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A lattice Boltzmann model is developed to simulate finite-rate catalytic surface chemistry. Diffusive wall
boundary conditions are established to account for catalytic reactions in multicomponent mixtures. Implemen-
tation of wall boundary conditions with chemical reactions is based on a general second-order accurate inter-
polation scheme. Results of lattice Boltzmann simulations for a four-component mixture with a global catalytic
methane oxidation reaction in a straight channel are in excellent agreement with a finite volume Navier-Stokes
solver in terms of both the flow field and species concentrations.
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I. INTRODUCTION

Catalytic reactions are important in many industrial appli-
cations ranging from power generation and microreactors to
pollutant abatement and chemical synthesis. In all these ap-
plications, reactions occur within a thin layer of porous me-
dium wherein the catalyst is dispersed. The catalytic effi-
ciency depends not only on the physical properties and
loading of the catalyst, but also on the geometrical charac-
teristics of the porous medium such as thickness, porosity,
and tortuosity. The development of computational tools able
to simulate flows at various scales with complex boundaries
is necessary in order to understand the aforementioned het-
erogeneous reaction phenomena and subsequently to opti-
mize the underlying processes.

The lattice Boltzmann �LB� method is an efficient simu-
lation tool for flows in complex boundaries that, due to its
kinetic origins, brings more physical insight in microflow
simulations �1�. Therefore, LB is a good candidate for the
simulation of flows in porous media with chemical reactions
�2–4�. The application of LB to simulate catalytic surface
reactions has also been reported in the literature �5–8�. How-
ever, most of the developed models applied the LB equations
only to the bulk flow while the species transport was simu-
lated separately, not accounting for the kinetics of each com-
ponent. Though this kind of approach has been applied to
different problems, it is strictly valid only if all but one spe-
cies are tracers and it cannot capture some important meso-
scopic phenomena as, for example, the dependence of the
slip coefficient on the species concentration. Moreover,
implementation of the diffusive wall boundary condition,
which contrary to the bounce back �no-slip boundary condi-
tion� is more suited to the simulation of microchannels �1�, is
still missing in the modeling of surface reactions.

In Ref. �9� a multicomponent LB model was introduced
for the simulation of realistic isothermal mixtures. Therein,

the distribution function of each species relaxes to equilib-
rium via a two-step path. The associated two relaxation times
are related to an effective viscosity of each component and to
the mixture-averaged diffusion coefficient �as summarized in
Sec. II�. The model satisfies the indifferentiability principle,
i.e., when all the particles are mechanically equivalent the
kinetic equations reduce to the single component case. In the
macroscopic limit, the model recovers the Navier-Stokes and
the Stefan-Maxwell diffusion equations �within the mixture-
average diffusion approach�, i.e., it can be employed as a
standard macroscopic fluid solver. Moreover, the definition
of an effective viscosity for each component as relaxation
parameter and the use of proper diffusive wall boundary con-
ditions enables the model to deal with microflows, with the
correct prediction of the slip coefficient dependence on the
species concentrations �as shown in �9��.

In the present paper, the aforementioned multicomponent
nonreacting model is extended to simulate catalytic surface
reactions. The diffusive boundary conditions �10� are gener-
alized to account for chemical reactions. An efficient second-
order-accurate discretization scheme for the streaming step
of populations with different molecular masses is introduced.
In order to have a benchmark of the model with existing
numerical tools, the model is applied to the simulation of
catalytic reactions without accounting for intraphase �po-
rous� diffusion. This approach is valid for thin catalyst coat-
ings �11�. Results are compared with a finite volume Navier-
Stokes solver already successfully applied on such problems
�12�.

The paper is organized as follows. Section II summarizes
the theory of the multicomponent model. The catalytic model
and its numerical implementation are reported in Sec. III.
Finally, Sec. IV illustrates an application to catalytic chan-
nels and the good agreement of the predicted velocity and
concentration profiles with the corresponding predictions of
a finite volume reacting Navier-Stokes code.

II. MULTICOMPONENT MODEL

Some of the basic characteristics of the multicomponent
LB model developed in Ref. �9� are reviewed in this section
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as they are necessary for the forthcoming development of the
catalytic reaction model. Under the assumption of fast-slow
decomposition of motions near the quasiequilibrium �QE�
manifold �13,14� �see also Fig. 1�, the kinetic equation for
species j in a mixture of M components is written as

�t f ji + cji���f ji = −
1

�1j
�f ji − f

ji
*� −

1

�2j
�f

ji
* − f ji

eq� + Fji,

j = 1, . . . ,M, i = 0, . . . ,N , �1�

where N is the number of the discrete lattice velocities
cji�, �= �x ,y� is the spatial direction, �1j and �2j are the re-
laxation times of each species j from the initial state f to the
QE f* and from f* to equilibrium feq, respectively; Fji is a
forcing term acting on species j. The forcing term is required
in order to maintain the momentum balance when the
mixture-average approximation for diffusion coefficients is
employed �see Ref. �9� for details�. In Eq. �1� and henceforth,
Einstein’s summation convention is applied only to the spa-
tial direction �.

For the two-dimensional nine-velocity LB model �D2Q9�
considered herein, the discrete velocity set for each compo-
nent j is

cji =�
�0,0� , i = 0,

cj�cos	��i − 1�
2


,sin	��i − 1�
2


� , i = 1 – 4,

cj
�2�cos	��2i − 9�

4

,sin	��2i − 9�

4

� , i = 5 – 8,


�2�

where cj =�1 /mj is the magnitude of the lattice vector in LB
units �see Sec. III for a detailed explanation on the unit scal-
ing�, and mj is the molecular mass of component j.

The fast-slow decomposition implies, by construction, the
inequality �1j ��2j that must be respected in order to ensure
the H theorem �9,13,15–17�, i.e., the entropy S of the system
is always growing thus ensuring thermodynamic consistency.

The equilibrium distribution function feq is obtained by
maximizing the entropy function under the constraints of
conserved density � j of component j, and total momentum J
of the mixture �9,15,16,18,19�

f ji
eq�� j,U� = � jWi �

�=x,y
	2cj − �cj

2 + 3U�
2

cj



�	2U� + �cj
2 + 3U�

2

cj − U�


cji�/cj

, �3�

where U�=J� /� is the velocity of the mixture in the � direc-
tion, �=� j

M� j is the mixture density, and

Wi = �
4
9 , i = 0,
1
9 , i = 1 – 4,
1
36 , i = 5 – 8.


 �4�

Note that the ratio cji� /cj assumes always the values
�−1,0 ,1� as in the single component case.

The quasiequilibrium distribution functions f* are ob-
tained by assuming that in the multicomponent mixture some
particular moments approach equilibrium slower than the
other moments. The relevant moments that characterize the
momentum transport of one component in a mixture due to
viscosity and diffusion are the pressure tensor Pj�� and the
momentum difference J−J j, respectively. Maximizing the
entropy �as previously done to recover Eq. �3�� with the fur-
ther condition that either Pj�� or J−J j are conserved, two
different QE distribution functions are established. Using al-
ternatively one of the two f*, it is possible to recover two
different complementary models, which will be further de-
noted as model I and model II.

As shown in Ref. �9�, the expression of the QE of model
I �obtained by considering P�� as slow variable� is somewhat
complicated, and, from an implementation point of view, a
good approximation of such QE is the Grad’s distribution
function �20�,

f
ji
*�� j,J�,Pj��� = Wi	� j +

J�cji�

cjs
2

+
1

2cjs
4 �Pj�� − � jcjs

2 	����cji�cji� − cjs
2 	���
 ,

�5�

where cjs=cj /�3.
Finally the QE for model II is the same as the equilibrium

distribution equation �3� where the velocity of each compo-
nent U j =J j /� j is used instead of the total mixture velocity,

f
ji
*�� j,U j� = f ji

eq�� j,U j� . �6�

For both models, the Chapman-Enskog expansion allows
for identifying the 2M relaxation times,

�1j = �diff,j and �2j = �visc,j model I,

FIG. 1. �Color online� Schematic of the decomposition of mo-
tions near the quasiequilibrium manifold obtained by minimizing
the H function under some linear constraints Q. �1, relaxation time
from the initial state f to the quasiequilibrium f*. �2, relaxation time
from f* to the equilibrium feq. The standard BGK model is recov-
ered when �1=�2. The closed curves define isolevels of H=−kBS.
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�1j = �visc,j and �2j = �diff,j model II, �7�

where �visc,j and �diff,j are two time constants that depend on
an effective viscosity of component j in the mixture, 
eff,j,
and on the mixture-average diffusion coefficient, Djm, re-
spectively,

�visc,j =

eff,j

P
, �diff,j =

� j

PXj
Djm, �8�

where P is the pressure and Xj is the mole fraction of com-
ponent j.

The effective viscosity 
eff,j is a function of the actual
viscosity 
 j of component j and of the concentration of all
components in the mixture. As already discussed in �9�, we
use the formula proposed by Wilke �21� and then modified
by Bird �22�,


 = �
j

M

Xj
eff,j, 
eff,j =

 j

�k
MXk� jk

,

� jk =
1
�8

	1 +
mj

mk

−1/2�1 + 	
 j


k

1/2	mk

mj

1/4�2

, �9�

where 
 is the viscosity of the mixture. The mixture-average
diffusion coefficient Djm is defined as

Djm =
1 − Y j

�k�j
M Xk/D jk

, �10�

with Y j is the mass fraction of component j and D jk is the
binary diffusion coefficient �23�.

The physical meaning of the proposed model becomes
clear when the Schmidt number of component j is defined as

Scj =

eff,j

�Djm
. �11�

It is possible to express Scj in terms of relaxation times

Scj =

eff,j

�Djm

=
�visc,j

�diff,j

Y j

Xj

= �
�2j

�1j

Y j

Xj
�

Y j

Xj
= Sc

j
* if �visc,j 
 �diff,j �model I� ,

�1j

�2j

Y j

Xj
�

Y j

Xj
= Sc

j
* if �visc,j � �diff,j �model II� ,


�12�

where Sc
j
* is a reference Schmidt number. This implies that

in model I �where the component Pj�� is considered as the
slow variable� Scj �Sc

j
* and the momentum transport is

dominated by viscosity. On the other hand, in model II the
slow variable is J−J j and Scj �Sc

j
*. With this kind of con-

struction it is possible to simulate mixtures at arbitrary
Schmidt numbers and, at the same time, the thermodynamic
consistency is preserved.

It is clarified that for both models the indifferentiability
principle is satisfied when all the molecular weights mj are
the same, and �1j =�2j =�, where � is a constant for j
=1, . . . ,M in Eq. �1�, see also Fig. 1.

III. CATALYTIC SURFACE REACTION MODEL
AND IMPLEMENTATION

In this section details of the implementation of a generic
multicomponent LB model with surface reactions are given.
The streaming of populations having different molecular
masses is initially discussed and a second-order accurate
scheme is suggested, followed by the implementation of re-
active wall boundary conditions. Finally, the scaling between
LB and physical units is clarified.

A. Interpolation scheme

Compared to standard single-component LB schemes, the
streaming step in a multicomponent LB model is more com-
plicated due to the different masses of components that in
turn imply different lattice speeds �9,15,16,24�. As shown in
Fig. 2 �dashed arrows� the populations corresponding to the
lightest component are streamed on-lattice as in the one-
component case �c1=1�. On the other hand, heavier compo-
nents with a slower lattice speed cannot stream from one
lattice node to another �off-lattice streaming� and an interpo-
lation step is needed. The choice of a proper interpolation
scheme is important since the scheme can introduce numeri-
cal diffusion, irrespective of the numerical order �25�. More-
over, in order to correctly predict the surface reaction rates,
which depend on the density gradients at the catalytic wall, it
is important that the numerical scheme retains its accuracy
near the solid boundaries. Previous implementations
�9,15,16� adopted various interpolation schemes, such as the
upwind Lagrangian interpolation �24� or the volumetric in-
terpolation �26�. Both schemes have some advantages and
drawbacks: The former is computationally efficient, but it
does not allow for an easy wall boundary implementation,
while the latter is based on some physical considerations
�mass and momentum conservation in a volume�, but it is
computational expensive. For these reasons a different
scheme is herein developed.

After the �off-lattice� streaming step, the populations on
the lattice are unknown �Fig. 2�. By expressing the unknown
population �f ij�0

on at a lattice node P0
on as a function of the

population �f ij�−1
off at the off-lattice upwind position P−1

off

through a Taylor series expansion, the following is obtained:

FIG. 2. Streaming step. The populations corresponding to the
lightest component are streamed on-lattice �dashed line�. Popula-
tions corresponding to larger molecular masses are streamed off-
lattice �continuous line�, the corresponding on-lattice values are cal-
culated by interpolating the off-lattice neighbors.
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�f ij�0
on = �f ij�−1

off + �f ij� �−1
off�1 − pj� + �f ij� �−1

off�1 − pj�2

2
+ O�1 − pj�3,

�13�

where

pj = �cj�dt �14�

is the distance that a population travels at one time step with
speed cj; �f ij� �−1

off and �f ij� �−1
off are the first and second spatial

derivatives at the off-lattice position P−1
off, respectively, which

can be evaluated with the second-order finite difference for-
mulas

�f ij� �−1
off =

�f ij�0
off − �f ij�−2

off

2
,

�f ij� �−1
off = �f ij�0

off + �f ij�−2
off − 2�f ij�−1

off, �15�

far from the boundaries or

�f ij� �−1
off =

4�f ij�0
off − �f ij�+1

off − 3�f ij�−1
off

2
,

�f ij� �−1
off = − 2�f ij�0

off + �f ij�+1
off + �f ij�−1

off, �16�

near the boundaries where the population f−2
off does not exist.

By substituting Eqs. �15� �respectively, Eqs. �16�� in Eq. �13�
a generic off-lattice streaming step is obtained. This interpo-
lation scheme is equivalent to a second-order Lax-Wendroff
discretization scheme of the convective term in Eq. �1�, but
compared to schemes proposed in the past that used a Taylor
expansion around P0

off �see the example reported in �25�� the

present scheme is obtained by expanding around P−1
off, and

thus includes more upwind information. It is clear that when
p=1, the standard on-lattice LB streaming procedure is re-
covered.

The numerical accuracy of the present interpolation
scheme was tested by comparing it with the two aforemen-
tioned schemes �the second-order Lagrangian upwind �24�
and the volumetric interpolation scheme �26��, with the flux
limiter scheme proposed by Sofonea et al. �27,28� and also
with the corresponding analytical solution for the binary dif-
fusion of species with different mass ratios as described in
�16� �see Fig. 3�. The four interpolation schemes lead to the
correct result for well-resolved grids. As reported in �27�, all
schemes become less accurate when the diffusion coefficient
is small and/or when the grid is coarse. Moreover, spurious
density oscillations can be induced by second-order interpo-
lation schemes �upwind, volumetric, and the present
scheme�. All of the above-mentioned schemes can be imple-
mented and applied to the proposed multicomponent kinetic
equations. However, the interpolation herein proposed has
several advantages: It is second-order accurate not only in
the interior, but also close to the boundaries allowing for a
correct evaluation of the mass fluxes at the wall �necessary to
further evaluate the catalytic reaction rates�; it is more local
than other schemes; it is easy to implement at the bound-
aries; and it involves only three lattice nodes while other
schemes use up to nine. Consequently, the streaming step of
the present implementation is computationally practical: In
the diffusion test the scheme performed about 2 times as fast
as the volumetric scheme and about 1.5 times faster than the
flux limiters scheme.

(b)(a)

FIG. 3. Comparison among four different discretization schemes �symbols� after 500 time steps and the corresponding analytical solution
�solid lines� for the diffusion of two components �A ,B� of different molecular weights �mass ratio 20�. Initial composition: 1%A–99%B at
x�0, 99%A–1%B at x�0. Triangles, present work; circles, flux limiters �27,28�; squares, volumetric scheme �26�; diamonds, second-order
upwind �24�. Panel �a� diffusion coefficient D=3�10−2 �in scaled LB units, see Sec. III C�, panel �b� D=10−3.

ARCIDIACONO, MANTZARAS, AND KARLIN PHYSICAL REVIEW E 78, 046711 �2008�

046711-4



B. Wall boundary conditions for surface reactions

Diffusive boundary conditions �10� are herein adapted in
order to include surface chemistry. Imposing mass conserva-
tion for each component at the wall, the unknown incoming
mass fluxes to the computational domain, � j

in, must balance

the outgoing fluxes, � j
out, plus the reaction rate terms Ṡj that

depends on the local species concentration Y j,

� j
in − � j

out = Ṡj . �17�

Rewriting the fluxes in Eqs. �17� in terms of populations,
we have

�
i,f jicji�n�
0

�f jicji�n�� − �
i,f jicji�n��0

�f jicji�n�� = Ṡj , �18�

where n� is the component in the � direction of the inward
unit vector normal to the wall, and f jicji� is the mass flux of
component j transported by the velocity i in the � direction.
In order to evaluate the incoming populations, two more
equations are required for each component. Considering that
the populations have sufficient time to equilibrate with the
wall temperature, the resulting velocity distributions are con-
sidered to be Maxwellian,

f ji

f ji
eq�� = 1,Uw�

= �w, �19�

where f ji
eq��=1,Uw� are the equilibrium distribution func-

tions evaluated at a constant unit density and wall velocity
Uw, and �w is the density at the wall. The evaluation of
f ji

eq��=1,Uw� at a reference unit density is necessary, con-
trary to the single component case where the unknown wall
density is not required to evaluate the incoming populations,

since the production term Ṡj is a function of the concentra-
tions at the wall. Solving the systems of Eqs. �17� and �19�,
we have

f ji = f ji
eq�� = 1,Uw�

�i,f jicji�n��0�f jicji�n�� + Ṡj

�i,f ji
eqcji�n�
0�f ji

eq�� = 1,Uw�cji�n��
.

�20�

Equation �20� provides a generic expression of diffusive re-

acting wall boundary conditions. Since Ṡj depends on the
local species concentration that is initially unknown, an it-
erative procedure is required at each time step to evaluate it,
as described below.

The practical implementation of the wall boundary condi-
tion requires particular attention. As already reported in �29�,
the actual wall position is located at y=0.5: The incoming
flux � j

in should be considered as generated in external
“ghost” nodes �see Fig. 4�; this flux reaches the wall at t
=dt /2 �i.e., wall position at y=0.5� where it thermalizes with
the outgoing flux � j

out. Finally, at time t=dt, � j
in reaches the

nodes at y=1. Since in the actual multicomponent case the
lattice velocities are not the same for each component, some
additional effort is required in order to ensure second-order
accuracy at the wall boundary. As stated before, the outgoing

flux � j
out is needed at the wall node y=0.5 at time dt=0.5.

The outgoing populations �f ij�0.5
out are extrapolated to the wall

by using Eqs. �13�,

�f ij�0.5
out = �f ij�1

off + �f ij� �1
off	0.5 −

pj

2

 + �f ij� �1

off1

2
	0.5 −

pj

2

2

+ O	0.5 −
pj

2

3

, �21�

where �f ij� �1
off and �f ij� �1

off are evaluated from Eqs. �16�. Equa-
tions �20� can be subsequently used to evaluate the unknown
thermalized populations at the wall �f ij�0.5

in . By using Eqs.
�13�, �f ij�0.5

in can be extrapolated to the “ghost” nodes,

�f ij�0.5
in = �f ij�0

off + �f ij� �0
off	0.5 −

pj

2

 + �f ij� �0

off1

2
	0.5 −

pj

2

2

+ O	0.5 −
pj

2

3

, �22�

that must be solved for �f ij�0
off. Finally, Eqs. �13� and �16� can

be used again to stream �f ij�0
off to the nodes at y=1.

Another implementation difficulty appears in Eqs. �18�,
which depend on the reaction terms Ṡj that are in turn a
function of the local concentrations at the wall �unknown a
priori�. The problem is solved by assuming initially that the

concentration at the wall is the same as that at node y=1; Ṡj
are then evaluated, and Eqs. �18� are applied to evaluate the
known populations at the wall. Finally, Eqs. �19� are used to
compute the resulting density �concentration� at wall. The
procedure is then iterated until the relative difference be-
tween the assumed density at the wall and the one calculated
with Eqs. �19� is less than 10−6. Note that the iterative algo-
rithm to solve the implicit dependence on the density at the
wall is not a numerical artifact but it rather reflects the phys-
ics of the reaction in a infinitely thin layer of catalyst,
wherein there is a direct coupling of reaction rates and spe-
cies populations �as manifested by Eq. �17��.

C. Dimensions

Chemical reactions and transport properties are managed
with the CHEMKIN package �23,30�. The integration of
CHEMKIN libraries into the LB code requires a proper scaling
of the problem variables in LB units for the correct evalua-
tion of mixture properties and reaction rates. Once the char-

FIG. 4. Schematic of wall boundary condition: The incoming
flux � j

in is equilibrating with the outgoing � j
out at y=0.5.
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acteristic length of the domain L and the lattice resolution
LLB have been chosen, the length scale is set to

L* =
L

LLB
, �23�

which is the physical length in lattice units. The velocity
scale v* is defined such that once the velocities are scaled
into LB units, the lattice velocity of the lightest component
of mass m1 is c1=1 �implying that for all the other lattice
velocities cj �1�,

v* =�3RT0

m1
. �24�

It is noted that the velocity scale v* is not equal to the speed
of sound, but depends on the employed numerical scheme:
For the current D2Q9 implementation, a factor of �3 is re-
quired in Eq. �24� in order to have a correct reference veloc-
ity and to recover the correct Kn number �1,9�. The time
scale is immediately deduced as

t* =
L*

v*
. �25�

Finally, the density scale �* is chosen such that the LB den-
sity is numerically equal to physical SI units, i.e., �*
=1�kg m−3�. All these reference values are used to reduce
CHEMKIN library outputs into LB units and vice versa.

IV. APPLICATION

The model is tested on the simulation of a planar catalytic
channel having 5 mm height and 50 mm length �Fig. 5�. For
the sake of simplicity, a one-step reaction valid for fuel-lean
combustion is herein considered to simulate the conversion
of fuel-lean methane on a catalytic platinum surface �12�:

CH4 + 2O2 → 2H2O + CO2, k = A exp�− Ea/RTw� ,

�26�

where k is the reaction rate constant, A=1.27�105 cm /s,
and Ea=84 kJ /mol is the apparent activation energy. The

reaction rate Ṡ of this global step is, under lean conditions,

(b)(a)

FIG. 6. Comparison, in a cross section at the middle of the channel, between the LB code �500�50 grid nodes� and a two-dimensional
steady finite volume code. Panel �a�, velocity profiles. Panel �b�, concentration profiles. Continuous lines CFD, symbols LB predictions.

FIG. 5. �Color online� Computational domain. Velocity vectors and CH4 isomole-fraction profiles.
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only a function of methane concentration with a first-order

dependence, Ṡ=k�CH4�. The calculations are performed at
constant temperature of 1200 K and atmospheric pressure.
Equation �20� is also used to evaluate the unknown incoming

particle flux at the inlet, by setting the source term Ṡj equal to
the incoming mass flux of each component j. This type of
inlet boundary condition ensures that the incoming mass flux
of each component is constant, i.e., the concentration at the
inlet is fixed. The resulting imposed inlet mole fractions,
velocity and pressure are XO2

=90%, XCH4
=10%, U

=4.6 m /s, and P=1.08 bar, respectively. At the outlet, all the
populations �known and unknown� are replaced with the
equilibrium distributions calculated in accordance to the ve-
locity and density at the previous node. At time t=0, the
molar concentrations inside the channel are set equal to the
ones at the inlet, and the concentration of the product species
�H2O and CO2� is initialized to 10−14. The grid resolution is
set to 500�50 nodes. Results are compared with a steady
finite volume code �31� that has a well-resolved flow �400
�120 grid points�.

In Figs. 6�a� and 6�b� the velocity and concentration pro-
files are provided for both codes at a cross section in the
middle of the channel �x=25 mm�. Both the axial and the
transverse velocity components are well captured, despite the
fact that the latter is two orders of magnitude smaller than
the former. The concentration profiles are also well pre-
dicted, clearly showing that both the diffusion equations and
the reaction rates are correctly reproduced. It is emphasized
that the wall concentrations �y=0 and 5 mm� of the limiting
reactant CH4 are directly linked to the catalytic reactivity
�12�, and these quantities are properly captured by the LB
model.

As a final accuracy test, the element conservation is also
checked. The flux of the element A along a cross section of
the channel is

MA = �
j

kAj�
0

Ly

u�y��Y j
mA

mj
dy , �27�

where mA is the molecular mass of element A and kAj is the
number of elements A in species j, and Ly is the channel
height �5 mm in this application�. As an example, the mass
flux of the H element is

MH = 4�
0

Ly

u�y��YCH4

mH

mCH4

dy + 2�
0

Ly

u�y��YH2O
mH

mH2O
dy .

�28�

The element flux must be conserved in each cross section of
the channel. Figure 7 provides axial profiles of the relative
differences of the element fluxes with respect to the corre-
sponding fluxes at x=0. The accuracy of the model is always
of the order of 0.1% at all cross sections and for all elements.

The very good conservation of element fluxes clearly shows
the accuracy of the scheme and the employed diffusive
boundary conditions.

V. CONCLUSIONS

In this paper, we have established a lattice Boltzmann
model with catalytic surface reactions. Incorporating reac-
tions at a solid surface was accomplished through the deri-
vation of diffusive wall boundary conditions so as to account
for reaction rates. Implementation of realistic chemical reac-
tions is rendered via a coupling of the lattice Boltzmann
scheme with the CHEMKIN package libraries. We have also
suggested an efficient interpolation scheme for implementa-
tion of the lattice Boltzmann algorithm. The developed
model is validated with a simulation of a one-step, four-
component catalytic methane oxidation reaction in a straight
channel. Results are in excellent agreement with a steady-
state finite-volume solver. Moreover, the model has been
shown to capture finite-rate surface chemistry effects, clearly
demonstrating its aptness in practical channel-flow catalytic
combustion configurations. Two directions of further studies
are currently being explored: Extension of the present ap-
proach to more complex boundaries and extension of the
current isothermal lattice Boltzmann model to a thermal lat-
tice Boltzmann model recently introduced in Ref. �32�.
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FIG. 7. Relative difference of element fluxes �with respect to the
inlet value� as a function of axial distance.

LATTICE BOLTZMANN SIMULATION OF CATALYTIC… PHYSICAL REVIEW E 78, 046711 �2008�

046711-7



�1� S. Ansumali, I. V. Karlin, S. Arcidiacono, A. Abbas, and N.
Prasianakis, Phys. Rev. Lett. 98, 124502 �2007�.

�2� P. Asinari, M. C. Quaglia, M. R. von Spakovsky, and B. V.
Kasula, J. Power Sources 170, 359 �2007�.

�3� Q. Kang, D. Zhang, S. Chen, and X. He, Phys. Rev. E 65,
036318 �2002�.

�4� Q. Kang, P. C. Lichtner, and D. Zhang, J. Geophys. Res. 111,
B05203 �2006�.

�5� S. Succi, A. Gabrielli, G. Smith, and E. Kaxiras, Eur. Phys. J.:
Appl. Phys. 16, 71 �2001�.

�6� S. Succi, Phys. Rev. Lett. 89, 064502 �2002�.
�7� S. Succi, G. Smith, and E. Kaxiras, J. Stat. Phys. 107, 343

�2002�.
�8� S. Succi, Lattice Boltzmann Simulation of Thermal Microflows

with Heterogenuous Catalysis, in Lecture Notes In Computer
Science, Vol. 2657 �Springer, Berlin, 2003�, pp. 957–966.

�9� S. Arcidiacono, I. V. Karlin, J. Mantzaras, and C. E. Frouzakis,
Phys. Rev. E 76, 046703 �2007�.

�10� S. Ansumali and I. V. Karlin, Phys. Rev. E 66, 026311 �2002�.
�11� A. Schneider, J. Mantzaras, and S. Eriksson, Combust. Sci.

Technol. 180, 89 �2008�.
�12� M. Reinke, J. Mantzaras, R. Schaeren, R. Bombach, A. Inauen,

and S. Schenker, Combust. Flame 136, 217 �2004�.
�13� A. N. Gorban and I. V. Karlin, Physica A 206, 401 �1994�.
�14� C. D. Levermore, J. Stat. Phys. 83, 1021 �1996�.
�15� S. Arcidiacono, S. Ansumali, I. V. Karlin, J. Mantzaras, and K.

B. Boulouchos, Math. Comput. Simul. 72, 79 �2006�.
�16� S. Arcidiacono, J. Mantzaras, S. Ansumali, I. V. Karlin, C.

Frouzakis, and K. B. Boulouchos, Phys. Rev. E 74, 056707
�2006�.

�17� S. Ansumali, S. Arcidiacono, S. Chikatamarla, N. Prasianakis,

A. N. Gorban, and I. V. Karlin, Eur. Phys. J. B 56, 135 �2007�.
�18� I. V. Karlin, A. Ferrante, and H. C. Ottinger, Europhys. Lett.

47, 182 �1999�.
�19� S. Ansumali, I. V. Karlin, and H. C. Öttinger, Europhys. Lett.

63, 798 �2003�.
�20� S. S. Chikatamarla, S. Ansumali, and I. V. Karlin, Europhys.

Lett. 74, 215 �2006�.
�21� C. Wilke, J. Chem. Phys. 18, 517 �1950�.
�22� R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport

Phenomena �Wiley, New York, 1960�.
�23� R. J. Kee, G. Dixon-Lewis, J. Warnatz, M. E. Coltrin, and J. A.

Miller, Sandia National Laboratories, Report No. SAND86-
8246, 1996.

�24� M. E. McCracken and J. Abraham, Phys. Rev. E 71, 046704
�2005�.

�25� V. Sofonea and R. F. Sekerka, J. Comput. Phys. 184, 422
�2003�.

�26� H. Chen, Phys. Rev. E 58, 3955 �1998�.
�27� V. Sofonea and R. F. Sekerka, Int. J. Mod. Phys. C 16, 1075

�2005�.
�28� V. Sofonea, A. Lamura, G. Gonnella, and A. Cristea, Phys.

Rev. E 70, 046702 �2004�.
�29� V. Sofonea and R. Sekerka, J. Comput. Phys. 207, 639 �2005�.
�30� M. E. Coltrin, R. J. Kee, and F. M. Rupley, Sandia National

Laboratories, Report No. SAND90-8003C, 1996.
�31� C. Appel, J. Mantzaras, R. Schaeren, R. Bombach, A. Inauen,

B. Kaeppeli, B. Hemmerling, and A. Stampanoni, Combust.
Flame 128, 340 �2002�.

�32� N. I. Prasianakis and I. V. Karlin, Phys. Rev. E 76, 016702
�2007�.

ARCIDIACONO, MANTZARAS, AND KARLIN PHYSICAL REVIEW E 78, 046711 �2008�

046711-8


