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We present a formulation for nonreflecting boundaries in fluctuating hydrodynamics. Nonreflecting bound-
ary conditions are designed to evacuate sound waves out of the computational domain, thus allowing one to
deal with open systems and to avoid finite size effects associated with periodic boundaries. Thermodynamic
consistency for the fluctuation of the total mass and momentum of the open system is ensured by a fluctuation-
dissipation balance which controls the amplitude of the sound waves generated by stress fluctuations near the
boundary. We consider equilibrium and out-of-equilibrium situations �forced sound� in liquid water at ambient
conditions and argon ranging from gas to liquid densities. Nonreflecting boundaries for fluctuating hydrody-
namics make feasible simulations of ultrasound in microfluidic devices.
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I. INTRODUCTION

During the last decade interest in microfluidics has grown
dramatically due to applications in industry. At these small
scales, fluid flow can be described by fluctuating hydrody-
namics �1� characterized by stress and heat flux fluctuations
arising from the chaotic series molecular collisions underly-
ing the coarse-grained hydrodynamic level �2�. Fluctuating
hydrodynamics �FH� deals with small lumps of fluids �from
micrometers to nanometers� so the generalization of the non-
reflecting boundary condition �NRBC� presented here is
meant to become a useful tool in simulations involving
sound in nano and microfluidics. At such small wavelengths,
sound waves oscillate at frequencies of the order of MHz-
GHz, corresponding to the ultrasound regime. Ultrasound is
used in a large list of technological and medical applications,
which is still being explored. An interesting example is the
possibility of producing devices to collimate sound �3�,
whose computational study clearly requires NRBCs. Another
broad field of fundamental and technological interest is
ultrasound-particle interaction, which is being used to char-
acterize colloidal suspensions or to transport and manipulate
nanoparticles �4�. Ultrasound-particle simulations are, how-
ever, scarce in the literature and have been limited to stand-
ing waves solved using periodic boundary conditions �PBC�
via the lattice Boltzmann method �see, e.g., Ref. �5��.

In fact, fluctuating hydrodynamics has been so far applied
using either rigid walls �RW� or PBCs, whereby the system
folds to itself and no conditions are required at the bound-
aries. However, these kind of boundary conditions consider-
ably limit the range of applications. When dealing with real
devices one usually needs to consider general boundaries
which enable one to “open up” one or several boundaries of
the simulation domain. Open boundary conditions are usu-
ally required when one is interested in resolving the flow

within a part of the total system �a window�; archetypal ex-
amples being the flow within a channel having a nonequilib-
rium pressure �or density� profile, plug flows, and shear
flows. Also, simulations involving traveling waves require
nonreflecting boundaries which enable one to evacuate sound
out of the system. More generally, open boundaries can be
used to impose far-field flow conditions which let vortices or
heat travel outside the simulation window without reflection.
A complete list of open boundary implementations can be
found in Refs. �6,7�. While there has been considerable the-
oretical and numerical work on open boundary conditions in
standard computational fluid dynamics �CFD� �8�, including
turbulent flow �9�, to the best of our knowledge there has
been no attempt to apply these ideas to fluctuating hydrody-
namics. A key issue in fluctuating hydrodynamics is to take
into account the exchange of mass, momentum, and energy
between the open system and its surroundings. Such an ex-
change needs to be expressed in the form of a fluctuation-
dissipation balance, ensuring that the variance of mass, mo-
mentum, and energy of the total �open� system satisfies the
thermodynamic prescriptions.

In a more general context, flow-particle interactions are
receiving a great deal of attention in several fields �and
scales� ranging from an ensemble of particles in open turbu-
lent flow to one single complex molecule in low Reynolds
number flow. Consequently, computational methods de-
signed to couple fluid and particle motion have been devel-
oped for different scenarios �such as turbulence, lattice Bolt-
zmann �10�, or fluctuating hydrodynamics codes �11��. The
NRBC formulation allows one to extend the range of appli-
cations of these computational approaches. The present gen-
eralization of the method can be straightforwardly imple-
mented in fluctuating lattice Boltzmann codes �12� and it
might be inspiring for developing an improved open BC for-
mulation for compressible turbulent flow. Nonreflecting
boundaries for FH will also prove to be useful in hybrid
schemes based on domain decomposition. An application is
to embed a FH region of interest with a coarser and faster
CFD �deterministic� scheme. The same idea applies for hy-
brid schemes designed to dynamically couple particle and
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continuum descriptions, such as direct simulation Monte
Carlo �DSMC� �13� or molecular dynamics �MD� with FH
�14,15�. These multiscale models enable one to solve fluid-
particle interactions directly from the underlying solvent-
solute molecular collisions, i.e., without assuming any phe-
nomenological coupling law such as the Stokes force. Flux
based hybrid methods can solve unsteady flow and have been
applied to study the interaction between flow and complex
molecules �such as polymers in flow �16,17� or sound waves
against molecular assemblies �18��. In this context, the
NRBC provides a natural way to evacuate sound waves out
of the particle domain, through the open borders of the em-
bedding hydrodynamic region.

In what follows we first present the fluctuating hydrody-
namics equations, then, in Sec. III, we present the NRBC
formalism. In Sec. IV we show that the only free parameter
of the NRBC formulation can be evaluated from a
fluctuation-dissipation balance which fits the variance of the
total mass of the open system to its proper thermodynamic
value. Section V presents results for the equilibrium state and
nonequilibrium �forced waves� situations. Finally, conclu-
sions are given in Sec. VI.

II. FLUCTUATING HYDRODYNAMICS EQUATIONS

We shall focus on the treatment of open boundary condi-
tions for sound waves in fluctuating hydrodynamics. Fluctu-
ating hydrodynamics deals with flow within micron and sub-
micron scales, and we shall consider sound waves with
wavelengths of about �� �10–1000� nm, corresponding to
frequencies in the MHz-GHz �ultrasound� regime. Due to its
broad range of applications we consider water at ambient
pressure and T=300 K. The adiabatic constant �i.e., the spe-
cific heat ratio, �=cP /cV� of liquid water is almost unity ��
=1.0106� so one can neglect the effect of temperature varia-
tions in the sound induced pressure fluctuations. We thus
assume �=1, which corresponds to a fluid with equal iso-
thermal and adiabatic sound velocities. Sound propagates
adiabatically and as in any adiabatic process, temperature
and density fluctuations are related as ��p /�T���T= ��
−1���p /���T��. Thus for �=1, momentum and temperature
equations are decoupled and sound is uniquely governed by
mass and momentum equations.

We shall therefore consider the mass continuity and mo-
mentum equations for fluctuating hydrodynamics of a fluid
with velocity components ui �i= �x ,y ,z��, density �, and
fixed temperature T.

��

�t
+

��ui

�xi
= 0, �1�

��ui

�t
+ uj

��ui

�xj
= −

�

�xj
�p�ij + �ij� , �2�

where the right-hand side of Eq. �2� represents the full pres-
sure tensor: p is the thermodynamic pressure and �ij is the
stress tensor, which can be decomposed into a mean contri-

bution �̄ij and a fluctuating part �̃ij. The mean viscous ten-
sor is given by

�̄ij = − ��� �ui

�xj
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−
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�ul

�xl
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where � and � are, respectively, the longitudinal and bulk
viscosities and summation is indicated over repeated subin-
dexes.

The fluctuating tensor is written according to Serrano and
Español �19�,

�̃ij = A�dWij + dWji

2
−

dWll

3

 + B

dWll

3
, �4�

where dWij is a random matrix of unit variance and the co-
efficients A and B are given by

A = �4kbT
�

Vc
	1/2

, �5�

B = �2DkbT
�

Vc
	1/2

, �6�

where kb is the Boltzmann’s constant, Vc is the cell volume,
and the spatial dimension is D=3.

The covariance of the random stress is given by

��̃ij�x,t��̃kl�x�,t��� =
2kbT

Vc
����ik� jl + �il� jk −

2

3
�ij�kl	

+ ��ij�kl
��x − x����t − t�� , �7�

so that the correlation of the longitudinal components are

��̃xx�x,t��̃xx�x�,t��� =
2kbT

Vc
�4

3
� + �	��x − x����t − t�� .

�8�

The equations of continuity and momentum are com-
pleted by the equations of state p= p�� ,T� and the constitu-
tive relations for the shear and bulk viscosity �=��� ,T� and
	�� ,T�, respectively. As stated we considered water at T
=300 K and ambient pressure. The equation of state p
= p��� and viscosities corresponds to the TIP3P water model
at T=100 K used in MD and obtained in a previous work
�20� �see Fig. 1�. In order to test the model against a broader
range of thermodynamic and fluid conditions we also consid-
ered argon at several densities and temperatures �see Ref.
�21� and Fig. 1 for the equation of state and �22� for viscosi-
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FIG. 1. �Color online� Pressure equation of state at T=300 K for
argon �Lennard-Jones model� and water �TIP3P model�.
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ties�. The adiabatic constant of argon is larger than one ��

1.5� so in assuming �=1 we underestimate the sound ve-
locity of argon. However, in doing so, neither the physics of
sound nor the open boundary model are essentially altered
�see Sec. III C�.

III. NONREFLECTING OUTFLOW
BOUNDARY CONDITIONS

Open boundary conditions are needed in most practical
cases involving fluid dynamics processes. To that end Poin-
sot and Lele �6� derived the Navier-Stokes characteristic
boundary conditions �NSCBCs� procedure for deriving dif-
ferent kinds of boundary conditions in computational fluid
dynamics from physical grounds. The central idea is to use
relations based on the analysis of the different waves cross-
ing the boundaries of the computational domain. The
NSCBC method is an extension of the Euler characteristic
boundary condition methodology used for specifying bound-
ary conditions in hyperbolic systems �Euler equations�
�23,24�. Our main purpose here is to apply the NSCBC ap-
proach to obtain nonreflecting boundary conditions �NRBCs�
for an open fluctuating hydrodynamics system.

A. General formulation

Following the characteristic analysis �24� for waves
propagating in the �normal to boundary� x direction, we re-
cast the Navier-Stokes equations �Eqs. �1� and �2�� in the
following form:

��

�t
+

1

c2�L2 +
1

2
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 +

��v
�y

+
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= 0, �9�
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��v
�t

+ v
1
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+
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−
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−
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�z
, �10�

where u, v are fluid velocities along x and y directions �i
=1,2 in Eqs. �1� and �2��; the equation for w, in the z direc-
tion is similar to v and has been omitted. The Li’s are given
by �24�

L1 = �1� �p

�x
− �ec

�u

�x
	 , �11�

L2 = �2�c2��

�x
−

�p

�x
	 , �12�

L3 = �3
�v
�x

, L4 = �4
�w

�x
, �13�

L5 = �5� �p

�x
+ �ec

�u

�x
	 , �14�

and �i are the characteristic velocities

�1 = u − c ,

�2 = �3 = �4 = u ,

�5 = u + c . �15�

Here �1 and �5 are the propagative velocities of sound waves
moving in the negative and positive x directions and �2, �3,
and �4 correspond respectively, to the advection velocity of
entropy and transversal velocities v and w, along the x direc-
tion.

The set of open boundary conditions are obtained from
Eqs. �9� and �10� by neglecting the transverse terms �� · /�y,
� · /�z�. Using the continuity equation �9� into the momentum
equation �10� one derives the following relations in terms of
primitive variables �6�:

��

�t
+

1

2c2 �L5 + L1� = 0, �16�

�p

�t
+

1

2
�L5 + L1� = 0, �17�

�u

�t
+

1

2�ec
�L5 − L1� = −

1

�e

��xx

�x
, �18�

�v
�t

+ L3 = −
1

�e

��yx

�x
. �19�

Where �e is the equilibrium density. As stated in this work
we focus on sound waves and shall not consider heat trans-
port. This implies that pressure and density perturbations are
proportional to each other, �p=c2�� and L2=0. Equation �9�
simplifies to Eq. �16�, which is redundant with Eq. �17�.
Also, transverse flow �shear� is zero, v=w=0, so that L3
=L4=0. A general �deterministic� formulation considering
the full set of hydrodynamic modes and several kinds of
implementations of the NSCBC can be found in Refs. �6,7�.

Linear hydrodynamics of a monocomponent fluid along
one direction �x� can be expressed in terms of five charac-
teristic waves Ai �also called normal or hydrodynamic modes
�25��. These are, namely, two sound waves traveling in op-
posite senses �A1 and A5�, one heat wave �A2�, and two shear
waves �A3 and A4� in the transverse directions. In particular,
the amplitude of the sound waves A1 and A5 is given in terms
of the pressure and velocity perturbations with respect to
equilibrium: �p= p− pe and �u=u−ue �here ue=0�,

A1 =
1

2
� �p

�ec
− �u	 wave moving ← , �20�
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A5 =
1

2
� �p

�ec
+ �u	 wave moving → . �21�

Introducing the definitions �20� and �21� into Eqs. �17� and
�18� and considering the inviscid limit, one obtains that
�Ai /�t+�i�Ai /�x=0, meaning that Ai are conserved along the
characteristic line x+�it=constant �in the inviscid limit A1
and A5 are called the Riemann acoustic invariants�. A clear
physical insight of the operators Li’s defined in Eqs.
�11�–�14� can now be given by noting that �in the inviscid
limit� �Ai /�t=−Li / �2�ec�. Thus Li is proportional to the char-
acteristic wave intensity �and 2�ec is sometimes called
acoustic impedance, by analogy with the electrodynamics re-
lation�. In the viscid case one gets

�Ai

�t
+

Li

2�ec
= 


1

2�e

��xx

�x
, �22�

where the sign � at the left hand side of the equation corre-
sponds to A1 �sign � to A5�.

The NSCBC approach is to infer values for the wave am-
plitude variations from the local �near to boundary� charac-
teristic waves traveling across the normal-to-boundary direc-
tion �x�. To that end, the NSCBC approach relies on the
determination of the Li’s at �or near� the boundary. In prin-
ciple, one can use Eqs. �11�–�14� to calculate Li from the
local gradients of pressure and velocity. However, one needs
to distinguish the sense of the wave propagation required for
this evaluation. In particular, L1 is associated to waves propa-
gating leftwise in x direction �while L5 corresponds to waves
moving rightwise�. Hence, if for example, we consider the
east boundary of a one-dimensional �1D� domain: A5 is a
wave moving outwards, but within the domain, while A1
moves inwards, coming from outside. Thus, while L5 can be
estimated using the pressure and velocity at interior points,
to guess L1 one needs some extra information �some condi-
tion at the exterior�. This guess is one of the essential tricks
of the trade. In the foregoing discussion, for the sake of
clarity, we shall always consider the east boundary so that L5
is associated to outgoing waves and L1 to incoming waves,
as illustrated in Fig. 2.

Once the Li’s are known, Eqs. �16�–�19� are then used to
compute all other variables required at the boundary. This
last step requires boundary conditions for the viscous terms
involving normal derivatives to the boundary. According to

the theoretical results of Strikwerda �26� and Oliger and
Sundstrom �27� one usually imposes weak viscous condi-
tions at the border. In practice this means a vanishing normal
stress ��xx /�x=0, in the right-hand side of Eq. �18�. The
validity of this approximation, known as the local one-
dimensional inviscid �LODI� problem �8�, is justified by
Poinsot and Veynante �7�: viscous terms are already explic-
itly solved everywhere inside the domain, so the amplitude
L5 �which is measured inside� already contains viscous ef-
fects. In agreement with this statement, we tested Eq. �18�
with and without the viscous term and found similar out-
comes.

B. Nonreflecting outflow at fixed pressure

The natural choice for building a nonreflecting outlet con-
dition according to the NSCBC approach would be to impose
the amplitude variation of the incoming wave L1 to zero,
L1=0. However, this condition leads to large drift of the
mean pressure. Physically, a perfectly nonreflecting bound-
ary condition can be ill posed. Indeed, the information on the
mean pressure is conveyed by waves reflected into the do-
main from the outside flow �where the static pressure p� at
infinity, or equivalently, the equilibrium pressure pe= p� is
specified�. If the local pressure p at the outlet is different
from pe, a reflected wave should be produced to bring p
closer to pe. With perfectly nonreflecting boundary condi-
tions �L1=0� this information is not fed back into the com-
putation domain. It is on this physical ground that Rudy &
Strikwerda �28� proposed to add information on the mean
static pressure at infinity pe, and write the amplitude of the
incoming wave as follows:

L1 = K�p − pe� with K =

c�1 − M2�

L
, �23�

where L is a characteristic length size of the domain, M
=u /c is the Mach number, and 
 is a constant that has to be
fixed. At a low Mach number, as those considered in this
work, one can write K=
c /L.

By inserting Eq. �23� into Eq. �17� in the absence of an
outgoing wave �L5=0�, one sees that the expression �23� can
be interpreted as a corrective term that relaxes exponentially
the pressure at the frontier to the equilibrium pressure pe.
The relaxation time is ��1 /K=2L /
c. Some caution is nec-
essary to estimate the value of the constant 
 �see the next
section�: too low values of 
 can produce large pressure drift
resulting in nonconvergence of the calculations, while large
values of 
 lead to high reflection. Thus, the price one pays
for the stability of the scheme is that Eq. �23� yields a par-
tially nonreflecting boundary. This important drawback was
recently put forward by Selle et al. �29� and Polifke et al.
�30�. They proved that although the linear relaxation term
�23� leads to an effective nonreflecting boundary for the
high-frequency regime �i.e., for wave frequencies much
larger than the decay rate K�, it becomes highly reflecting for
the low-frequency range �31�. But in fact these long, low-
frequency waves are precisely those one would like to evacu-
ate, because they can travel over long distances before being
damped by viscosity. In order to extend the nonreflecting
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x
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FIG. 2. �Color online� Incoming and outgoing sound waves
through the east boundary.
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property of the boundary condition to the low-frequency
range, Politfke et al. �30� proposed the following modifica-
tion to L1:

L1 = K�p − �cA5 − pe� . �24�

This modification applies for plane acoustic waves with nor-
mal incidence to the boundary and it is referred to as “plane-
wave masking.” It consists in removing the contribution of
the outgoing waves A5 to the pressure p from the linear re-
laxation term L1 so that the �reflected� outgoing wave no
longer contributes to the incoming wave A1. In this way, the
incoming wave A1 is built up to suppress �or to “mask”� any
reflection contribution from the outgoing wave. The result is
that, in practice, A5 leaves the domain without being re-
flected. Polifke et al. �30� considered acoustic waves in tur-
bulent flow and argue that if deviations from the equilibrium
pressure pe were only caused by plane acoustic waves �i.e.,
in the absence of turbulent fluctuations�, the use of Eq. �24�
would lead to a vanishing reflection coefficient for plane
harmonic waves of arbitrary frequency. However, the results
of this work for the �nonturbulent� deterministic regime �i.e.,
without fluctuations� coincide with those reported in their
work �30�. This indicates that the partial reflection observed
at short wavelengths �� /�x�10 �see Sec. V C�� is, in fact,
related to numerical resolution. Also in the fluctuating hydro-
dynamics context, Eq. �24� is the best choice to evacuate
most waves �� /�x�10� out of the system, as it provides the
lowest reflection coefficient.

We now provide more insight into the incoming wave
amplitude L1 proposed in Eq. �24�. By using the definition of
A5 in Eq. �21� and the definition of A1 given by Eq. �20� one
gets

L1 =
K

2
��p − �ec�u� = K�ecA1. �25�

Using Eq. �22� one gets the following equation for A1:

�A1

�t
+ K�A1 =

1

2�e

��xx

�x
with K� = K/2. �26�

Equation �26� sheds more light on how the plane-wave
masking controls the incoming waves. In the inviscid limit,
the solution of Eq. �26� is simply an exponential decay A1
�exp�−K�t�. Hence, the incoming waves are damped at a
rate K�. In fact, by damping the incoming wave to its equi-
librium value �A1�=0, one also controls the deviation from
the equilibrium pressure, which relaxes to ��p�=0. By com-
parison, as stated above, Eq. �23� is only designed to control
the overall pressure drift, but not the amplitude of the incom-
ing wave.

It is important to highlight that in the case of fluctuating
hydrodynamics, Eq. �26� also acts as a source of incoming
random waves. Indeed, the local fluctuating stress near the
border is a source of white noise which triggers waves into
the system. The boundary condition given in Eq. �26� deter-
mines the resulting spectra for the amplitude of incoming
waves: at equilibrium the time correlation of incoming
waves is a colored noise, �A1�t�A1�0���exp�−K�t� /K�, and

their power spectral density is proportional to SA1
���

�1 / ��2+K�2�. Implications of this fact are discussed in Sec.
IV.

C. Fluctuation-dissipation balance

In previous works the relaxation time 1 /K was set propor-
tional to the inverse of sound time over a distance L /
, i.e.,
1 /K=L / �
c�. The constant 
 was set according to numerical
“optimization” but not based on physical grounds. For in-
stance, when making use of expression �23� for L1, estima-
tions of the optimal value of 
 by Rudy and Strikwerda,
provided 
=0.58, while Selle et al. �29� suggest 0.1�

��. By contrast, by making use of Eq. �24� for L1, Polifke
et al. �30� report 
=167 as the minimum value required to
avoid pressure drift in their computations of a fully devel-
oped turbulent channel flow. In this work we address this
problem from the perspective of fluctuating hydrodynamics
and provide a route to estimate a value of K with physical
content. The overall mass is governed by the amplitude of
the incoming waves, so that by imposing the correct variance
to A1, one should get the correct variance for the total mass
in the system. To that end, we consider the fluctuation-
dissipation �FD� balance for the amplitude of the incoming
waves A1 in the equilibrium state. We believe that the
method proposed here below could be applied, for instance,
to turbulent flow, provided there is some knowledge of the
amplitude of fluctuations of A1 �i.e., of pressure and velocity�
and of the stress tensor �.

Let us consider Eq. �26� near the east boundary, in par-
ticular, at the cell face xb=xfn−1

where the NRBC is imposed
�see Appendix B�. We integrate Eq. �26� along a cell volume
Vc=S�x around the cell face xb to get

dA1�xb�
dt

+ K�A1�xb� = F�t� , �27�

where we note that in the spirit of the finite volume method
A1�xb�= �1 /�x��xb−�x/2

xb+�x/2A1�x�dx. The term F�t� in Eq. �27� acts
as a random source which should be balanced with the
damping term K�A1. In deriving this balance we shall con-
sider the random source F�t� arising from the random stress
and omit its viscous part �note that amplitudes of viscous and
random stresses are balanced by the fluctuating hydrodynam-
ics formulation�. This approximation permits us to close Eq.
�27� and obtain an estimation of K which should, however,
provide its proper functional dependence �32�. Spatial inte-
gration of the random stress in the right-hand side of Eq. �26�
yields

F�t� �
1

2�x�e
��̃xx�xb + �x/2� − �̃xx�xb − �x/2�� . �28�

Equation �27� is a stochastic differential equation which can
be solved using standard techniques �33�. The noise source is
coming from the local stress tensor, which at equilibrium
satisfies �see Eq. �8��
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��̃xx�t��̃xx�0�� =
2kBT�L

Vc
��t� , �29�

where �L=4� /3+�, is the longitudinal viscosity. Moreover,
the fluctuating stress tensor is uncorrelated in space so the
time correlation of the noise F�t� satisfies

�F�t�F�0�� = 2���t� =
kBT�L

�x2�e
2Vc

��t� , �30�

where the noise amplitude 2� is defined from the same
equation �30�. The fluctuation-dissipation balance, applied to
Eq. �27�, states that �see, e.g., �33��

�A1
2� =

�

K�
. �31�

At equilibrium the variance of A1 can be obtained from stan-
dard thermodynamics. From Eq. �20� �A1

2�
= �1 /4����p2� / ��ec�2+ ��u2��. But ��p2�=c4���2�, ���2�
=�ekBT / �c2Vc�, and ��u2�=kBT / ��eVc�, so one concludes that

�A1
2� =

1

2

kBT

�eVc
. �32�

Inserting Eqs. �32� and �30� into Eq. �31�, one finally gets the
decay rate K� or equivalently of K �see Eq. �26��,

K� =
�L

�x2 → K =
2�L

�x2 , �33�

where �L=�L /�e is the kinematic longitudinal viscosity. The
result contrasts with the form of K proposed in previous
works �K=
c /L�; in fact Eq. �33� shows no dependence with
the sound velocity c or on the system size L. As stated, in
this work we consider a fluid with adiabatic constant �=1,
such as liquid water. However, we note that the derivation of
Eq. �33� remains valid for arbitrary � �34�. We note that for
�=1 the isothermal and adiabatic sound velocities coincide
and one can neglect temperature effects on the sound waves
while, for compressible fluids such as argon ���1�, one
needs to consider the energy equation to consistently solve
sound. However, the inclusion of the energy equation in the
present open boundary formalism does not require any extra
�relaxation� parameter at the boundary. In fact the propaga-
tion of the heat mode across the boundary can be solved
using the information within the computational domain �see
Ref. �7��.

In Appendix B we present a numerical implementation of
the plane-wave masking boundary conditions for a staggered
grid, which ensures numerical stability for “open” fluctuating
hydrodynamics.

IV. MASS FLUCTUATION AT EQUILIBRIUM

As stated above, by ensuring the fluctuation-dissipation
balance for the amplitude of the incoming waves one expects
to provide the correct variance of total mass, whose value at
equilibrium is prescribed by thermodynamics. In particular,
at equilibrium, the mass M�t� of an open system of volume V
at temperature T, fluctuates with a variance given by

kBTV /c2, while the variance of the mean density �̄�t�
=M�t� /V is

����̄�2� =
kBT

c2V
, �34�

where ��̄= �̄−�e is the deviation from the �spatial� mean
density with respect to its equilibrium value. The relaxation
time 1 /K for incoming waves should be set so as to guaran-
tee condition �34�. According to the analysis of the
fluctuation-dissipation balance carried out in the previous
section �see Eq. �33�� the relaxation parameter K should be
cast as

K =
�L

��R�x�2 . �35�

We note that the theoretical approach in Eq. �33� yields �R
=1 /�2�0.7. In order to perform a numerical calibration of
the K parameter an analysis on the mass variance depen-
dence on �R is required. Figure 3 shows the variance of the
mean density ����̄�2� against �R for argon at ��̄�
=1.35 gm /cm3 �which corresponds to an equilibrium density
of ��̄�=0.8
−3 in Lennard-Jones units� and temperature T
=300 K. The mesh size is �x=1.377 nm and the total vol-
ume V=3371 nm3. The total mass fluctuation increases with
�R �i.e., with the relaxation time 1 /K�. According to Fig. 3,
for �R=0.4 the mean density variance coincides with the
thermodynamic prescription. This optimum value of �R ob-
tained by numerical means ��R=0.4� differs from the theo-
retical estimation ��R=0.7�, however, as shown below, the
predicted form of K��L /�x2 in Eq. �33� is robust and con-
sistent with the numerical results.

We tested the theoretical prediction K=�L / ��R�x�2

against a broad range of conditions: varying the mesh size
�x and time step �t, fluid properties and thermodynamic
state, and considering water and argon at several densities.
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FIG. 3. �Color online� The standard deviation of the total mass
in the simulation domain at equilibrium, versus the parameter �R,
which determines the relaxation rate K=�L / ��R�x�2. The dashed
line is the thermodynamic prescription. At the optimum value �R


0.4, the variance of the overall mass coincides with the thermo-
dynamic value.
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Some results for the standard deviation of the total mass of
the system are shown in Table I. In all cases considered, the
largest relative differences with respect to the thermody-
namic value obtained with �R=0.4, are less than 10%. A finer
estimation of the optimum �R provided �R=0.40
0.04. We
thus conclude that the scheme is robust and that the relax-
ation parameter K should be set according to Eq. �35�, with
�R=0.4 �35�. This is also confirmed by the spectral analysis
presented below.

In order to understand how the open boundary works, it is
instructive to consider the power-spectral density �PSD� of
the local density ��x , t�. The time Fourier-transformed den-
sity �̂�xi ,�� can be used to evaluate the PSD as, S��xi ,��
= ��̂�xi ,� , ��̂*�xi ,� , ��, where * denotes the complex conju-
gate. We first discuss the behavior of the spatially averaged

PSD, S̄������1 /Ncell��iS��xi ,��, where Ncell is the number
of cells in the simulation domain. This function, which is
proportional to the dynamic structure function at zero wave
number, is shown in Fig. 4, for a set of values of �R. Accord-
ing to fluctuating hydrodynamics, at equilibrium, fluctuations
of all possible wavelengths are equally present in the system
and one expects to obtain a flat spectra over a wide band of

frequencies. We note, however, that all the spectra resulting
from the numerical solution of the FH equations shown in
Fig. 4 present a sudden decrease below a cutoff wavelength
�cut
4�x. These short waves are in fact filtered out by the
numerical resolution, because from a numerical standpoint
one cannot describe a sound wave with less than a few cells.

Figure 4 illustrates how the parameter �R modifies the
spectra of sound waves in the system. Large values of �R
mean small relaxation rates K=�L / ��R�x�2 for which the
“source” of incoming waves is slowly relaxed in time. To
better understand the effect of the random generation of in-
coming waves at the border, one can consider the PSD asso-
ciated with Eq. �27� given by SA1

=� / �K2+�2�. At the long-
wavelength range �low frequencies, ��K� the PSD of
incoming waves becomes SA1


� /K2���R
4 . This means

that the amplitude of the long random waves generated at the
boundary decreases with the square of the relaxation time
1 /K2 �i.e., with �R

4�. This can be clearly seen in Fig. 4 where
the presence of longer wavelengths is rapidly increased with
�R �see the �R=2.5 case�. At the short-wavelength range
�high frequencies, ��K� the PSD of incoming waves be-
comes K independent, SA1

�� /�2. In agreement with this
fact, the low-wavelength region of the spectra in Fig. 4
�which takes into account incoming and outgoing wave con-
tributions� does not greatly vary with K or �R. We highlight
that, precisely at �R=0.4, one gets a flat spectrum over the
whole range of allowed frequencies �and even for wave-
lengths much longer than the system size, see Fig. 5�.

The mass variance is equal to the integral over the whole
frequency range of its power spectral density, thus Fig. 4
clearly indicates that the excess of mass fluctuation observed
for large �R �see Fig. 3� is due to an excess of long-
wavelength waves. In the same way, for low values of �R,
long waves are oversuppressed and the total mass of the
system becomes too much constrained. In conclusion, an op-
timum value of the relaxation rate K is crucial to control the
overall mass variance by providing the correct amount of
large wavelengths into the system.

Comparison with periodic boundaries and rigid walls

One of the objectives of this work is to show that open
boundary conditions are required in simulations of phenom-
ena involving the propagation of sound waves. Also, when
dealing with fluctuating hydrodynamics, and even at equilib-

TABLE I. Results obtained for water and argon at different thermodynamic states, longitudinal kinematic viscosities �L, and several mesh
sizes �x. A comparison is made between the numerical and theoretical standard deviation of the mean density 
�̄. In all cases we used
�R=0.4. VT is the total volume of the system and L=397 nm is the system’s size in the x direction.

Fluid � �g /cm3� T �K� c �m/s� �L �cm2 /s� �x �nm� L /�x VT �nm3� 
�T

�num� 
�T

�theor� �g /cm3�

Water 1.049 300 1467.1 0.4560 2.24944 60 2064.3 0.000939 0.000988

Argon 1.012 476 746.16 0.00158 1.37734 98 3371.8 0.002007 0.001889

Argon 1.012 300 577.72 0.00106 1.37734 98 3371.8 0.001956 0.001923

Argon 1.012 178.5 379.38 0.00132 1.37734 98 3371.8 0.002192 0.002226

Argon 1.349 300 942.15 0.00189 1.37734 98 3371.8 0.001501 0.001366

Argon 1.349 300 942.15 0.00189 0.6885 196 6737.8 0.000875 0.000964
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FIG. 4. �Color online� Spatially averaged power spectrum of

density, S̄����, for liquid argon at �=1.35 g /cm3 and T=300 K vs
the wavelength �=2�c / f . The cutoff frequency �cut is indicated at
4�x. Results correspond to several values of �R, which determines
the relaxation rate K=�L / ��R�x�2. The longitudinal viscosity is �L

=1.9 10−3 cm2 /s ��L=0.25 cP�. The box size is Lx=135 nm and the
grid spacing is �x=1.377 nm. The optimum �R corresponds to �R

=0.4.
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rium, the stress fluctuations induce sound waves which might
become a significant source of momentum, depending on the
boundary condition used. In fluid-particle simulations based
on the Stokes friction coupling �11�, such momentum is
transferred to the solute particles, thus generating spurious
forces and nonphysical time correlations at sound times. To
illustrate this statement, it is quite instructive to compare the
sound power spectral densities �at equilibrium� obtained us-
ing nonreflecting boundary conditions �NRBCs�, periodic
boundary conditions �PBC�, and rigid walls �RW�. Such
comparison is illustrated in Fig. 5 for a one-dimensional
computational domain of dimension Lx=135 nm and dis-
cretized into 98 cells. For PBC and RW, significant peaks are
observed at the natural frequencies of the box �fn=nc /Lx and
fn=nc / �2Lx�, respectively�. These peaks become quite large
as one approaches the fundamental frequency �n=1�, corre-
sponding to wavelengths �=Lx in PBC and �=2Lx in the
RW case �in Fig. 5 we indicate the system size wavelength
�=Lx with a vertical dashed line�. The PSD of the velocity
exhibits peaks at identical frequencies. As long as the fluid
velocity is used for the Stokes force in fluid-particle simula-
tions, these peaks can induce spurious forces to the particles.
As shown in Fig. 5, the NRBC formulation avoids finite size
effects induced by the eigenfrequencies of the simulation
box.

We have not yet discussed how the distribution of sound
waves varies at each computational cell. In principle, at equi-
librium the distribution should be isotropic and density and
velocity at any cell should have similar spectra. In Fig. 6 we
show contour plots of the PSD at each cell location, S��x ,��.
In order to facilitate their reading, the frequency �=2�f has
been expressed in wavelength units �=c / f and both, position
and wavelength, are given in units of the mesh size �x �i.e.,
� /�x in abscissas and xi /�x in ordinates�. In the case of
NRBCs, the position-dependent PSD S��x ,�� is almost ev-
erywhere flat for all wavelengths larger than the cutoff �cut

4�x �as stated, �cut corresponds to the limiting wavelength
resolved by the mesh�. It is worthwhile to mention that the
NRBC ensures that the spectra remain flat even for frequen-
cies much larger than the box length �in Fig. 6 we are plot-
ting up to ��10Lx�. This nice behavior contrasts with what

was obtained in the periodic and purely reflecting �rigid�
walls shown in Fig. 6.

As shown in Fig. 6 the spectra obtained with NRBCs
present, however, two small regions near the open bound-
aries where an excess of short wavelength is observed. The
formation of these “boundary layers” is due to the partial
reflection of short waves. Indeed, a closer inspection of Fig.
6 shows that the structure of the local maxima of S��x ,�� at
these boundary layers is similar to that produced by purely
reflecting rigid walls over the whole spectral range �the re-
flected waves produce an “echo” whose amplitude has local
maxima at nxn=m�m; n and m being integer�. The main ef-
fect of these reflected waves is to increase the local standard
deviation �STD� of density 
��x� �or velocity 
u�x�� near the
open boundary, as can be seen in Fig. 7�a�. The standard
deviation 
��x� decays exponentially towards its equilibrium
value at the bulk 
�

eq and thus enables one to obtain a char-
acteristic length �, which is a measure �lower bound� of the
thickness of the “reflecting boundary layer” �see the caption
of Fig. 7�a��. Values of � calculated for quite different cases
are plotted in Fig. 7�b�. Interestingly, � scales with the group
�c /�L��x2, which is a measure of the sound absorption
length. A wave with wave number � is damped by viscosity
at a rate �2�2��L /�2 �the sound absorption coefficient is
�L /2�. Thus, before being damped, reflected waves are able
to penetrate back into the domain up to a distance ��


c�2 / �2�2�L�. Inspection of Fig. 6 �for NRBCs� indicates
that these reflected waves are shorter than a certain wave-
length ���r and that they are responsible for the boundary
layer thickness; so one expects ����r

. The trend shown in
Fig. 7�b� indicates ���x2�c /�L�, so one concludes that the
reflected wavelengths ���r should only depend on the spa-
tial resolution: this first order estimate yields �r��2��x,
which is about the spatial resolution limit 4�x. Calculations
of the reflection coefficient in Sec. V C confirm this conclu-
sion.

It is interesting to note that, in water, the thickness of the
reflecting layer is quite small due to the large viscosity of
water ��L=4.78 cP�, which yields �c /�L�water=0.4 nm−1. For
instance, for �x=2.5 nm, the reflecting layer remains re-
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FIG. 5. �Color online� The spatially averaged power spectrum of

density S̄���� for argon at �=1.0 g /cm3 and T=300 K. The simu-
lation domain is Lx=135 nm and �x=1.377 nm. A comparison be-
tween NRBCs, PBCs, and rigid walls is made. Frequency �=2�f is
expressed in wavelength units ��=c / f�, using the sound velocity
c=577.7 m /s.
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FIG. 6. �Color online� Contour plot of the power spectrum of
density at each cell of the domain S��xi ,�� for the same cases in
Fig. 5: NRBCs, PBCs, and rigid walls. The wavelength �abscissas�
and the cell position �ordinates� are both given in mesh units �x. In
this unit, the box size is Lx /�x=98. We note that in the NRBC case,
the spectra remains flat even at ���x. The thermodynamic equilib-
rium value is about −42 dB.
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stricted to the outermost cell. By contrast, in argon at a simi-
lar density �c /�L�argon=3.85 nm−1 so the reflecting layer is
visible �as in Figs. 6 and 7�a��.

V. RESULTS

The results presented in this work are obtained for a 1D
implementation of three-dimensional �3D� fluctuating hydro-
dynamics equations; i.e., we consider 3D cells of volume
Vc=�x�y�z, set up in a 1D array: the number of cells in the
x direction is Nx= �60,98,196�, while Ny =Nz=1. We also
carried out tests for 2D and 3D flows, which will be pre-
sented in a future work, along with a more detailed explana-
tion of the adaptation of the staggered scheme to the FH
equations, outlined in Appendix A.

A. Equilibrium

Several tests at equilibrium are first required when pre-
senting a fluctuating hydrodynamics solver. Figure 8 shows
the standard deviation of the density at one fluid cell, ob-
tained for argon, ranging from gas to liquid. Deviations from

the thermodynamic prescription �solid line� are negligibly
small. Figure 9 shows the kinetic temperature �output tem-
perature� To and the standard deviation of density 
� at each
fluid cell. Results correspond to the water model. The kinetic
temperature is related to the velocity variance, 
v

2 via kBTo
=
v

2���Vc, where 
v and ��� are local cell quantities and Vc is
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FIG. 7. �Color online� �a� The standard deviation of the density

� vs the distance from the open boundary x, for argon at �eq

=1 g /cm3, T=300, and �x=0.689 nm. The value of �, measuring
the thickness of the reflecting boundary layer, is measured using the
fit 
��x�=
�

eq+A exp�−x /�� �solid line�, where 
�
eq is the equilib-

rium value and A is a fitting constant. �b� Values of � against the
sound absorption length �c /�L��x2. The dashed line indicates the
order of magnitude estimate ���c /�L��x2. Results were obtained
for a system with Lx=134.98 nm, cell volume Vc=34.4 nm3, and
different grid spacing �x. All results for argon at different densities
�= �0.17–1.34� g /cm3 and temperatures �T=300, 178.5, and
476 K�.
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grid cell located in the center computational domain with volume
Vc=34.4 nm3 vs the mean density of the system. Results were ob-
tained for argon an equation of state at T=300 K, using Lx

=135 nm and �x=0.688 nm. A solid line indicates the expected
thermodynamic value.
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FIG. 9. �Color online� The standard deviation of density and the
kinetic �output� temperature To= ��Vc�
v

2 /KB vs the cell position in
an equilibrium calculation using the water model. The dashed lines
show the thermodynamic value at the prescribed temperature T
=300 K. The standard deviation of velocity 
v differs with respect
to the thermodynamic value in less than 1% for �x=2.249 nm and
about 2.3% for �x=1.377 nm. Density fluctuations are in very good
agreement with the theoretical value.
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the fixed cell volume. We found deviations from the “input”
temperature of a few percent �see the caption of Fig. 9,
where the imposed temperature is T=300 K�.

The sudden jump of To and 
� near the boundaries ob-
served in Fig. 9, is due to the reflection of short waves.
However, as discussed above, in the case of water the width
of the reflective boundary layer is quite small �about �x�.
The distribution of velocity and density fluctuations is flat
along most of the system and, only the first and second cell
adjacent to the boundary deviate from the bulk behavior. As
stated before, in the case of argon 
v�x� and 
��x� converge
exponentially to the thermodynamic value at the bulk �see
Fig. 7�a��. The STD at the boundaries are typically about 1.4
times larger than within the bulk.

B. Periodic forcing

Another set of tests for the open boundary conditions
comprise forcing of sound waves inside the channel. We
shall first compare the results obtained using NRBCs and
periodic boundaries and then calculate the reflection coeffi-
cient in our NRBC formulation.

Forcing of waves inside the channel can be done in sev-
eral ways. For instance, if the objective is to introduce har-
monic waves from the west boundary �i.e., waves moving
rightwise�, one can add a sinusoidal term into the A5 ampli-
tude equation �21�.

L5
�f� = L5 + aL5

cos�� ft� , �36�

where L5
�f� is the modified L5, aL5

is proportional to the am-
plitude of the forced incoming waves, and � f is the forcing
�angular� frequency.

Alternatively, it is also possible to add a sinusoidal force
�or some mass production term� to the momentum �or den-
sity� equation at some cell in the bulk. Both procedures pro-
vide similar results; the following tests were done by adding
an oscillatory mass source production term in the continuity
equation at x=xf,

���xf,t�
�t

= −
��u

�x
+ a� sin�� ft� . �37�

The latter procedure is useful to study the reflection of
short waves because they are damped at such a high rate that
their amplitude becomes smaller than thermal noise at rela-
tively short distances from their source. To ensure a signifi-
cant signal to noise ratio in the study of reflection, we placed
the wave source xf at a distance xf =� f +5�x, where � f is the
wavelength of the forced wave.

Figure 10 compares the spatially dependent power spectra
�as a function of the wavelength, S��x ,��� obtained when
forcing waves inside the channel at a certain frequency wf
=2�c /� f and using either NRBCs or PBCs. The difference is
clear; while in the NRBC case a well defined peak with
similar amplitude at every cell of the system is obtained at
the forcing frequency � f in the PBC case, one gets a com-
plicated x-dependent pattern at the forcing frequency. This
pattern is essentially determined by a standing wave that
interferes with the eigenwaves of the simulation box at fre-
quencies �n=2�nc /L.

C. Reflection coefficient

Figure 11 shows the reflection coefficient obtained using
the forcing procedure described above. The reflection coeffi-

cient is obtained from the ratio r= Â1 / Â5 between the ampli-

tude of the outgoing �imposed� wave Â5 and the incoming

wave Â1 �resulting from any partial reflection�. The ampli-
tude of the waves was evaluated at some cells near the xb
=0 boundary, from the magnitude of the maximum peak in

their Fourier spectra �i.e., at the forcing frequency � f� Âi
2

=SAi
�xo ,� f�. The “test” cells xo are placed between the open

boundary and the location of the wave source: xb�xo�xf.
Values of the reflection coefficient are shown in Fig. 11.

We note that the values of r obtained from deterministic
hydrodynamics �i.e., switching off fluctuations� were found
to be similar to those obtained from the fluctuating case. In
fact, results for r reported by Polifke et al. �30� for large
eddy simulations of turbulent flow �also included in Fig.
11�a�� are consistent with our laminar flow calculations indi-
cating that the behavior of r with f does not greatly depend
on fluctuations, flow or fluid conditions, but rather on the
numerical resolution used. In particular, as shown in Fig.
11�a�, waves with short enough wavelength are partially re-
flected: we find that irrespective of the fluid properties or
flow �fluctuations� conditions, r
0.5 for ���r with �r
�10�x. This threshold for partial reflection agrees with the
estimation done in Sec. IV and it can be clearly seen in the
NRBC case of Fig. 6. Larger wavelengths present a rapid
decrease of their reflection coefficient. Our results fit with the
trend r�10−3�f�x�1.5, shown by the dashed line in Fig.
11�b�. However, the behavior of r at low frequencies ob-
tained by Polifke et al. for turbulent flow scales with a
smaller slope r� f0.95, suggesting that the type of flow might

FIG. 10. �Color online� Contour plot showing the PSD of the
density �in dB� at each cell, under an sinusoidal forcing with wave-
length � f =496.32 nm �� f /�x=135�, induced at cell #75. Wave-
length � and cell positions are given in units of �x=0.688 nm. The
sound frequency �in Hz� is f =c /�, where c=942.16 m /s is the
sound velocity. Results were obtained for argon at �=1.34 g /cm3

and T=300 K. A comparison is made between NRBs and PBC. The
leftmost figure depicts the setup used: a wave source �red circle�
impinges sound waves �A5� in both senses; the reflected wave �A1�
is measured at the bottom �x=0� boundary.
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have some effect on r at low frequencies. We note that the
energy of the reflected wave decreases like r2 so values of
r�0.1 can be already sought as nonreflecting. In this sense,
the trend r
10−3�f�x�1.5 is useful to estimate the spatial
resolution ��x� ensuring evacuation of a given frequency:
f�x
20 m /s for r
0.1.

VI. CONCLUSIONS

We have presented a formalism for NRBCs, which allows
one to evacuate sound waves out of an open fluid domain
described by fluctuating hydrodynamics. This set of open
boundary conditions, originally derived for standard CFD,
consists of solving the linearized Navier-Stokes equations at
the open boundary, in the normal-to-boundary direction. A
key difference, when dealing with fluctuating hydrodynam-
ics, is the fact that we are considering very small volumes of
fluid where mass fluctuations are significant. Therefore, the
NRBC formalism should enable the exchange of mass be-
tween the computational domain and its surroundings, aris-
ing from longitudinal stress fluctuations. These fluctuations
are reflected in the variance of the total mass and momentum
of the system whose values at equilibrium are prescribed by
the grand canonical ensemble thermodynamics. Thus, the
purpose of the NRBC in fluctuating hydrodynamics is two-

fold: first, to evacuate large amplitude sound waves and sec-
ond, to drive the system to the proper thermodynamical equi-
librium. These two requirements are met by a stochastic
equation for the amplitude of the incoming waves, which
needs to be postulated in the NRBC formalism. On one hand,
the deterministic part of this boundary equation ensures the
so-called “plane-wave masking” �30�, which avoids the re-
flection of sound waves with amplitudes larger than the ther-
mal noise. On the other hand, the random stress near the
boundary acts as a source of random waves into the system.
By including the longitudinal stress fluctuations into the
boundary equation analysis, we could derive a fluctuation-
dissipation balance for the incoming waves amplitude which
takes into account the thermodynamic equilibrium conditions
to fit the only free parameter of the system: the relaxation
rate of the incoming waves, K. We obtained K=�L / ��r�x�2,
where �L is the longitudinal kinematic viscosity of the fluid,
�x is the computational cell size and �R is a nondimensional
length. We show that �R=0.4 provides the correct total mass
variance regardless of the fluid properties and mesh reso-
lution. An interesting outcome is that the relaxation rate K
actually controls the power spectra of density and momen-
tum inside the entire system; this might be useful to tune the
sound power spectra in other types of scenarios, such as
turbulence.

The present method avoids some of the finite size effects
induced by periodic boundaries in fluid-particle simulations
and more importantly it provides a useful tool for the simu-
lation of problems involving the propagation of sound
waves, such as the design of ultrasound devices or the study
of nanoparticle-ultrasound interaction.
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APPENDIX A: FLUCTUATING HYDRODYNAMICS
IN A STAGGERED GRID

The finite volume method is used to solve the fluctuating
Navier-Stokes equations. Spatial gradients are discretized us-
ing centered differences and time integration is done by a
fully explicit Euler scheme. The time step was set to �t

10 fs, yielding a Courant number c�t /�x�0.01, similar
to those used in previous works �20,36�. The Euler scheme
requires relatively small time steps to keep thermodynamic
consistency for density fluctuations and also to recover
proper hydrodynamics. An accuracy test, similar to that pre-
sented in Ref. �20�, showed that the time autocorrelation of
short-wavelength modes is correct up to the spatial reso-
lution limit �5�x. In passing, we note that it is possible to
increase �t by using more elaborate time integration
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FIG. 11. �Color online� The reflection coefficient r calculated as
the ratio between maximum amplitudes of the reflected and forced

wave r= Â1
max / Â5

max. Results correspond to liquid argon at �
=1.0 g /cm3 and water �both at T=300 K�, whose sound velocities
are cargon=577.7 m /s and cwater=1480 m /s. Results obtained by
Polifke et al. �30� from large eddy simulation of turbulent flow have
also been included. �a� The reflection coefficient vs the nondimen-
sional wavelength � /�x and �b� vs the group f�x, where f =� /c is
the frequency in Hz. The dashed line corresponds to the best fit to
our results r
10−3�f�x�1.5.
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schemes �36�. Most of the previous works on fluctuating hy-
drodynamics �19,20,36� have implemented their numerical
scheme in a collocated grid, whereby all the set of flow vari-
ables are resolved at the same position of each volume cell:
its center. In this work we have implemented a staggered grid
for fluctuating hydrodynamics. The staggered arrangement is
illustrated in Fig. 12. Each scalar variable �density and pres-
sure in our case� is computed at the cell centers while the
velocity components are resolved at the cell faces. A previ-
ous work by Garcia et al. �37� made use of a staggered grid
arrangement wherein velocity and temperature were resolved
at the integration cell faces and density at the integration cell
centers in the aim to well define the boundary condition on
the mass flux.

Compared to a collocated grid, the staggered grid used
here provides a much better coupling between the pressure
and velocity field. This results in several advantages: first, it
avoids the formation of numerical pressure and velocity os-
cillations �see Patankar �38�� and second, the boundary con-
ditions are well defined. In the staggered arrangement one
requires an explicit boundary condition for the velocity and
density but there is no need of defining an extra boundary
condition for the pressure. In any case, the NRBC formula-
tion can be also applied in collocated �both regular or un-
structured� grids and even for turbulent flows �see, e.g., �9��.

We briefly describe the discrete operators involved in a
finite volume formulation applied to a staggered grid ar-
rangement; details can be found in Ref. �38�. Conservation
equations can be cast in the general form

���

�t
= − ���u� − J�� , �A1�

where �=1 for mass and �=u for momentum conservation
equations. In the mass equation J1=0, while Ju= �p1+�� is
the pressure tensor appearing in the momentum equation.
The conservation equations �A1� are integrated over control
cells of volume V. By integrating Eq. �A1� and applying the
Gauss theorem to the convection and gradient terms, one
gets

V
��c�c�k − ��c�c�k−1

�t
= − �

f

�� fuf · S f� f − �J�� f · S f�k−1.

�A2�

The cell center of the integration volume in the above equa-
tions is noted by the subscript c, while f stands for the face
of the integration domain. Superscript “k” in Eq. �A2� refers

to the integration time tk=k�t and the face area �normal�
vector is S f.

As stated, in the staggered grid arrangement the scalar
variables �density and pressure� are resolved at the volume
cell center while the velocity vector components are defined
at the cell faces �we actually solve the momentum equation
using the velocity as the primitive variable�. To be consistent
with this choice, as shown in Fig. 12, the centers of the
control cells for the mass equation are placed at the volume
cell centers, i.e., c→xi in Eq. �A2�. In the momentum equa-
tion the center of the integration volume is located at the cell
faces; i.e., c→xi+�x /2 in Eq. �A2�. As an example, in one
dimension, the mass equation is integrated over xi−�x /2
�x�xi+�x /2, while the momentum equation is integrated
over xi�x�xi+1. Whenever necessary variables are interpo-
lated, as done in the standard finite volume method �38�: for
instance, the computation in the mass equation of the flux
at the face located at xi+�x /2; is calculated as � fuf
=0.5��i+�i+1�uf.

APPENDIX B: NONREFLECTING
BOUNDARY CONDITIONS

For completeness we first describe the implementation of
periodic boundaries and rigid walls. At the west boundary,
periodic boundary conditions imply �0=�n and uf0

=ufn
,

while at the east boundary, �n+1=�1 and un+1=u1. Rigid wall
boundary conditions are implemented as �0=�1 and uf0

=0 at
the west boundary and �n+1=�n and ufn

=0 at the east bound-
ary. A benefit of the staggered grid arrangement is that
boundary conditions on the pressure are not required.

Let us now focus on the implementation of the nonreflect-
ing boundaries. We first deal with the east outflow boundary.
The relations giving the time variation amplitudes L5 and L1
�see Eqs. �11� and �14�� are discretized at the first face cell
located upward of the outflow boundary, i.e., at xn−1+�x /2
�see Fig. 12�; so that the discretized relations take the form

L5 = �5� pn − pn−1

�x
+ �ec

un − un−1

�x
	, �5 = ufn−1

+ c ,

�B1�

where �n, �n−1, pn, pn−1, un, and un−1 are the values taken at
the cell centers located at xn and xn−1, for the density, pres-
sure, and velocity, respectively. Due to the staggered grid
arrangement, the velocities un and un−1 have to be interpo-
lated, this is done by a simple linear interpolation.

un =
1

2
�uBC + ufn−1

� and un−1 =
1

2
�ufn−1

+ ufn−2
� .

�B2�

The time amplitude variation, L1 �see Eq. �25��, is also
computed at the first face, xn−1+�x /2, upwards the outflow
boundary condition, so that

L1 = K�ecA1, �B3�

where

pi

ρi

pn

ρn

pn-1

ρn−1

∆x
xn

ρn+1

ufn-1
ufi

uBCufn
=

xn-1

EAST
boundary

FIG. 12. Staggered grid scheme near the east boundary.
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A1 =
1

2
� pfn−1

− pe

�ec
− ufn−1

	 , �B4�

where pfn−1
is the pressure interpolated at the face cell n−1

given by pfn−1
= �pn+ pn−1� /2.

The velocity at the border uBC is solved from numerical
integration of Eq. �18�, using a Euler scheme,

uBC
t+�t = uBC

t −
�t

2�ec
�L5

t + L1
t � . �B5�

The density at the boundary �BC could be, in principle,
obtained from time integration of Eq. �16�. However, we
found that the solution of Eq. �16� leads to numerical insta-
bility. Instead, we used an equivalent formulation of the
LODI equations based on the spatial gradient at the border
�see Ref. �7��,

� ��

�x
	

BC
=

1

c2�L2

�2
+

1

2
�L5

�5
+

L1

�1
	
 , �B6�

where �i are given by Eq. �15� �with u also measured at the
f −1 face�, and the whole right-hand side of Eq. �B6� is mea-
sured at time t. We note that in the present work heat is not
included so that L2=0.

By defining �n+1 as the density at the ghost cell n+1 �re-
quired to define �BC and ��� /�x�BC�, the density value at the
east frontier of the domain is given as follows:

�n+1 = �n + � ��

�x
	

BC
�x . �B7�

At equilibrium and low Reynolds number calculations
considered here, the density gradient at the boundary was
found to be negligibly small. In practice, the zero mass flux
condition,

�n+1 = �n ��BC = �n� �B8�

was found to provide similar results to Eq. �B7�.
For the derivation of the open boundary condition at the

west border of the computational domain, one needs to note
that the outgoing waves now correspond to the amplitudes A5
and the incoming wave to A1. Also, one needs to take into
account that the x axis is reversed. The variation of the out-
going wave is thus computed from

L1 = − �1� p2 − p1

�x
− �ec

u2 − u1

�x
	, �1 = uf1

− c , �B9�

while the incoming wave variation is approximated by

L5 = − K�ecA5, �B10�

with

A5 =
1

2
� pf1

− pe

�ec
+ uf1

	 . �B11�

u1, u2, and pf1
are estimated by linear interpolation.
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