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In previous work, we have established that the intrinsic viscosity ��� of an object is nearly proportional to
the average electrical polarizability tensor ��e�=tr��e� /3 of a conducting object having the same shape, or
equivalently, to the intrinsic conductivity ���= ��e� /V, which characterizes the conductivity of a dilute mixture
of randomly oriented conducting objects �V being the volume of the object�. This hydrodynamic-electrostatic
analogy is useful because �e can be determined accurately and efficiently by numerical path integration for
objects of arbitrary shape. Here, we show that the uncertainty in ��� can be reduced to a relatively small value
��1.5% relative uncertainty� by utilizing additional information from the full tensor �e, rather than just its
average. Specifically, we determine the exact constant of proportionality between ��� and ��� for triaxial
ellipsoids as a function of the ratios of the eigenvalues of �e and apply this relation to particles of general
shape. In addition to an improved estimation of ���, the ratios of the components of �e provide useful measures
of particle anisotropy. We also present an improved method for applying the technique to flexible particles,
which requires performing a conformational ensemble average. Conformational averages of �e generate sys-
tematic errors that can be avoided by performing the conformational average at an earlier stage in the
computation.
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I. INTRODUCTION

A common approximation in hydrodynamic theory is to
replace the Oseen tensor with its average over orientations,
converting it to a scalar proportional to 1 /r �1�. This has
interesting implications since 1 /r is the electrostatic Green’s
function. Specifically, boundary-value problems in hydrody-
namics map directly to simpler boundary-value problems in
electrostatics. We find, for example, that the distribution of
Stokes force over the surface of a rigid body is approxi-
mately proportional to the charge distribution over the sur-
face of a charged conductor having the same size and shape
as the original body �2�. Furthermore, the hydrodynamic ra-
dius and the intrinsic viscosity are analogs, respectively, of
the electrostatic capacity and the electrostatic polarizability
of a perfect conductor having the same size and shape
�2–11�.

For a few simple shapes, e.g., ellipsoids, exact solutions
to either the hydrodynamic or the electrostatic boundary-
value problems are available �12�. However, for complex
shapes, the traditional approach is finite-element numerical
methods. In this category, we include surface-or boundary-
element techniques �13–19�, which tile the surface with
small polygons, full volume-element methods �3,4�, and
computations based on point hydrodynamic sources
�“beads”� �20–28�, which represent the surface with a large
number of spherical beads. Such calculations require the nu-
merical inversion of an Ne�Ne �for electrostatics problems�
or of a 3Ne�3Ne �for hydrodynamics problems� matrix, for
Ne the number of finite elements. Hence computation times
scale as Ne

3. However, it has proven possible to obtain both
the electrostatic capacity and the electrostatic polarizability

tensor by a path-integration technique �2–10�. The path inte-
grals can be evaluated for bodies of arbitrary complexity and
are exact in the infinite sampling limit for both the capacity
and the polarizability tensor. Furthermore, when the tech-
nique is applied to any equivalent finite-element model, in-
tegration time is proportional only to Ne, meaning that the
technique is faster than the traditional approach for large Ne.

With the path integration providing highly accurate esti-
mates of these electrostatic properties, we can then apply the
hydrodynamic-electrostatic analogy to determine both the
hydrodynamic radius and the intrinsic viscosity. Because the
analogy is only approximate, determining the transport prop-
erties in this way induces uncertainty, currently at the level
of 1% and 5%, respectively, for the hydrodynamic radius and
the intrinsic viscosity �3,4,8–10�. The analysis involves the
assumption that the particle is rigid, so to treat particles with
conformational flexibility, we employ the Zimm rigid-body
approximation �29�, in which we average over the conforma-
tional ensemble. This paper has two main goals related to the
determination of the intrinsic viscosity. First, the ensemble
average required by the Zimm rigid-body approximation in-
volves certain subtleties, so below we explain the appropriate
procedure. Second, we describe a refinement to our former
procedure that decreases the uncertainty in the intrinsic vis-
cosity from 5% to apparently about 1.5% or less for many
bodies. The determination of the hydrodynamic radius,
which parallels the intrinsic viscosity calculation and which
has always been more accurate, is not being modified here.
Indeed the hydrodynamic-electrostatic analogy is exact for
the hydrodynamic radius of triaxial ellipsoids, and the refine-
ment reported here ensures the same for the intrinsic viscos-
ity of ellipsoids.
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First, we define several quantities essential to our devel-
opment. The electrostatic capacity, C, of a perfect conductor
is the proportionality constant between applied electric
charge and induced electrostatic potential, and has the units
of length. The electrostatic polarizability tensor, �e, is the
proportionality constant between applied external field and
induced dipole moment, and has units of volume. The intrin-
sic conductivity, ���, is the leading virial coefficient for the
conductivity of an inclusion of conducting particles in an
insulating medium, and obeys �3,4�

��� =
��e�

V
, �1�

where

��e� =
1

3 � �ii �2�

is the mean polarizability, and where V is the particle vol-
ume. Furthermore, ��� is a dimensionless, scale-invariant
shape functional. The hydrodynamic radius, Rh, is the pro-
portionality constant between the friction coefficient and the
solvent viscosity,

f = 6��Rh, �3a�

and has units of length. It is also directly connected to the
diffusivity,

D =
kT

f
=

kT

6��Rh
. �3b�

The intrinsic viscosity, ���, is the second virial coefficient
of the viscosity of a solution, and is also a dimensionless,
scale-invariant shape functional. �The “practical” intrinsic
viscosity, as used in most experimental work, is ���P
=V��� /m, m is the mass of the body.�

In Sec. II, we describe the technique for performing con-
formational ensemble averages of the polarizability. In Sec.
III, we review current approaches for inferring the intrinsic
viscosity from the polarizability. In Sec. IV, we present our
refined approach, and in Sec. V, we present tests of its accu-
racy. Section VI gives a summary and some conclusions.

II. ADAPTATIONS FOR ENSEMBLE AVERAGES
OF THE POLARIZABILITY

In a study applying our computational method to a worm-
like chain model �30�, we became aware of certain subtleties
involved in taking conformational ensemble averages of the
polarizability. It turns out that a simple arithmetic mean of
the polarizability over conformations gives incorrect results.
To explain the correct way to perform such averages, we find
it necessary to describe here the complete path-integration
technique in some detail. However, we include justification
only of those steps that have never been described in the
literature and refer the reader to the literature for additional
justifications �2–10�.

The body �polymer, nanoparticle, etc.� to be examined by
the path-integration algorithm is circumscribed by a sphere,

the so-called launch sphere. �See Fig. 2 of �8�.� Any sphere
that circumscribes the body is acceptable, although we
achieve better sampling statistics if we use smaller launch
spheres. Let R denote the radius of the launch sphere. We
employ a Cartesian coordinate system with the origin at the
center of this sphere. We select at random some point xi
= �xi1 ,xi2 ,xi3�, where the subscript “i” denotes that this is the
initiation point of a random walker. Three separate “charges”
are then assigned at random to this point depending on its
position on the sphere. The charge c1 is taken to be +1 with
probability 1

2 �1+
xi1

R �, otherwise, it is taken to be −1. Charges
c2 and c3 are determined in an equivalent manner from xi2
and xi3, respectively. A random walker is initiated from this
point on the sphere, and a representative trajectory is gener-
ated until the walker either makes first passage to the surface
of the body at the final point x f = �xf1 ,xf2 ,xf3� or until it “es-
capes to infinity” �a finite fraction of all random walkers
never make first passage to the surface, even after infinite
time�. We refer the reader to our previous publications for a
description of the methods we use to generate these trajecto-
ries �8–10�. This procedure is repeated a total of N times,
where N is taken as large as possible to minimize sampling
error. Let Kj

+, j=1,2 ,3, be the number of trajectories pos-
sessing charge cj = +1 that adsorb on the body, and let Kj

− be
the number of trajectories possessing charge cj =−1 that ad-
sorb. Furthermore, let

�Vj1
+ ,Vj2

+ ,Vj3
+ � = �

cj=+1
�xf1,xf2,xf3� �4a�

and

�Vj1
− ,Vj2

− ,Vj3
− � = �

cj=−1
�xf1,xf2,xf3� �4b�

be the vector sums of all the termination points of all walkers
for which cj = +1 or cj =−1, respectively. We also let

t =
K1

+ + K1
−

N
=

K2
+ + K2

−

N
=

K3
+ + K3

−

N
�5�

be the fraction of random walkers that adsorb �as opposed to
escaping to infinity�, and we let

uj =
Kj

+ − Kj
−

N
, �6a�

vij =
Vij

+ + Vij
−

N
, �6b�

wij =
Vij

+ − Vij
−

N
. �6c�

Then the capacity and polarizability tensor are given by

C = tR , �7a�

��e�ij = 12�R2�wij −
ujvij

t
	 , �7b�

Eqs. �6� and �7� are exact in the infinite-sampling limit.
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Consider now the problem of combining the results of
two or more independent integrations on the same body.
Since any trajectory is independent of any other, two integra-
tions, each sampling N trajectories, are equivalent to a single
integration sampling 2N trajectories. Of course, it is tempting
to combine two or more such integrations by taking a simple
arithmetic mean:

C = �t�R , �8�

��e�ij = 12�R2
wij −
ujvij

t
� , �9�

where the angle brackets represent an average over two or
more independent integrations. Equation �8� is correct for the
capacity, but it is not difficult to show that the correct com-
bining rule for the polarizability is

��e�ij = 12�R2��wij� −
�uj��vij�

�t�  �10�

rather than Eq. �9�.
Assume now that we are examining a body with confor-

mational flexibility. In this case, we generate m objects, each
one a representative of the conformational ensemble of the
particle. For rigid bodies, m=1, but for nonrigid bodies, we
want to take m as large as practical. As already stated, we
employ the “Zimm rigid-body approximation” in this case
�29�. In this approximation, we treat each of the m members
of the conformational ensemble as a rigid body, compute its
transport properties, and take an ensemble average over all m
bodies at the end. Furthermore, we take Eqs. �8� and �10� as
the proper ensemble average over conformations, rather than
Eq. �9�, with the added precaution of using the same launch
sphere for all elements of the ensemble and launching the
same number of trajectories for each element of the en-
semble. �To do otherwise would be tantamount to giving
different weights to different elements of the ensemble.�

The argument for using Eq. �10� rather than Eq. �9� is
straightforward for the problem of combining independent
runs on identical models. The ultimate justification for using
it with conformational averages as well is that only Eq. �10�
is valid in the limit that all conformations converge on any
given conformation, one example being the wormlike chain
in the rod limit.

The distinction between the two averages, Eqs. �9� and
�10�, becomes small in the limit of large N. In other words,
Eq. �9� engenders systematic sampling errors that can be
avoided either by using sufficiently large N or by using Eq.
�10� �31�. However, for any given ensemble average, we
must generate N trajectories for each of m different confor-
mations, and it is impossible, with current technology, to
employ N large enough that Eq. �9� becomes adequate. For
example, in most of our work, we take Nm on the order of
106 or 107. If we then take m=103, this leaves N in the range
of 103 or 104. We are reasonably confident that 106–107

samples of any one ensemble is adequate for accurate en-
semble averages, but this is only true if we use Eq. �10�
rather than Eq. �9�. In our work on wormlike chains, for

example, we have found that the two approaches can differ
by as much as about 10% near the rod limit �30�.

III. HYDRODYNAMIC-ELECTROSTATIC ANALOGY
AND THE ESTIMATE OF INTRINSIC VISCOSITY

The relation between the hydrodynamic radius, Rh, and
the electrostatic capacity, C, of particles of general shape was
first observed by Douglas, based on the Kirkwood-Riseman
theory of polymer hydrodynamics. �See Ref. �11� for a dis-
cussion.� Later, Hubbard and Douglas �2� made formal argu-
ments that Rh equals C exactly for arbitrary shaped objects,
not just slender bodies such as polymers. They noted that this
relation is exact for any triaxial ellipsoid, thereby recovering
the well-known Perrin formulas �32�. They also provided
much computational and experimental data that were consis-
tent with Rh=C to within uncertainties in computation or
measurement. Since that time, however, additional data have
accumulated that indicate that the relation is only approxi-
mate, although the discrepancy �usually 1% or less in cases
where precise comparisons can be made� is below experi-
mental measurement uncertainties. Therefore, we write

Rh = qhC , �11�

where qh, a functional of the particle shape, is always near
unity:

qh = 1.00 � 0.01. �12�

Douglas and Garboczi extended this argument by pointing
out a similar proportionality between the intrinsic viscosity,
���, and the intrinsic conductivity, ���, of arbitrarily shaped
objects �3�:

��� = q���� =
q���e�

V
. �13�

�This relation is a clear analog of the exact proportionality
between the virtual mass and the magnetic polarizability ten-
sor of a conductor of arbitrary shape �3�.� Equivalently, we
also have

���P =
q���e�

m
�14�

for the practical intrinsic viscosity. Douglas and Garboczi
fixed q� for d-dimensional spheres �d	2�, where it is ex-
actly

q� =
d + 2

2d
, �15�

although they realized that q� was not entirely independent
of shape. When d=3, Eq. �15� yields the classical Einstein-
Maxwell result of 5 /6=0.833…. Exact results for several
other bodies in three dimensions make it clear that this esti-
mate of q� is not exact �3�. For example, q�=4 /5 exactly for
infinitely long rods, infinitely long prolate ellipsoids of revo-
lution, and circular plates, and q�=3 /4 for a pair of spheres
�dumbbell� in the limit of infinite separation. �See also Eq.
�A1� �33�.� Clearly, the ratio ��� / ��� varies slowly with
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variation in particle shape. A survey �3� of a wide variety of
exact and finite-element estimates for many bodies places q�

in the interval,

q� = 0.79 � 0.04. �16�

These hydrodynamic-electrostatic analogies are extremely
useful since efficient numerical path integration methods are
available that compute both C and �e of arbitrarily shaped
objects �5–10�, thereby allowing estimates of Rh and ���
with prescribed uncertainties that are comparable to experi-
mental uncertainties.

In this paper, we obtain an improved estimate of the virial
ratio q�. This improvement is based on the assumption that
the complete polarizability tensor �e carries enough informa-
tion about the shape of the object to permit a more accurate
estimation of q�. The improved technique, explained in the
following section, is based on the simple idea of demanding
that the q� in Eq. �14� be exact for triaxial ellipsoids, and
then by assuming that the same q� can be applied to any
object having the same polarizability tensor.

IV. INTRINSIC VISCOSITY -INTRINSIC CONDUCTIVITY
PREFACTOR FOR ELLIPSOIDS

As a rank-2 symmetric tensor, the polarizability carries no
more rotationally invariant information about the body than
the values of its three eigenvalues: �1
�2
�3. Further-
more, since q� is scale-invariant, we only need to consider
two ratios of the three eigenvalues: �2 /�1 and �3 /�2, for
example, to characterize the average particle “anisotropy.” In
other words, the polarizability tensor provides a mapping to
a two-dimensional “shape space” that we expect should also
be useful for particle shape classification. We then need to
devise a mapping from this shape space to values of q�. To
calibrate the mapping, we will use the one class of shapes
which completely cover the shape space and for which the
�i, ���, and ��� can all be accurately calculated, the ellip-
soids �3,12�. The calibration as afforded by the ellipsoids is
presented in this section. Then, in Sec. V, we test our predic-
tions of q� based on this approach for a number of shapes for
which accurate independent results are available.

We let ai represent the three semiaxes of an arbitrary el-
lipsoid, and assume that they are labeled such that a1
a2

a3. From these, we can calculate each �i, the three diago-
nal components of the polarizability tensor �e �3,12� and we
assume that these are also ordered: �1
�2
�3. We can also
calculate ���, ���, and therefore q� �3,12�. However, the
computation is not trivial. To map from the eigenvalues �i to
q� would require solving a two-dimensional parametric
equation involving numerical evaluation of elliptic integrals.
Our approach, therefore, is to design a Padé approximant that
determines q� quickly and directly from the eigenvalues of
the polarizability.

As already mentioned, the shape space is two-
dimensional, and we have chosen the two coordinates

x1 = ln��2

�1
	 �17a�

and

x2 = ln��3

�2
	 �17b�

as independent variables that characterize the “polarizability
ellipsoid” �34�. To describe the physical ellipsoid, we use the
variables

z1 = ln�a2

a1
	 �18a�

and

z2 = ln�a3

a2
	 . �18b�

Obviously, the polarizability ellipsoid at the point
�x1 ,x2�= �0,0� is the sphere. Points along the axis �x1 ,0�,
where �1��2=�3, represent the oblate ellipsoids of revolu-
tion, and �x1→� ,0� represents the limit of a circular disk.
Points along the axis �0,x2�, where �1=�2��3 represent the
prolate ellipsoids of revolution, and the limit �0,x2→�� rep-
resent needlelike ellipsoids of revolution. The best way to
conceive of the polarizability ellipsoid at an arbitrary point
�x1 ,x2� is the following. Start at the point �0, 0� representing
a sphere. Distort the sphere into an oblate ellipsoid of revo-
lution by moving to the point �x1 ,0�. Then distort that ellip-
soid by stretching it in a direction orthogonal to its axis until
the point �x1 ,x2� is reached. We can think of x2 as represent-
ing the logarithm of the aspect ratio of the final ellipsoid, and
x1 as representing the logarithm of the aspect ratio of its
elliptical cross section. As we move in the direction x1→�,
the object becomes quasi-two-dimensional; as we move in
the direction x2→�, it becomes quasi-one-dimensional. Fig-
ure 1 summarizes the relationship between points in shape
space and the configuration of the polarizability ellipsoid.

oblate axissphere

globular platelike

needlelike bladelike

p
ro

la
te

a
x

is

x1

x2

FIG. 1. The polarizability ellipsoid of any object is mapped to a
point in a two-dimensional shape space described by the two coor-
dinates x1 and x2. The sphere maps to the origin, all oblate ellip-
soids of revolution map to the x1 axis, while all prolate ellipsoids of
revolution map to the x2 axis. If x1 and x2 are both small, the
ellipsoid is globular. If one is large while the other is small, the
ellipsoid is either platelike or needlelike. If both are large, the el-
lipsoid is bladelike, i.e., it has a large aspect ratio in three dimen-
sions, but its two-dimensional cross section itself has a large aspect
ratio.
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We have constructed the Padé approximant to take the
form

q��x1,x2� =
�A + cx2 + bx2

2 + 4x2
m

6A +
6cx2

�
+ Bx2

2 + 5x2
m

, �19�

where �, A, c, b, B, and m are the following functions of x1:

� = �
i=1

4

�i exp�− kix1� , �20a�

b = �
i=1

4

bi exp�− tix1� , �20b�

B = �
i=1

4

Bi exp�− qix1� , �20c�

c = �
i=1

4

ci exp�− rix1� , �20d�

A = �
i=1

4

Ai exp�− vix1� , �20e�

m = �
i=1

4

mi exp�− uix1� . �20f�

The coefficients were determined by simulated annealing and
are given in Table I. In the Appendix, we motivate this
choice of the approximant.

Figures 2 and 3 compare exact results for q� with those of
the Padé approximant. We can see that the approximant gives
three- to four-figure accuracy or better. Only data in the
range x1� �0,7�, x2� �0,12� were employed in constructing
the approximant. However, as can be seen in Fig. 2, q� is

effectively independent of x1 beyond x1=7 �the body is then
effectively two-dimensional� and to reflect this behavior the
approximant has been designed to become independent of x1
for x1 sufficiently large. We therefore believe that the approx-

TABLE I. Coefficients of the Padé approximant, Eq. �20�.

i=1 i=2 i=3 i=4

�i 4.8 0.66 −1.247 0.787

ki 0 1.04 2.012 2.315

bi 0.68 −7.399 1.048 0.136

ti 0 1.063 0.895 4.993

Bi 1.925 −8.611 1.652 −0.120

qi 0 1.344 2.029 1.075

ci 13.43 16.17 0.51 −5.86

ri 0 0.489 0.879 2.447

Ai 16.23 −15.92 14.83 −3.74

vi 0 0.462 1.989 4.60

mi 2.786 0.293 −0.11 0.012

ui 0 0.556 2.034 3.024
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FIG. 2. Virial ratio q� as a function of x1 at various values of x2.
Symbols show the exact, numerical results, while the solid curves
are calculated using the Padé approximant. Each curve is labeled
with the value of x2 at which it has been calculated.
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FIG. 3. Virial ratio q� as a function of x2 at various values of x1.
Symbols show the exact, numerical results, while the solid curves
are calculated using the Pad é approximant. Each curve is labeled
with the value of x1 at which it has been calculated.

IMPROVED PATH INTEGRATION METHOD FOR … PHYSICAL REVIEW E 78, 046712 �2008�

046712-5



imant can be trusted in regions of shape space x17. By
contrast, convergence to the x2→� limit is much slower.
Figure 4 shows how the Padé approximant behaves as a
function of 1 /x2 as x2 grows without bound. Even though the
approximant has been designed to reproduce the exact ellip-
soid result q��x1 ,��=4 /5, Fig. 4 demonstrates that conver-
gence to the limit is very slow and that interpolations be-
tween x2=12 and � might not be extremely accurate.
However, we doubt that any bodies with aspect ratios greater
than e12 are mechanically stable and therefore believe that
the Padé approximant is sufficient to describe any physically
realistic particle. Figure 5 is a contour plot that shows how
q��x1 ,x2� �calculated by the Padé approximant� varies
throughout shape space.

To infer ��� for an arbitrary shape, we first determine its
polarizability tensor as explained in Sec. II, and then deter-
mine its eigenvalues �35�. Using Eqs. �17a�, �17b�, �19�, and
�20�, we can estimate q� for the object. Finally, Eq. �13� or
Eq. �14� gives us the intrinsic viscosity. For particles with
conformational flexibility, we propose extending Eq. �10� to
read

��� =
4�R2

V
�

i
��q��x1,x2�wii� −

�ui��q��x1,x2�vii�
�t�  .

�21�

In the above, the angle brackets denote a conformational
average, and each q��x1,x2� represents the Padé approximant
evaluated for any one conformation.

V. COMPARISONS WITH OTHER CALCULATIONS

By construction, the approach described above for the es-
timation of ��� from �e is exact for ellipsoids, at least to
within the fitting uncertainty of the Padé approximant. To
test it for other bodies, we need accurate, independent deter-
minations of both ��� and ���. Table II displays such data
from a number of sources. The sphere and the disk are spe-
cial cases of ellipsoids; the exact, known results reported
here are taken from Ref. �3� Dumbbells, i.e., two disjoint
spheres regarded as a single body, are also amenable to exact
calculation �3,36,37�. Each dumbbell is characterized by the
quantity rp, the ratio of the sphere separation to the sphere
diameter, and results for several different dumbbells are
given in Table II �38�. Aragon and Hahn �AH� �18,39� have
computed both ��� and ��� by boundary elements for the five
Platonic solids and for several cylinders. Douglas and Gar-
boczi �DG� �3� have computed ��� and ��� by finite elements
for a number of different shapes �“sponges,” cylinders,
prisms, a “jack,” a pair of “dice,” and the square; see their
paper for precise specifications of these shapes�.

Our previous paper �8� focused on the relationship be-
tween ��� and ��� for many of the same shapes. We now
reconsider this relationship in the light of more recent data
and of our newer technique. For the same shapes, we have
performed path integrations of �e and calculated q� using the
Padé approximant given above. Our results appear in Figs. 6
and 7 and in Table II. Figure 6 gives ���pi as a function of
���pi for each of the shapes, with the subscript “pi” denoting

1/x2

q�
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0 1 2 3 7

FIG. 4. Virial ratio q� as a function of x2
−1 at various values of

x1. Symbols show the exact, numerical results, the solid and the
dashed curves show the Padé approximant at x2�12 and x212,
respectively. Each curve is labeled with the value of x1 at which it
has been calculated.
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FIG. 5. Contour plot for the variation of q��x1 ,x2� as a function
of x1 and x2. The global maximum and minimum occur at
q��0,0�=0.833. . . and q��0.047,4.689�=0.759, respectively.
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TABLE II. Comparison with other calculations. Each digit enclosed in parentheses in column 3 gives the
sampling uncertainty in the last displayed digit.

Shape ���id ���pi ���id / ���pi q�,id q�,Pade

Exact results

Sphere 3 2.997�2� 1.00 5 /6 0.833

Disk,a radius r 32r / 9�t �1.1310�6��r
t

1.00 4 /5 0.800

Dumbbell �1� 4.2072 4.207�2� 1.00 0.820 0.819

Dumbbell �1.0201� 4.2702 4.277�3� 1.00 0.819 0.819

Dumbbell �1.1276� �38� 4.6180 4.618�3� 1.00 0.796 0.816

Dumbbell �1.5431� 6.0912 6.088�4� 1.00 0.803 0.806

Dumbbell �3.7622� 19.176 19.17�2� 1.00 0.770 0.771

Dumbbell �6.1323� 43.856 43.85�3� 1.00 0.759 0.762

Dumbbell �10.0677� 109.603 109.64�7� 1.00 0.754 0.759

Dumbbell ��� rp
2 �1.005�2��rp

2 1.00 3 /4 0.800
�Eq. �A1��

Platonic solids computed by boundary elements �18�
Tetrahedron 5.064 5.029�1� 1.007 0.831 0.833

Cube 3.667 3.6437�6� 1.006 0.845 0.833

Octahedron 3.572 3.5509�2� 1.006 0.844 0.833

Dodecahedron 3.196 3.1779�3� 1.006 0.842 0.833

Icosahedron 3.144 3.1305�4� 1.004 0.838 0.833

Cylinders computed by boundary elements �39�
Cylinder �d /h=0.4� 4.632 4.631�4� 1.000 0.822 0.811

Cylinder �d /h=0.2� 8.087 8.091�9� 0.999 0.793 0.786

Cylinder �d /h=0.133. . .� 12.573 12.61�2� 0.997 0.779 0.773

Cylinder �d /h=0.1� 17.935 17.92�3� 1.001 0.771 0.767

Computed by finite elements �3�
Sponge, 15 /27 8.74 8.495�4� 1.03 0.819 0.833

Sponge, 21 /27 27.1 26.31�1� 1.03 0.812 0.833

Sponge, 23 /27 55.0 53.32�3� 1.03 0.813 0.833

Sponge, 25 /27 192 184.2�1� 1.04 0.812 0.833

Sponge, 33 /35 311 294.4�2� 1.06 0.820 0.833

Cylinder �d /h=0.5� 4.32 4.111�2� 1.05 0.799 0.819

Cylinder �d /h=1� 3.56 3.402�1� 1.05 0.815 0.833

Cylinder �d /h=2� 3.79 3.621�1� 1.05 0.813 0.830

Cylinder �d /h=4� 4.93 4.706�2� 1.05 0.797 0.820

Cube 3.72 3.6437�6� 1.02 0.820 0.833

Prism �2�1�, prolate 4.22 4.143�2� 1.02 0.808 0.824

Prism �3�1�, prolate 5.21 5.079�3� 1.03 0.793 0.811

Prism �4�1�, prolate 6.38 6.210�5� 1.03 0.781 0.800

Prism �5�1�, prolate 7.72 7.509�6� 1.03 0.772 0.792

Prism �10�1�, prolate 16.4 15.86�2� 1.03 0.750 0.770

Prism �1�2�, oblate 4.15 4.071�2� 1.02 0.810 0.828

Prism �1�3�, oblate 4.84 4.749�2� 1.02 0.802 0.822

Prism �1�4�, oblate 5.58 5.465�3� 1.02 0.800 0.818

Prism �1�5�, oblate 6.34 6.198�4� 1.02 0.792 0.815

Prism �1�10�, oblate 10.2 9.884�8� 1.03 0.776 0.808

Jack 4.50 4.258�2� 1.06 0.818 0.833

Dice 7.44 7.247�4� 1.03 0.785 0.807
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“path integration.” The range of ��� in this figure extends
from 2.5 to about 103. The solid line indicates q�=0.79, the
proportionality factor estimated in previous work �4,8�. Dot-
ted lines show the uncertainty interval found previously,
q�=0.79�0.04. Although the uncertainty estimates in ���
appear small on the logarithmic scale of Fig. 6, the devia-
tions are real and larger than optimal for precise character-
ization work. Column 2 of Table II lists ���id, or values of
��� extracted from the literature, with the subscript “id” sig-
nifying “independent determination.” Column 3 lists ���pi,
which provides an independent check of the boundary-or
finite-element results, and column 4 gives the ratio
���id / ���pi. Notice that ���id / ���pi is very near 1 in all cases
for which ��� and ��� can be determined exactly, which is a
verification of the path integration approach. Whenever

���id / ���pi is much different from 1, we are justified in being
suspicious of the independent calculation because the ���pi
result is exact up to sampling error. This ratio is within a
single percentage point of unity for the platonic solids as
calculated by AH and for the cylinders as calculated by Ara-
gon, but the deviations are several percent for the calcula-
tions of DG. This indicates a shortcoming of the finite-
element technique: Large numbers of elements are needed
for high accuracy, and convergence can be slow. �This short-
coming was appreciated by Douglas and Garboczi.� It also
indicates that of the two classes of studies, the AH boundary-
element computations seem to be more accurate.

In the interest of conserving space, we have not tabulated
���id here, but column 5 of Table II records independently
reported estimates of q�,id= ���id / ���id. Column 6 summa-
rizes q�,Pade values obtained for each of the shapes using the
Padé approximant. If our procedure for inferring q�,Pade is

TABLE II. �Continued.�

Shape ���id ���pi ���id / ���pi q�,id q�,Pade

Square,a side a
0.73�

a

t
�

�0.6931�6��a / t 1.05 0.77 0.800

a��� and ��� diverge for two-dimensional shapes such as the disk or the square, since they have zero volume.
For the purposes of this table, we assume that such shapes have infinitesimal thickness t, so that ��� and ���
both exist, both diverge like 1 / t, and their ratio tends to a well-defined finite limit.
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FIG. 6. Comparison between the path integration results for ���
and ��� as computed for various bodies. The solid line and two
dashed lines represent q�=0.79�0.04. Results for dumbbells ���,
platonic solids ���, cylinders ���, prisms ���, and various other
bodies ��� are shown. The shape corresponding to any given point
is also indicated whenever ���10. The diameter-to-height ratio is
shown for cylinders, the ratio of sphere separation to sphere diam-
eter is shown for dumbbells, the height and width are shown for
prisms. See Ref. �3� for the definition and size specification of
sponges.
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FIG. 7. Comparison between our approximations for the q� ratio
�q�,Pade� and those of independent determinations �q�,id�. All ellip-
soids �including the sphere and the disk� fall on the solid line
q�,Pade=q�,id. Exact results for dumbbells ��� �3�, boundary-
element results for the five platonic solids ��� �18�, boundary-
element results for cylinders ��� �39�, and finite-element results for
various bodies ��� are shown �3�. Points corresponding to two dif-
ferent independent computations on the cube and to the dumbbells
at separations of both 1.128 and � are indicated. The finite-element
data from Ref. �3� all cluster around the dashed line q�,Pade=q�,id

+0.020.
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accurate, and if the q�,id values can all be trusted, then we
should expect good agreement between columns 5 and 6. A
graphical comparison appears in Fig. 7. The solid line indi-
cates q�,Pade=q�,id, which as explained above, is exact for all
ellipsoids. The two degenerate ellipsoids, the sphere and the
disk, fall on the line at the indicated points. As anticipated
from the discussion above, the finite-element data lie system-
atically above the curve for ellipsoids, while the boundary-
element calculations lie slightly below. This figure also in-
cludes data for separated dumbbells and indicates that the
approach apparently becomes problematic in the �unphysi-
cal� case of particles that are not simply connected �38�. All
five platonic solids �18,19,40� and the cylinders �39� as cal-
culated by Aragon are also close to the ellipsoid line, and
with 1� ���id / ���pi�1.01, their q�,id values are probably all
trustworthy. Therefore, the technique described here for in-
ferring the intrinsic viscosity appears accurate for all ellip-
soids, for all dumbbells having separation-to-diameter ratios
below about 10, for cylinders with d /h in the range 0.1–0.4,
as well as all five platonic solids.

VI. SUMMARY AND CONCLUSIONS

A previously developed technique �8–10� for determining
the intrinsic viscosity of arbitrarily shaped bodies has been
modified in this paper in two separate ways. The technique
begins with a path integration to determine the polarizability
tensor of a perfect conductor having the same size and shape
as the body. The only source of uncertainty in this first step is
sampling error in the path integration. The second step, in-
ference of the intrinsic viscosity from the polarizability, gen-
erates greater uncertainty, and both modifications presented
here address the problem of minimizing this uncertainty. Ac-
companying this procedure for the intrinsic viscosity is a
parallel determination of the hydrodynamic radius which has
always been more accurate and which is not being modified
here.

The first modification concerns the correct way to infer
the intrinsic viscosity within the framework of the Zimm
rigid-body approximation �29�, which involves performing
averages over the conformational ensemble when the body is
flexible. The correct approach is given by Eq. �10� or Eq.
�21�. In other words, it is not the polarizability itself that
should be averaged over conformations, but intermediate
quantities from which first, the polarizability, and then sec-
ond, the intrinsic viscosity, are determined. We have already
observed in work on the wormlike chain that Eq. �10� is
more accurate than Eq. �9� �30�.

The second modification is intended to improve the un-
certainty in the estimate of the intrinsic viscosity of a single,
rigid conformation. The previous approach was based on Eq.
�16� for the ratio q�, which is universally true for all shapes
and does not reflect the shape dependence of q�. However,
we have conjectured that much of this shape dependence can
be obtained from the full polarizability tensor. We have de-
veloped the Padé approximant given in Eqs. �19� and �20�
that determines q� for an arbitrary ellipsoid from the eigen-
values of the polarizability tensor of the ellipsoid. The as-
sumption then is that any body that possesses the same po-

larizability tensor as some particular ellipsoid will also have
a q� value close to that of the ellipsoid. Therefore the ap-
proach is �apart from the fitting error in the Padé approxi-
mant� exact for ellipsoids. It also appears to work very well
for dumbbells if they are not too widely separated. Beyond
these two classifications of shapes, all additional compari-
sons must be made against finite-element results for ���,
which can be unreliable because of slow convergence. How-
ever, our approach lets us independently check the reliability
of the finite-element calculations by comparing predictions
for ���. Based on such a comparison, we are able to place
considerable confidence in the AH �18� calculation on the
platonic solids and on Aragon’s results �39� for cylinders,
and these agree to within 1.5% with the technique we have
developed. Therefore it appears that the intrinsic viscosity of
all five platonic solids and of cylinders with d /h in the inter-
val 0.1–0.4 can also be inferred accurately by this approach.

The DG finite-element calculations �3� on a number of
different shapes do not give such good agreement for ���,
and probably reflect a larger error. �This point is appreciated
and discussed by Douglas and Garboczi �3�.� They also do
not agree as well with our predictions for q�, and, in fact,
deviate systematically by about −2%. If we apply a ca. +2%
correction to the DG data, then they agree very well with our
results, and the uncertainty in q� as predicted by our ap-
proach falls to about 1.5%. The same correction must be
applied to obtain agreement between the DG and the AH
results for the cube. In summary, if it proves that the DG data
are indeed subject to the ca. −2% systematic error, then our
approach gives 1.5% or less uncertainty in the determination
of ���, at least for all shapes considered. If the DG data
prove to be more accurate, then the uncertainty of this ap-
proach could be as large as about 2% to 3%. Either way, this
is an improvement over the 5% uncertainty that has existed
up until this point. Furthermore, we have obtained this im-
proved level of accuracy for all available exact or accurate
numerical computations. We obviously have no guarantee
that other shapes will give this same level of uncertainty, but
it is significant that it affords an improvement in every case
for which comparisons are possible.

Our improved method of estimating the intrinsic viscosity,
when combined with our estimate of the hydrodynamic ra-
dius, is expected to be a powerful tool in the characterization
of nanoparticles and biological macromolecules. The en-
hanced accuracy should allow more precise estimates of the
structure of these particles based on transport property mea-
surements, and we look forward to developing our method
for applications of this kind.
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APPENDIX: MOTIVATION FOR THE FORM OF EQ. (19)

Note that the Padé approximant depends on x1 explicitly
through ex1, but that it depends directly on x2. It is well-
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known that for quasi-one-dimensional bodies, both electro-
static and hydrodynamic properties depend on the logarithm
of the aspect ratio, while for quasi-two-dimensional bodies,
they depend on the aspect ratio itself. Therefore terms in ex1

and in x2 were used under the assumption that such forms
would permit the approximant to more faithfully represent
the function as the respective limits are approached. We have
also constructed it to reproduce the following known limits
�3�:

q��0,0� =
5

6
, �A1�

q��x1,�� =
4

5
, �A2�

q���,0� =
4

5
. �A3�

By direct observation of the computed results, it is apparent
that

� �q�

�x2
�

x2=0
= 0 �A4�

and this condition is also incorporated into our approximant.
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