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Electromagnetic transparency by coated spheres with radial anisotropy
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We establish an account of electromagnetic scattering by coated spheres with radial dielectric and magnetic
anisotropy. Within full-wave scattering theory, we show that the total scattering cross section Q; is strongly
dependent on both the dielectric anisotropy and magnetic anisotropy. As a consequence, by a suitable adjust-
ment of the radius ratio, one may make the anisotropic coated particle nearly transparent or invisible. In the
quasistatic case, we take one step forward to derive the effective permittivity and permeability for the coated
particle, and the near-zero scattering radius ratio can be well described within effective medium theory. To
one’s interest, the introduction of radial anisotropy is helpful to achieve better transparency quality such as a
much smaller Q, and wider range of near-zero scattering ratio. Moreover, when the coated particle is aniso-
tropic, the position of the near-zero scattering radius ratio can be tunable, resulting in a tunable electromagnetic

cloaking.
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I. INTRODUCTION

The creation of an electromagnetic cloak of invisibility
has received much attention in recent years because of its
potential applications in nanotechnology and engineering.
For instance, planes and weapons with cloaks may be invis-
ible to radar, which is very important for military purposes.
To achieve “invisibility” or “low observability” for an object
in electromagnetic waves, various methods or schemes were
put forward such as the coordinate transformation [ 1-3], tun-
neling light transmittance [4,5], partial resonance [6,7], and
zero-scattering mechanism in the dipolar limit [8]. Later, Cai
et al. proposed the design of a nonmagnetic cylindrical cloak
operating at optical frequencies based on a coordinate trans-
formation [9,10]. The optical cloak is of great potential in-
terest and brings us one step closer to the ultimate illusion of
optical invisibility.

In addition, based on Mie scattering theory [11,12], the
use of coating materials with metamaterials or plasmonic
materials can drastically reduce the total scattering section of
spherical or cylindrical objects, and hence make the objects
“invisible” or “transparent” [13]. Since the realization of
transparency relies on the nonresonant mechanism, it is al-
most invariant with the change of the shape, geometrical, and
electromagnetic properties of the cloaked object [14]. Fur-
ther investigation on cloaking and transparency was made
for more realistic systems such as collections of particles
with metamaterial and plasmonic covers [15], multilayered
spheres, coated spheroids, and two-phase random mixtures
[16]. In the quasistatic case, the transparency condition, un-
der which the total scattering section of the composite par-
ticles is zero, was derived based on “neutral inclusion” idea
[16]. Moreover, in metal and dielectric microspheres, with
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the proper design of the metal and dielectric shell, the dis-
persion spectra of the system can be tailored to make the
forward-scattering cross section suppressed, resulting in
plasmon-assisted transparency [17]. More recently, achieving
transparency and maximizing scattering with metamaterial-
coated conducting cylinders has been given [18].

In this paper, in order to achieve better transparency or
invisibility, we would like to consider coated spheres with
radial anisotropy in physical properties including both per-
mittivity and permeability tensors. To one’s interest, here the
anisotropic tensors are assumed to be radially anisotropic;
i.e., they are diagonal in spherical coordinates with values e,
(u,) in the radial direction and €, (w,) in the tangential direc-
tions. Actually, such kind of anisotropy was indeed found in
phospholipid vesicle systems [19,20] and in cell membranes
containing mobile charges [21,22]. Furthermore, the radial
anisotropy can be easily established from a problem of gra-
phitic multishells [23], spherically stratified medium [24]. In
the quasistatic limit, the third-order nonlinear optical suscep-
tibility in graded mixtures [25] and the second and third-
harmonic generations for a suspensions of coated particles
[26] were investigated, and it was found that the choice of
radial anisotropy plays a role in determining the magnitude
of nonlinearity enhancement and resonant frequencies
[25,26].

Motivated by the recent progress in an analytical demon-
stration of perfect invisibility for Pendry’s cloak [27], the
interactions of electromagnetic waves with the coated sphere
of radial anisotropies in both electric and magnetric param-
eters have been established based on full-wave electromag-
netic scattering theory [11]. Incidentally, scattering by solid
particles of radial anisotropy was investigated analytically
and numerically for parametric studies by the concept aniso-
tropy ratio [28]. More recently, peculiar light scattering and
the role of anisotropy in plasmonic resonances were studied
[29], and dyadic Green’s functions for arbitrarily mulitlay-
ered radially anisotropic spheres were established [30].

In addition to the analytical establishment of Debye po-
tentials and the scattering coefficients, we aim at the effects

©2008 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.78.046609

GAO et al.

incident

wave E
E—

FIG. 1. Geometry of scattering of a plane wave by a coated
sphere with permittivity and permeability tensors.

of anisotropic parameters in the core and/or the shell on the
reduction of the total scattering section, so as to make the
objects nearly “transparent” or “invisible.” In the quasistatic
limit, we present an effective medium theory that simulta-
neously determines the effective permittivity and permeabil-
ity of coated particles with radial anisotropy. As a conse-
quence, the approximate transparency conditions can be
derived as a first step to design the reduction of total scatter-
ing section of coated particles whose dimensions are compa-
rable with the wavelength of operation.

We turn now to the body of the paper. We derive the wave
equations for the coated sphere with dielectric and magnetic
anisotropies in both the core and the shell in Sec. II. In Sec.
III, from the boundary conditions, Mie scattering coefficients
are determined and the far-field solution is given. An effec-
tive medium theory for radially anisotropic magnetodielec-
tric coated spheres is proposed and the near-transparency
condition is derived in the quasistatic limit in Sec. IV. In Sec.
V, numerical results are shown. The paper ends with a dis-
cussion and conclusion in Sec. VI.

II. EQUATIONS FOR DEBYE POTENTIALS AND FIELDS

We consider electromagnetic scattering of a plane wave
by a coated spherical particle with radial anisotropy when the
polarized wave with unit amplituMEi:exe"kﬂZ is incident
upon it (see Fig. 1), where ky= wVeyuo=w/c and €, and w,
are the permittivity and permeability for a vacuum. The
coated particle is composed of a core of radius a and permit-
tivity (permeability) tensors €, (i,) and a shell of radius b
and tensors €, (i,). Here we assume that the core and the
shell are a kind of rotationally uniaxial material characterized
by radial anisotropy,

€; 0 0 My 0 0
€=|10 & 0] =0 w 0], (1)
0 0 €; 0 0 Mz

where €;, (u;,) and €;, (u;,) stand for the permittivity (perme-
ability) elements corresponding to the electric- (magnetic-)
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field vector normal to and tangent to the local optical axis for
i=c,s. For a harmonic electromagnetic wave (i.e., E~ e
with Maxwell equations, the time-independent parts of the
local electric and magnetic fields are written as

s

VX H=-iweE, (2)

VXE=iogZH. (3)

In spherical polar coordinates, Egs. (1) and (2) become
[31-33]

1 (&(rH¢sin 6) &(rH0)> e, B
- =~ lweE; Ly,

> sin 0 a0 )

1 oH, d(rH,sin 6
_(_’ _ L{Q) [ iwfitEo,
rsin 0\ d¢ ar

1 (a(rH(,) _OH,

o . ) =-iwe,E, 4)

r

and

1 (ﬁ(rEd, sin 6)  d(rEy)

= —iwu,H,,
(90 {9¢ ) ler r

r* sin 6

1 JE, J(rE,sin 6
_<_’ _ (_u> I iw/»’vi;Hg,
rsin 0\ d¢ ar

(4B o

or 90 ) =—iou;H . (5)

,

We shall solve Egs. (4) and (5) together with boundary
conditions including the continuities of Eg, E4, Hy, and H .
Actually, the solution of the above equations can be regarded
as a superposition of two linearly independent fields such as
(Eqp-Hpy) and (Eqg,Hpg), possessing the properties E, 1,
=E,, H,7,=0 for transverse magnetic (TM) waves and
E,75=0, H, 7z=H, for transverse electric (TE) ones [32,34].
Then the Debye potential for the TM case ®p,, can be de-
fined as [31]

E _ lﬁz(r‘bTM) o1 F(r®qyy)
N ST L sin 0 ardep
iwe;, A(rdry) iwe;, Ard )
Hymy=-——=— Hypy=—t=— (6
o rsin @ d¢o &I r a0 ©)
By means of Egs. (2)—(6), it can be shown that ®, satisfies
&, 1 F(r®ry) 1L a( . Py 1 POy
—= 5t 5 |sin6 + 53 >
€, r O r°sin 090 a0 r°sin® 0 d¢
+ €4 Py = 0. (7)

The Debye potential for the TE case ®y,, has a similar form
as Eq. (7), i.e.,

i 1 P (r®Pyy) 1L af . P 1 PPy
I 5 + 5 . — | Ssim & + D) 5
Mg ¥ Or r°sin 096 a0 rsin” 0 d¢

+ o ;€ P = 0. (®)
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By separation of variables, the solutions of Egs. (7) and
(8) are

1

r(I)TM 2 E [Cl lr//v (k tr) +dl XU (kzlr)]P(m)(Cos 0)
1=0 m=-1

X[a™ cos(mep) + bM sin(mep)], )

rd= 2 E it (ki) + d]" X, (Kiir) 1P} (cos 6)
=0 m=-1

X [a;E cos(mda) + b:f sin(me)],

where a, b, ¢, and d are coefficients whose values are deter-
mined by the relevant boundary conditions, P m)(cos 0) are
the associated Legendre polynomials, k;,= wV €;,1;

€;; 1 1

=\/l(l+1)—+—--—

v = D+ =
(10)

and ¢, and Y, are the Ricatti-Bessel functions defined by

l//u(x) \/ = v+l/2(x) Xv(x)=— \/?an/z(x),

(11)

where J,,;,(x) and N,,,(x) are the Bessel functions and
Neumann functions. Once the potentials for the TM and TE
cases are given, the complete solution of the fields can be
written in the form by adding the two fields,

- 52(V(I)TM)

ar?

1(1+1)er

2
+ @ € i Py,

iou; drdrg)

l&z(rq)TM) +
rsin@ d¢

r  ordf

E9=

)

1 32(VCDTM) _ iow;, d(r®rp)

E¢, = A
rsin @ drdg r a0

s (r®qp)
= a2 + wzfizﬂizr Drg,

i(1)€l-t é’(rq)TM) l U"Z(r(DTE)

Hy=-
g rsin@ d¢ r ordf

_ iwéi, 0(r®TM) + 1 82(}’(1)17;)
Ty a0 rsin @ drdgp

(12)

To this point, we have derived the equations for Debye po-
tentials and the electric and magnetic vectors in terms of
Debye potentials. In what follows, we shall apply the formu-
las to the coated sphere with radial anisotropy in both the
permittivity and permeability tensors.
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III. MIE COEFFICIENTS AND SCATTERING
CROSS SECTION

When the incident plane polarized wave, propagating
along the positive z axis, has its electric vector of unit am-
plitude vibrating parallel to the x axis, it is characterized by
[31,35]

. . . . [ € .
E" = exelkor cos 0, H" = ey M_ezkor cos 0. (13)
0

Correspondingly, the Debye potentials for incident fields
can be expressed as

20+ 1
V(I)m __E .[—1
MRS -

(/rl(kor)P(l)(cos O)cos ¢,

1 o, 2+
(l+1)

’"‘DiTnE_ ¢1(k0r)P§l)(cos f)sin ¢,
ko 1ol €9 =1

(14)

while for the scattering wave, they should be written as

. 20+1
r(IJ‘TMz——E -1

——A™M g (k r)P(l)(cos O)cos ¢,
ko a+ntt

1 w20+
1
K\polegim  1I+1)

rdy=- A,TEQ“,(er)Pgl)(cos f)sin ¢,

(15)

where {(x)= ¢,(x)—1)(1(x)—\ x/ 2H1 +12(x), with the first-
kind Hankel functions H},,,(x).

For the core and the shell, the Debye potentials are de-
scribed by Eq. (9). However, due to orthogonality between
Pgl)(x) and P,’")(x) for m# 1, only the term with m=1 sur-
vives. As a result, for the shell, the Debye potentials are

21+ 1
r(I)STM E i 1 ‘r/fv (kstr) +E Xv (kstr)]P( )
?tl 1 I+ 1)
X (cos f)cos ¢,
1 21 +1
rd®’,. = — l [DTE (k\' V)
TE kz-t\’//-lv()/f() P l(l + ) l 17[}1) t
+E* Xo! (k tr)]P( )(cos 6)sin b, (16)

while for the core, they are given by

21+ 1
r®S,, =— P 2 = 1 D TMz,bvil(kC,r)Pgl)(cos 6)cos ¢,
Lt =1
1 Zl +1
rdS,. = — it TEl//U (kL r)P(l)
T R uyein W+ : !

X (cos 6)sin ¢. (17)

To derive the scattering coefficients A/” and A/, the
boundary conditions [which can be derived from Eq. (12)]
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must be applied. For the present model, they are

¢ _ s c _ s
€ Py = €7 Py et Prp= pyr P,

A(rd M) Ardy,,)  ardy E) Ar®yy)

atr=a,
or ar ar ar
(18)
and
|
Mst'ﬁz(kob) /J’O(v[,vi_l(kstb)
Kt (kob) Koty (kub)

0 Merthy! (k1)
0 kctwl:l_l(ksta)

u’”‘brM = for(‘b
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+ D5, P = ur (q)iTnE + b1,
ANrdy,) B Ardi, + rdss,)
or or ’
Ardy,) _ &(rCI)iT"E+ rCDSTCE), b, (19)

ar

or

Substituting Eqs. (14)—(17) into Egs. (18) and (19) yields

'U“O)(”i-l (kyb)
koX;i 1 (ky;b)
MerXo!, (Kyict)
kch;i_l (kya)

0
0

- Mxlwvil (kcta)
- kst 1,0;11 (kcta)

(20)

AM =
wadilkob)  Hoth! (keb)  poxe! (Kyib) 0
Kl (ko) Koty (k) Koxyi (Kyb) 0
0 Mol (k@) pex! (kga) = poihyt (ko)
0 kadf,’,il(ksza) kclel,il(ksza) _kszl//l:il(kcra)
eqth(kob) €t (kb)  €oxy! (kyib) 0
Kt (kgb) Koty (kub) - Koy (kyb) 0
0 byt (ka)  €qxl (k) — €yt (ko)
0 ket (k) kexy (kga) =kt (keq)
AITE= 52 52 2
€, )(kob) Eo%iz(kstb) 60Xvi2(kstb) 0
kol (kob) Koyt (k) Ko, (Kib) 0
0 byl (k) €axl (k) — €yt (ko)
0 kct'r//l,,iz(ksza) kctXl:iz(ksta) _kst'r//;lcz(kcta)

where the primes on ¢, x, and { denote differentiations with
respect to the arguments.

The full-wave total scattering cross section of the coated
particles is defined by

s=—22 Q@1+ DA + AT, (22)
() =

In addition, the scattering (the far field) of linearly polar-
ized light by the coated particle can be well described by the
two basic scattering amplitudes [31,35]

; (21)

NMUE E

=11+

$,(6) = 2;;”{

20+1 { TMPEI)(COS 0) +ATEdPEI)(cos 0)]
1) Al no ! de ’
TEPII)(COS 0) ATMdPEI)(cos 0)
sin 6 ! do '

(23)

IV. EFFECTIVE MEDIUM THEORY

IN THE QUASISTATIC LIMIT

In this section, we aim at deriving the effective permittiv-
ity and permeability for the coated particles in long-

046609-4



ELECTROMAGNETIC TRANSPARENCY BY COATED ... PHYSICAL REVIEW E 78, 046609 (2008)

-wavelength and low-frequency limit. Note that the effective moments proportional to (kyb)>*! are expected to be quite
permittivity and permeability are isotropic for radial aniso- small, and we may keep only the dipole terms /=1. In this
tropy [36]. In the long-wavelength limit kob < 1, higher-order sense, the dipole field coefficient for the TM case is

praith (kob) - Hothy! (Kyib) psith(kob) - BoXy! (ksb)
! Pl - ! P2
o | Kathilkgb) Kot (ko) it Uegh)  kox,1 (ki) »
A= ’ : —. 24
1 ol i (kob)  Hoth! (ksb) trali(kob)  BoXo! (Kib)
! Pl - ! P2
ksl (kob) Kot (k) (o) Kox1 (kD)
with
Pl = Mstkcflllvil(kcta)Xl:l_l(ksta) - /'LkaS[Xl);l(kS[a) lzyli"l(kcta)’
Py= Mslkctwvil(kcta)(/l;ll(ksta) - Mctkstl/fv:ll(ksta) wl,,ll(kcza)- (25)

Incidentally, the dipole coefficient for the TE case AITE can be obtained from Egs. (24) and (25) by replacements of e— u and
v;1 — U, respectively. In the long-wavelength (kob<<1) and low-frequency (k;b<<1) limits, since the arguments for the
functions ¢, y, and { are small, the leading terms for these functions can only be retained, that is,

a2 [ x\? Nax2(n + 1/2) (2 |12
VPRIV R 20
where I'(-++) is the Euler gamma function.
Substituting Eq. (26) into Eqgs. (24) and (25) and those for A!* leads to
a (2v!+1)
(Exrv‘:] - 60)[Ecrvil + Esr(l + v.:l)] + (Z) [60 + (1 + U;I)ﬁvr](ecrvil - esrvil)
AM=c ; ,
(2v 4 +1)
a sl
(e,0) +2€) €, v} + €, (1+v!)]+ (;) 26— (1 +v!)e, )€l —€.v))
1 1 1 a Cogre) 1 1 1
(V52 = o) eV er + p(1 +05) ] + (Z) Lo + (1 +0 o) s J(fe0 g = f25,050)
Aff=cC (2vl,+1) ' 27)
a s
(lusrvs12 + 2/“00)[/~‘LcrU52 + Iu‘sr(1 + U;Z)] + (Z) [2/1‘0 - (1 + U;Z)/“Lsr](lu‘srv;Z - /"LcrviZ)

with C=3i(kb)>.

To search for the effective responses for coated particles, one always assumes that the coated particles of radial anisotropy
are embedded in an effective medium with isotropic effective permittivity €, and permeability u, . In this sense, they can be
determined by the condition that both AlTM and AITE vanish, if €, and u, are replaced by €, and w4 [37]. As a result, we have

1 1 1 ! 1 1 1
e, vl [e, vl + (1+v!)e, ]+ (@b)®s V(1 +vl)e, (e.,0), - €,0]))

Eoff = , (28)

1 1 ! 1 1
€Vt (l + vy])esr_ (a/b)(ZUX1+1)(Ecrvcl - fxrvs])

1
Lo = :u’srviz[:u’crvg-z + (1 + U;z)/-l“sr] + (a/b)(2v>r2+l)(1 + v;z)/-l“sr(lu“crvla — I(’LSVU;Z)
eff~ ’

1 1 (20 +1) 1 1 (29)
MerUcn + (1 + Usz)#sr - (a/b) 52 (/J’crvc2 - Iu“srv,yz)

Now, the coated sphere particle is regarded as a uniform sphere in the long-wavelength and low-frequency limit, and the
normalized scattering cross section may be simplified as [31]
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9 _ 647T4<£>6( Eoff— € Mefr — Mo 2)
)\% 3 )\0 eéfff+ 260 /'l’eff+ 2/"“0 ’

(30)

where Ng=2/k. It is evident that for €,,=¢€y and p.p= o,
Q, is zero, making the coated particles invisible or transpar-
ent to an outside observer. However, for magnetodielectric
coated particles, the conditions €,,=¢; and w,;=p( cannot
be satisfied simultaneously for a given a/b. Consequently,
the coated particle may be nearly invisible if Q, achieves a
minimum for certain a/b. The condition for near transpar-
ency is determined by the relation

(Meff— o) o d,U«eff _
(Ptepp+ 20)° d(alb)

For nonmagnetic (or pure magnetic) coated particles, g,
(&) is equal to g (). In this connection, to make the
coated particle (nearly) transparent, from Eq. (31) one yields
€,7r= €0 (Mefr= o) corresponding to

(€7~ €€y deyyr
(eeff+ 260)3 d(a/b)

0. (31)

1 1 1 1(2o! +1
a (ﬁvrvsl - e-0)|:Ecrvcl + Esr(vsl + 1)] ( Usit )

a_ 32
b (Esrvsll - fcrvi1)[€0 + e_Sr(l + vsll)] ( )
for nonmagnetic particles and
1
C_l — (ILLSVU;Z - :u’O)[:u’crUiZ + Iu“sr(U:Q + l)] l/(2v52+1)
b (#SI"USI'Z - Iu“crUiZ)[lu“O + lusr(l + UA:Z)]
(33)

for magnetic materials. It is evident that for isotropic coated
particles, Eq. (32) is exactly the same as the transparency
condition derived by Alu and Engheta [13] and Zhou and Hu
[16], respectively.

V. NUMERICAL RESULTS

In what follows, we perform numerical calculations for
the normalized scattering section Q,/ )\(2) with Eq. (22) (valid
for general full-wave scattering), and Eq. (30) (valid for the
quasistatic limit including long-wavelength and low-
frequency limits).

In Fig. 2, Q, is shown for the coated dielectric sphere with
plasmonic shell and the core of radial dielectric anisotropy as
a function of the the radius ratio a/b for various particles
sizes. We find that for small particle sizes such as b
=0.01)\, [see Fig. 2(b)], Eq. (30) yields the same results as
the Mie full-wave scattering theory, Eq. (22), as expected.
The scattering cross section is almost zero, indicating the
transparency or “invisibility” of the particles, when a/b takes
some values, which can be exactly determined by the rela-
tion that €= ¢ [see Fig. 2(a)]. In addition, for small a/b,
one can get the effective permittivity €, of coated particles
to be —2¢,. As a result, strong resonant behavior takes place
as predicted from Eq. (30). For large particles in Figs. 2(c)
and 2(d), the number of multipolar terms contributing to the
scattering increases rapidly, and hence one cannot resort to
effective medium theory. In this situation, we still find that
Q, exhibits a significant reduction at small radius ratio, in

PHYSICAL REVIEW E 78, 046609 (2008)

log,, (@A)

alb

FIG. 2. (Color online) (a) The effective permittivity €, of the
coated dielectric particle versus radius ratio a/b for €,=2¢€, (black
solid line), 4¢€, (red dashed line), and 6¢, (green dotted line), (b)
normalized scattering section Qs/)\(z) of the coated particle for the
full-wave case with b=0.01\ for €,=2¢, (black solid line), 4¢,
(red dashed line), and 6¢, (green dotted line) and for the effective
medium for €.,=2¢, (black dash-dotted line), 4¢, (red short dashed
line), and 6¢€, (green short dotted line), and (c) and (d) Q,/ )\(2, for the
full-wave case with b=0.1\, and b=0.2\, for €.,=2¢, (black solid
line), 4¢€, (red dashed line), and 6¢, (green dotted line). Other pa-
rameters are 6(:r=4609 €= Est=_360’ and Meer= Mer= Mgr= Mg = Mo-
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0.0 . : : -
0.5 0.6 0.7 0.8 0.9 1.0

a/b

FIG. 3. (Color online) Similar as Fig. 2, but for the radial di-
electric anisotropy in the shell. Other parameters are e€.=¢€,.

2_360’ fsr=10€0, and Foer= M= Mogr= st = Ho-

comparison with the quasistatic case. To one’s interest, when
the dielectric anisotropy is taken into account, decreasing €,
may result in a much lower scattering section (near zero
scattering section) and thereby better transparency at the cost
of large size of plasmonic shell. For instance, for small di-
electric anisotropy €,=2, one achieves a smaller scattering
section than the one for the isotropic case, €,=4. One further
notes that from Fig. 2(d), close to the “near-zero-scattering”
ratio, a sharp peak exists, resulting from the resonant phe-
nomenon of A2 (not shown here).

In Fig. 3, we apply the transparency phenomenon to a
plasmonic particle with a coating shell of radial dielectric

PHYSICAL REVIEW E 78, 046609 (2008)

4 | :
1/
_Zu ” //
B ”
3{ (@ o 7
—Hct_4u0 VVV//
S5 2
=7
1
0
-8
< 0
g
& 12y
14
“:\<c
gm
o
o
0.06 '
(d)
o~ 004-
§°
GIIA
0.02-
0.00 ——==
05 0.6

a/b

FIG. 4. (Color online) Same as Fig. 2, but for coated magnetic
particles with radial magnetic anisotropy in the core. Other param-
eters are lu'cr=4:u’0’ lu'srzlustzo'slu’O’ and €cr=€c= €Egp= €= €.

anisotropy. In the quasistatic limit, for an isotropic shell €,
=¢€,=10, one would expect that the coated particle is trans-
parent for a/b=~0.825, at which €,=¢), as shown in Fig.
3(a). Good agreement is again found between full-wave
theory and effective medium theory. Incidentally, since the
core is plasmonic, the resonance takes place in the thin shell
limit a/b—1. A more interesting phenomenon is that
through the suitable adjustment of dielectric anisotropy in
the shell, one can achieve a much small scattering section
and tune the near-zero scattering radius ratio. In detail, the
minimum of Q, for the anisotropic case with €,=5, which
occurs at a/b=0.69, is one order smaller than the one for the
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1.5 T
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FIG. 5. (Color online) Same as Fig. 4, but for coated magnetic
particles with radial magnetic anisotropy in the shell. Parameters

are pey= Iu’L't=4lu’0’ lu'srzo'slu'o’ and €cr= €= €gp= €= €.

isotropic case with €,=10 at a/b=0.825, thus resulting in
much better transparent behavior. Therefore, to get better
transparency, we require the permittivity in the radial direc-
tion to be larger than the one in the transverse direction. This
should be in contrast with that in Ref. [3], in which the
permittivity in the radial direction is smaller than the tangen-
tial one. Actually, the latter is based on the coordinate trans-
formation technique, while our work is based on the dipole-
canceling mechanism [13]. As for large coated particles,
more resonant peaks or bands are predicted due to high-order
resonant modes [see Fig. 3(d)]. Here we emphasize that since
the transparency phenomenon does not result from the reso-
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FIG. 6. Q,/\} for (a) b=0.01\ and (b) b=0.2\, and (c) con-
tributions of the several scattering coefficients such as A" (solid
line), ATX (dashed line), A2 (dotted line), A2 (dash-dotted line),
AgM (short dashed line), and AgE (short dotted line) versus a/b for
the magnetodielectric coated particle with both radially dielectric
and magnetic anisotropy. Parameters are €..=4¢€;, €,=2€), M.,

= Mot = Mos €gr= 6?!2_3603 /.LS,ZO.Z/.LO, and /.Lxl:O.S,LLO‘

nant effect, one would expect a relatively broad range for the
radius ratio, around which the scattering section is almost
zero. By decreasing the shell anisotropy €, the “near-zero-
scattering” ratio band becomes much broader, accompanied
with much less scattering. As a result, the adjustment of shell
anisotropy may be helpful to improve the transparency qual-
1ty.

In Figs. 4 and 5, only permeability has radial anisotropy.
It is observed that in the quasistatic limit [see Figs. 4(b) and
5(b)], the scattering section can be well described by effec-
tive medium theory and the transparency phenomenon takes
place at the radius ratio, corresponding to the one at which
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FIG. 7. (Color online) Normalized differential cross sections
1,=|8,(0)?/ (kimb?) and 1,=|S,(6)[*/ (kjmb?) as a function of the
scattering angle 6 for b=0.01\, and a/b=0.80 (black solid line),
0.82 (red dashed line), and 0.84 (green dotted line). Other param-
eters are the same as in Fig. 6.

the effective permeability is taken as u instead of €, [see
Figs. 4(a) and 5(a)]. Due to the choice of the positive perme-
ability for the core and the shell, no resonance can be ex-
cited. As a result, there are no sharp peaks for these cases.
On the other hand, for large particle size [see Figs. 4(c) and
5(c)], a near-zero scattering section, making the particle in-
visible or transparent, is still found in a wide range of radius
ratio a/b.

In Fig. 6, we examine the case for the magnetodielecric
coated particle in which the permittivity and permeability are
radially anisotropic. In the quasistatic limit, both the full-
wave expression, Eq. (22), and effective medium theory, Eq.
(30), predict that there exist one enhancement peak and one
near-transparent position, characterized by a nearly zero Q..
Since no magnetic resonance occurs, the resonant peak is due
to the electric resonance. However, magnetic and electric
spectra contribute to the electromagnetic transparency of the
coated particle at a/b=0.82, which should be determined by
Eq. (31), rather than a simple formula €,,=¢) or .= .
For large coated particles, a high-scattering resonant peak
appears due to the AT term as shown in Fig. 6(c). In addi-
tion, the minimum of Q; is not zero, but with an appreciable
scattering. This mainly results from scattering terms such as
ATE and AT™. Therefore, one may expect to tune the aniso-
tropic parameters to decrease the magnitudes of AITE and
AgM , S0 as to realize the near-transparency condition in this
region.

Compared with the isotropic coated sphere [13], the an-
isotropic coated sphere has introduced more physical param-
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FIG. 8. Spatial dependence of the the electric-field ratio in and
around coated particle at transparency condition for (a) €,,=2¢, (b)
€.,=4€y, and (c) €.,=6¢,. The solid curve for the field parallel to the
applied electric field polarization direction E(, and the dotted line
for the one perpendicular to E. Other parameters are the same as in
Fig. 2.

eters for us to achieve transparency. For large particles,
higher-order scattering coefficients AITM and AITM may tend to
zero by our suitable adjustment of these anisotropic physical
parameters.

Next, we would like to aim at the normalized differential
scattering sections I, =|S,(6)[?/ (kimb?) (the scattering pattern
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in the yz plane) and I,=|S,(6)|*/ (kimh?) (the scattering pat-
tern in the xz plane) in Fig. 7. These parameters are very
important because they can be used to calculate the various
experimentally observable scattering variables [19]. In the
quasistatic limit, as we have shown, the coated particles pos-
sess a near-zero scattering section for a/b=0.82 and thus are
transparent. However, as to the discussion of the differential
scattering section, such a choice is not always perfect. For
instance, from Fig. 7(a), we find that the scattered power for
a/b=0.82 (at which Q,=~0) is larger than the one for a/b
=0.80 in the backward direction and the one for a/b=0.84 in
the forward direction. A similar discussion was performed by
Zhou and Hu for acoustic wave transparency [38]. However,
our model is quite different from Pendry’s cloak, in which
zero backscattering is always found even when a type of loss
is introduced [27].

In the end, electric field distributions for the dielectric
coated particle with radial anisotropy in the core is shown in
Fig. 8. For simplicity, the quasistatic case is studied. For
isotropic case [see Fig. 8(b)], it is found that the local field is
uniform in the core. However, the introduction of the dielec-
tric anisotropy leads to large fluctuations in the local field,
which may be useful for the enhancement of optical nonlin-
earity. Here, the principal observation from these curves is
that the field outside the particles is nothing but the applied
field, which proves that the scattered fields are indeed can-
celed. Therefore, the cloaking mechanism here is distin-
guished from Pendry’s idea [1], where the incident fields
cannot penetrate into the core and the fields in the core are
always zero.

VI. CONCLUSION AND DISCUSSION

In this paper, we have established electromagnetic scatter-
ing theory by coated particles of radial electric and magnetic
anisotropies. Effects of anisotropic physical parameters in
both the core and the shell on the total scattering section are
systematically investigated. Based on full-wave scattering
theory, we show that by a suitable adjustment of the radius
ratio, one may make the coated particle nearly transparent or
invisible. In the quasistatic case, the effective medium con-
cept is valid, and we derive effective permittivity and perme-
ability for the coated particle. The near-zero scattering radius
ratio can be well described within effective medium theory.
It shows that the introduction of radial anisotropy may be
helpful to achieve much better transparency such as much

PHYSICAL REVIEW E 78, 046609 (2008)

lower Q, and wider near-zero scattering ratio, and to adjust
the position of the radius ratio, exhibiting a tunable electro-
magnetic transparency.

Here we would like to add a few comments. The key to
realize the electromagnetic transparency of the coated par-
ticles lies in nearly zero value of the numerator of the scat-
tering coefficients. On the other hand, if one needs large
scattering, the anomalous plasmonic resonance should be in-
duced. In this connection, the strong electromagnetic reso-
nance in a large collection of coated particles may create the
negative permeability. As a consequence, one may realize
double-negative metamaterials with coated nonmagnetic
spheres of radially dielectric anisotropy [39]. Therefore, it is
of interest to develop effective medium theory for coated
particles of radial anisotropy beyond the quasistatic limit and
to investigate the effect of anisotropic parameters on the
resonant behavior of the effective permittivity and perme-
ability.

Due to the reduction of both backscattering and forward
scattering, two-dimensional cylindrical cloaks were realized
in experiment [3]. Accordingly, full-wave, finite-element nu-
merical simulations for cylindrical invisibility cloaks were
done [40], and mirage effect whereby the source seems to
radiate from a shifted location, were observed [41]. Theoreti-
cally, Zhang er al. [42] and Ruan er al. [43] investigated the
electromagnetic response of cylindrical invisibility cloaks
within the framework of electromagnetic wave scattering
theory. In this regard, our work can be generalized to two-
dimensional cylindrical invisibility cloaks with radial aniso-
tropy without any difficulty. In the quasistatic case, for
coated cylinders with radially dielectric anisotropy, partial
resonance conditions are derived as se;.+€,=0 and se,,+€,
=0 with s=\¢,/€,, and €. the permittivity of the isotropic
core [44]. When the partial resonance is satisfied, the cloak-
ing may be proved for finite collections of polarizable line
dipoles that lie within a specific distance from a coated cyl-
inder with radial anisotropy [7].
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