2�/2�
j=1

N

�xjyj� �
1�j,k�N

��xj
2 − xk

2��yj
2 − yk

2�� 

�:�����N

�
j=1

N
1

�2�N−j+1 + 2j − 1�!
s���xj

2��s���yj
2�� ,

where ���� denote the number of parts of the partition � �that is, the number of nonzero � j, 1� j�N�. Since s��0�=0 unless
�=0��0, . . . ,0��N0

N, and s0�0�=1, the asymptotics �25� is obtained.
Next we consider

qh
�N��1,y�x� = �2

h
�N



n�NN

exp�−
�2

2h2 �n�2� det
1�j,k�N

sin��

h
njyj�sin��

h
njxk��

= �2

h
�N



n�NN

exp�−
�2

2h2 �n�2� 1

N! 

��SN

det
1�j,k�N

sin��

h
n��j�yj�sin��

h
n��j�xk��

=
1

N!
�2

h
�N



n�NN

exp�−
�2

2h2 �n�2� det
1�j,k�N

sin��

h
yjnk�� det

1�j,k�N
sin��

h
xjnk�� ,

where N= �1,2 , . . . � and SN is the set of all permutations of N items �1,2 , . . . ,N�. Here

det
1�j,k�N

sin��

h
xjnk�� = det

1�j,k�N



m=0

�
�− 1�m

�2m + 1�!��

h
xjnk�2m+1�

= 

m�N0

N
�
j=1

N � �− 1�mj

�2mj + 1�!
xjnj���

h
�2 


j=1

N
mj+N

det
1�j,k�N

��xjnk�2mj�

= �
j=1

N

�xjnj� 

m�N0

N
��

h
�2 


j=1

N
mj+N

�
j=1

N
�− 1�mj

�2mj + 1�!
1

N!
det

1�j,k�N
�xj

2mk� det
1�j,k�N

�nj
2mk� .

Therefore

qh
�N��1,y�x� =

1

N!
�2

h
�N

�
j=1

N

�xjyj� 

n�NN

exp�−
�2

2h2 �n�2��
j=1

N

nj
2

� 

0�m1�m2�¯�mN

��

h
�2 


j=1

N
mj+N

�
j=1

N
�− 1�mj

�2mj + 1�!
det

1�j,k�N
�xj

2mk� det
1�j,k�N

�nj
2mk�

� 

0��1��2�¯��N

��

h
�2 


j=1

N
�j+N

�
j=1

N
�− 1��j

�2� j + 1�!
det

1�j,k�N
�yj

2�k� det
1�j,k�N

�nj
2�k� .

Note that det1�j,k�N�yj
2�k�= �−1�N�N−1�/2det1�j,k�N�yj

2�N−k+1� and set �k=mN−k+1−N+k, k=�N−k+1−N+k. Then 2
 j=1
N mj +N

=2���+N2 with ����
 j=1
N � j, and we have

qh
�N��1,y�x� =

1

N!
�2

h
�N��

h
�2N2

�
j=1

N

�xjyj� �
1�j�k�N

��xj
2 − xk

2��yj
2 − yk

2�� � 

n�NN

exp�−
�2

2h2 �n�2��
j=1

N

nj
2

� 

�:�����N



:����N

��

h
�2����+���

�
j=1

N � �− 1��j+j

�2�N−j+1 + 2j − 1�!�2N−j+1 + 2j − 1�!�
� det

1�j,k�N
�nj

2��k+N−k�� det
1�j,k�N

�nj
2�k+N−k��s���xj

2��s��yj
2�� .

This gives �26�.
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APPENDIX B: PROOF OF PROPOSITION 2

From �27�, using �A2�,

P�HN
�N� � h� = cNh−N�2N+1� 1

N! 

n�NN

exp�−
�2

2h2 �n�2��
j=1

N

nj
2 det

1�j,k�N
�nj

2�k−1�� det
1��,m�N

�n�
2�m−1��

= cNh−N�2N+1� 1

N! 

n�NN

�
j=1

N �nj
2 exp�−

�2

2h2nj
2�� 


��SN

sgn��� 

��SN

sgn����
�=1

N

n�
2�����+����−2�

= cNh−N�2N+1� 1

N! 

��SN



��SN

sgn���sgn����
j=1

N �

nj=1

�

nj
2��j�+2��j�−2 exp�−

�2

2h2nj
2�� .

Then

P�HN
�N� � h� = cNh−N�2N+1� 1

N! 

n�NN

e−�2�n�2/�2h2� 

��SN



��SN

sgn���sgn����
j=1

N

nj
2��j�+2��j�−2

= cNh−N�2N+1� 1

N! 

n�NN

e−�2�n�2/�2h2� 

��SN



��SN

sgn���sgn����
k=1

N

n�−1�k�
2k+2���−1�k��−2,

where we have set k=��j�. Since the summation 
n�NN is taken, the above is equal to

cNh−N�2N+1� 1

N! 

n�NN

e−2��n�2/�2h2� 

��SN



��SN

sgn���sgn����
k=1

N

nk
2k+2���−1�k��−2

= cNh−N�2N+1� 1

N! 

n�NN

e−�2�n�2/�2h2� 

��SN



	�SN

sgn�	��
k=1

N

nk
2k+2	�k�−2 = cNh−N�2N+1� 


n�NN

e−�2�n�2/�2h2� 

	�SN

sgn�	��
j=1

N

nj
2j+2	�j�−2

= cNh−N�2N+1� 

n�NN

e−�2�n�2/�2h2� det
1�j,k�N

�nj
2j+2k−2� = cNh−N�2N+1� det

1�j,k�N



n=1

�

n2j+2k−2e−�2n2/�2h2�� ,

where 	=� ��−1 and the relation sgn���sgn���=sgn�	� was used. Then the first equality of �30� is proved. It is easy to confirm
the second equality.
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