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We introduce a 2N-parametric family of maximally superintegrable systems in N dimensions, obtained as a
reduction of an anisotropic harmonic oscillator in a 2N-dimensional configuration space. These systems pos-
sess closed bounded orbits and integrals of motion which are polynomial in the momenta. They generalize
known examples of superintegrable models in the Euclidean plane.
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I. INTRODUCTION

The aim of this paper is to introduce a class of maximally
superintegrable systems that are obtained as a symplectic re-
duction of the anisotropic harmonic oscillator. These systems
depend on a set of N real and N integer parameters and
possess integrals of motion polynomial in the momenta. The
Hamiltonian defining this family is
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1

2�
i=1

N

pi
2 +

1

2�
i=1

N
ki

xi
2 +

�2

2 �
i=1

N

ni
2xi

2. �1�

We recall that in classical mechanics superintegrable �also
known as noncommutatively integrable �1�� systems are
characterized by the fact that they possess more than N func-
tionally independent integrals of motion, globally defined in
a 2N-dimensional phase space. In particular, when the num-
ber of integrals is 2N−1, the systems are said to be maxi-
mally superintegrable. The dynamics of these systems is par-
ticularly interesting: all bounded orbits are closed and
periodic. This issue, for the spherically symmetric potentials,
was first noticed by Bertrand �2�. The phase space topology
is also very rich: it has the structure of a symplectic bifolia-
tion, consisting of the usual Liouville-Arnold invariant fibra-
tion by Lagrangian tori and of a �coisotropic� polar foliation
�3,4�. Apart from the harmonic oscillator and the Kepler po-
tential, many other potentials turn out to be superintegrable,
like the Calogero-Moser potential, the Smorodinsky-
Winternitz system, the Euler top, etc.

A considerable effort has recently been devoted to the
search for superintegrable systems as well as to the study of
the algebraic and analytic properties of these models. For a
recent review of the topic, see �5�.

The notion of superintegrability possesses an interesting
analog in quantum mechanics. Sommerfeld and Bohr were
the first to notice that systems allowing separation of vari-
ables in more than one coordinate system may admit addi-

tional integrals of motion. Superintegrable systems show ac-
cidental degeneracy of the energy levels, which can be
removed by taking into account the quantum numbers asso-
ciated to the additional integrals of motion. One of the best
examples of this phenomenon is provided by the Coulomb
atom �6–8�, which is superintegrable in N dimensions �9,10�.
A systematic search for quantum mechanical potentials ex-
hibiting the property of superintegrability was started in
�11–13�. These models in many cases are also exactly solv-
able, i.e., they possess a spectrum generating algebra, which
allows to compute the whole energy spectrum essentially by
algebraic manipulations �14�. In classical mechanics, the
multiseparability of the Hamilton-Jacobi equation implies
that there should exist at least two different sets of N qua-
dratic integrals of motion in involution. Reduction tech-
niques in both classical and quantum mechanics are well
known �see, for instance, �15��. Essentially, the common idea
of several of the existing approaches is to start from a free
motion Hamiltonian defined in a suitable higher-dimensional
space and to project it down into an appropriate subspace. In
this way, one gets a reduced Hamiltonian that is no longer
free: an integrable potential appears in the lower-dimensional
space �16�. A different point of view, that we adopt here, is to
start instead directly from a nontrivial �i.e., not free� dynami-
cal system in a given phase space and to reduce it to a proper
subspace, in such a way that the superintegrability of the
considered system is inherited by the reduced one.

In this work, we study the reduction of an anisotropic
harmonic oscillator, defined in a 2N-dimensional classical
configuration space. This system is maximally superinte-
grable. It is described by the Hamiltonian

H2N =
1
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2. �2�

We will prove that it can be suitably reduced to the
system �1�, and that this system is still maximally superinte-
grable, with integrals of motion inherited from the system
�2�. This goal is achieved under the assumption
n1=n2 , . . . ,n2N−1=n2N. From a geometrical point of view, the
approach we adopt reposes on the Marsden-Weinstein sym-
plectic reduction scheme �17–19�. Given a symplectic mani-
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fold �M ,��, let K1 , . . . ,Kk be k functions in involution:

�Ki,Kj� = 0, i, j = 1, . . . ,k . �3�

Assume also that dKi are independent at each point. Since
the flows of the associated Hamiltonian vector fields
XK1

, . . . ,XKk
commute, they can be used to define a symplec-

tic action of G=Rk on the manifold. Let J be the momentum
map of this action, and � be a regular value for J. Then we
can conclude that P�ªJ−1��� /G is still a symplectic mani-
fold, of dimension dim M −2k, called the reduced phase
space. In our case, Ki, i=1, . . . ,N, are components of the
angular momentum, J=K1� ¯ �KN is the momentum map,
G=SO�2��SO�2�� ¯ �SO�2� �N times�, and the reduced
space is P�=J−1��� /TN, where TN is the N-dimensional
torus, and dim P�=2N. This procedure is a generalization of
what in celestial mechanics, since the work of Jacobi, is
called “elimination of the nodes” �see �17�, Chap. IX for
details�. The reduced Hamiltonian is reminiscent of the struc-
ture of the original Hamiltonian, defined in the
4N-dimensional phase space, but also possesses a
Rosochatius-type term �20,21�, involving parameters ki cor-
responding to the variables that become ignorable, in addi-
tion to the harmonic part. Therefore, using the reduction pro-
cedure, we obtain the parametric family of Hamiltonian
systems �1�, defined on a reduced phase P�.

The transformations we consider, although very simple,
are nontrivial, since the reduced Hamiltonian is not shape
invariant. Nevertheless, since the reduced system turns out to
be maximally superintegrable, bounded orbits still remain
closed in the reduced space.

For N=2 maximal superintegrability �11,13� and exact
solvability �14� of the system �1� was already established for
n1=n2=1 and for n1=1, n2=2, k2=0. The integrals of motion
in these cases are second order in the momenta.

Here we will show that in the general case �ni and N
arbitrary positive integers and ki arbitrary real numbers� N
integrals can be chosen to be of order two, the other N−1
functionally independent ones of order ni+nN or ni+nN−1.
Other systems possessing third- and higher-order integrals
have been studied in the literature �22–27�.

This paper is directly related to the recent interesting
work by Verrier and Evans �28�, who performed a similar
reducing transformation for the Kepler potential. They found
a superintegrable system in three dimensions possessing a
quartic integral. They also conjectured that the system �1� in
three space dimensions should be maximally superintegrable,
although the explicit expression of the integrals remained to
be determined. In the following, we will prove this conjec-
ture, and also we will establish that the system �1� is maxi-
mally superintegrable in full generality, i.e., for N arbitrary,
providing explicitly the corresponding set of integrals of the
motion.

We learned recently of an article by Evans and Verrier
�29� in which the authors also establish the superintegrability
of the system �1� for N=3. Their results are compatible with
ours, though they express the integrals in terms of Cheby-
shev polynomials. Moreover, they also treat the quantum
analog of system �1� and establish the degeneracy of the

energy levels related to the representation theory of the
group SU�3�.

The paper is organized as follows. In Sec. II, the main
properties of the anisotropic oscillator are briefly reviewed.
Then its reduction to the planar case is studied in detail. We
will show how superintegrability is preserved under a multi-
polar change of variables and subsequent reduction. In Sec.
III, the same problem is treated and solved in full generality.
Some open problems are discussed in the final section.

II. REDUCTION OF THE ANISOTROPIC OSCILLATOR

The anisotropic oscillator in the two-dimensional case in
both classical and quantum mechanics was discussed by
Jauch and Hill �8,30,31�. The system �2� is also known to be
superintegrable in any dimension, if the ratios of the frequen-
cies are rational. Let us consider a 2N-dimensional space and
assume

�1

n1
=

�2

n2
= ¯ =

�2N

n2N
= �, ni � N . �4�

Following �8�, we define the set of invariants in an auxiliary
complex phase space, with coordinates zi , z̄i, i=1, . . . ,2N.
Precisely,

zj = p̂j − inj�yj, z̄ j = p̂j + inj�yj . �5�

It is easily checked that the expressions

cjk = zj
nkz̄k

nj �6�

provide integrals of motion. They can be also arranged in a
real-valued form, as the combinations �1 /2��cij + c̄ij� and
�1 /2i��cij − c̄ij�. In particular, among these integrals we have
the angular momenta

Lik = yip̂k − ykp̂i �7�

�when ni=nk� and the tensor

Tik = p̂ip̂k + nink�
2yiyk. �8�

We will now study reductions of the anisotropic oscillator �2�
and establish the superintegrability of the corresponding dy-
namical systems.

A. Hamiltonian and first integrals: the planar case

We recall the definition of a momentum map. For further
details, see, for instance, �17�. Let �M ,�� be a
2n-dimensional symplectic manifold. Suppose that a Lie
group G acts on M and leaves � invariant. Let g be the Lie
algebra of G, g* its dual space, and �,	 the natural pairing
between the two spaces.

A momentum map for the G action on �M ,�� is a map
J :M→g* such that, for all X�g,

d��J,X	� = iX� .

In particular, if the manifold is exact, i.e., �=d�, and the G
action leaves � invariant as well, we have

JX = iX� .

We will also assume that the map is equivariant with respect
to the coadjoint action Ad* of G on g*, i.e.,
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�Ad
g
*�,X	 = ��,Adg−1X	 ,

for all g�G, ��g*, and X�g.
Let us first consider a simple case, when the anisotropic

oscillator is defined in a symplectic manifold M with
dim M =4. So, �=�i=1

4 dyi∧dp̂i. In order to make the reduc-
tion possible, we select frequencies to be equal in pairs, so
that we have only two independent frequencies. Hence the
system �2� takes the special form

H4 =
1

2
�p̂1

2 + p̂2
2 + p̂3

2 + p̂4
2� +

n1
2�2

2
�y1

2 + y2
2� +

n2
2�2

2
�y3

2 + y4
2� .

�9�

In the auxiliary coordinates z1 , z̄1 , . . . ,z4 , z̄4, we have explic-
itly

z1 = p̂1 − in1�y1, z2 = p̂2 − in1�y2,

z3 = p̂3 − in2�y3, z4 = p̂4 − in2�y4. �10�

Consequently, the Hamiltonian reads

H4 =
1

2�
i=1

4


zi
2. �11�

Put in a matrix form, the set of invariants �6� can be repre-
sented by the matrix

Z = �
z1z̄1 z1z̄2 z1

n2z̄3
n1 z1

n2z̄4
n1

z2z̄1 z2z̄2 z2
n2z̄3

n1 z2
n2z̄4

n1

z3
n1z̄1

n2 z3
n1z̄2

n2 z3z̄3 z3z̄4

z4
n1z̄1

n2 z4
n1z̄2

n2 z4z̄3 z4z̄4

� . �12�

Let us consider now the following change of coordinates:

y1 = x1 cos x3, y2 = x1 sin x3,

y3 = x2 cos x4, y4 = x2 sin x4. �13�

The corresponding momenta read

p̂1 = − p3
sin x3

x1
+ p1 cos x3, p̂2 = p3

cos x3

x1
+ p1 sin x3,

p̂3 = − p4
sin x4

x2
+ p2 cos x4, p̂4 = p4

cos x4

x2
+ p2 sin x4.

�14�

The group T2, which is the group SO�2��SO�2� in the
old coordinates, acts on R4 as follows:

x1� = x1,

x2� = x2,

x3� = x3 + a1,

x4� = x4 + a2. �15�

This group leaves � invariant. The fundamental vector fields
on T*R4 corresponding to this action are

X1 = �x3
, X2 = �x4

, �16�

and, if X=�1X1+�2X2, the momentum map J satisfies

J�a1,a2� = ���1�x3
+ �2�x4

� = �1p3 + �2p4. �17�

Let us choose a regular point in t
2
* �the dual of the Lie alge-

bra of T2�, for instance

p3 = k1, p4 = k2. �18�

The inverse image under J is

J−1�k1,k2� = �p1,p2,k1,k2,x1,x2,x3,x4� . �19�

The stabilizer of this point in t
2
* under the coadjoint action of

T2 is the whole group, because its action is trivial on the p
coordinates.

The reduced phase space is therefore

J−1�k1,k2�/T2 � ��p1,p2,x1,x2� � R4� �20�

and the reduced Hamiltonian is

H2 =
p1

2

2
+

p2
2

2
+

k1

2x1
2 +

k2

2x2
2 +

n1
2

2
�2x1

2 +
n2

2

2
�2x2

2. �21�

Let F be a first integral of the Hamiltonian H4�p̂ ,y�, i.e.,
�H4 ,F�=0. We show now how the original ring of integrals
can be reduced in the low-dimensional phase space. First, we

consider the restriction F̂ of the function F to the manifold
J−1�k1 ,k2�.

Observe that F̂ can be defined on the quotient manifold
J−1�k1 ,k2� /T2, when it is constant on the equivalence

classes, that is, F̂ is independent of x3 ,x4. In this case F̂ can
be factored out in the following way:

J−1(
√

k1,
√

k2)
F̂

��

π

��

R

J−1(
√

k1,
√

k2)/T2

Fr

��
�

�
�

�
�

�
�

�
�

�
�

�
�

where � is the canonical projection and

Fr � � = F̂ . �22�

Then,

�H2,Fr� = 0. �23�

The integrals of the system �11� are given in the matrix
�12� �although only seven of them can be functionally inde-
pendent�. Those that will survive the reduction �20� are the
ones that are left invariant by the SO�2��SO�2� rotations
�15�. They must Poisson commute with

L12 =
i

2n1�
�z1z̄2 − z2z̄1� = y1p̂2 − y2p̂1,

L34 =
i

2n2�
�z3z̄4 − z4z̄3� = y3p̂4 − y4p̂3. �24�

The Poisson bracket can be written in terms of the zi vari-
ables as
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�f�zi, z̄i�,g�zi, z̄i�� = − 2i��
k=1

N

�
j=2k−1

2k

nk� �f

�zj

�g

�z̄ j

−
�f

�z̄ j

�g

�zj
�
�25�

�in this section we have N=2�.
Functions of zk , z̄k Poisson commuting with L12 and L34

must satisfy

z2�z1
f − z1�z2

f + z̄2�z̄1
f − z̄1�z̄2

f = 0,

z4�z3
f − z3�z4

f + z̄4�z̄3
f − z̄3�z̄4

f = 0. �26�

A basis for the corresponding SO�2��SO�2� invariants is
given by

�1 = z1
2 + z2

2, �̄1 = z̄1
2 + z̄2

2, 	1 = z1z̄1 + z2z̄2,

�3 = z3
2 + z4

2, �̄3 = z̄3
2 + z̄4

2, 	2 = z3z̄3 + z4z̄4. �27�

Finally the integrals of motion must satisfy

�H4, f��1, �̄1,	1,�3, �̄3,	2�� = 0. �28�

Solutions of Eq. �28� are, for instance,

E1 =
1

2
�
z1
2 + 
z2
2�, E2 =

1

2
�
z3
2 + 
z4
2� ,

Q1 = �z1
2 + z2

2�n2�z̄3
2 + z̄4

2�n1,

Q̄1 = �z̄1
2 + z̄2

2�n2�z3
2 + z4

2�n1,

I1 = �z1
2 + z2

2��z̄1
2 + z̄2

2�, I2 = �z3
2 + z4

2��z̄3
2 + z̄4

2� . �29�

Only five of these integrals are functionally independent.

B. Reduction of the first integrals

The reduction is performed using the change of variables
�13� and �14� and the convention �18�. The integrals �24�
reduce to constants L12=k1, L34=k2. The integrals �29�
reduce to nontrivial integrals for the Hamiltonian in Eq. �21�,
namely,

E1 =
1

2
p1

2 +
k1

2x1
2 +

1

2
n1

2�2x1
2,

E2 =
1

2
p2

2 +
k2

2x2
2 +

1

2
n2

2�2x2
2,

Q1 = �p1
2 +

k1

x1
2 − n1

2�2x1
2 − 2in1�p1x1�n2

� �p2
2 +

k2

x2
2 − n2

2�2x2
2 + 2in2�p2x2�n1

,

Q̄1 = �p1
2 +

k1

x1
2 − n1

2�2x1
2 + 2in1�p1x1�n2

� �p2
2 +

k2

x2
2 − n2

2�2x2
2 − 2in2�p2x2�n1

. �30�

The remaining two integrals in �29� give nothing new and we
have

I1 = 4�E1
2 − k1n1

2�2�, I2 = 4�E2
2 − k2n2

2�2� . �31�

Three functionally independent real integrals of motion of
the system with Hamiltonian �21� can be chosen to be

�E1,E2,Q = 1
2 �Q1 + Q̄1�� . �32�

They are of order 2, 2, and 2�n1+n2� in the momenta, respec-
tively. Their existence is the proof of the maximal superinte-
grability of the considered system.

The integral of motion Q simplifies to give a second-order
one in two cases �which were known previously �11,13��.
They are as follows.

�I� n1=n2=1,

4E1E2 − Q

2�2 = �p1x2 − p2x1�2 +
k1x2

2

x1
2 +

k2x1
2

x2
2 . �33�

�II� n1=1, n2=2, k2=0,

�8E1
2E2 − Q

8�2 − k1E2�1/2

= p1�x2p1 − x1p2� − �2x1
2x2 + k1

x2

x1
2 .

�34�

The integrals �33� and �34� are responsible for the separation
of variables in polar and parabolic coordinates, respectively.
The integrals �E1 ,E2� are responsible for the separation in
Cartesian coordinates.

III. THE GENERAL CASE

Within the same approach, it is easy to extend the previ-
ous picture to the general situation of a reduction from a 2N-
to an N-dimensional configuration space:

H2N =
1

2�
i=1

2N

p̂i
2 +

�2

2 �
j=1

N

nj
2�y2j−1

2 + y2j
2 � . �35�

Indeed, let us introduce the affine variables

zk = p̂k − ink�yk, k = 1, . . . ,2N ,

so that the Hamiltonian reads

H2N =
1

2�
k=1

2N


zk
2.

The Poisson bracket is defined as in Eq. �25�. The invariants
under the SO�2�� ¯ �SO�2� group action generated by
L12, . . . ,L2N−1,2N are

�2k−1 = z2k−1
2 + z2k

2 , k = 1,2, . . . ,N ,
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�̄2k−1 = z̄2k−1
2 + z̄2k

2 , k = 1,2, . . . ,N , �36�

apart from the quantities L12, . . . ,L2N−1,2N and the “two-plane
energies” which commute with the Hamiltonian H2N,


z1
2 + 
z2
2, . . . , 
z2N−1
2 + 
z2N
2. �37�

Imposing

�H2N, f��, �̄�� = 0, �38�

where �= ��1 , . . . ,�2N−1�, �̄= ��̄1 , . . . , �̄2N−1�, we get the differ-
ential equation

�
k=1

N

nk��2k−1
�

��2k−1
− �̄2k−1

�

��̄2k−1
� f = 0. �39�

Its general solution depends on 2N−1 invariants, which can
be chosen as

Q2k−1 = �z2k−1
2 + z2k

2 �nN�z̄2N−1
2 + z̄2N

2 �nk, k = 1, . . . ,N − 1,

�40�

Q̄2k−1, and I= 
z1
2+z2

2
.
Using the transformation �13� we now reduce the original

Hamiltonian to the following one:

HN =
1

2�
i=1

N

pi
2 +

1

2�
i=1

N
ki

xi
2 +

�2

2 �
i=1

N

ni
2xi

2. �41�

The corresponding reduced invariants are

El =
1

2
pl

2 +
kl

2xl
2 +

1

2
nl

2�2xl
2, l = 1, . . . ,N ,

R2l−1 =
1

2
�Ql + Q̄l�, l = 1, . . . ,N − 1, �42�

where

Ql = �pl
2 +

kl

xl
2 − nl

2�2xl
2 − 2inl�plxl�nN

� �pN
2 +

kN

xN
2 − nN

2 �2xN
2 + 2inN�pNxN�nl

.

There are 2N−1 functionally independent integrals and con-
sequently the system is maximally superintegrable, proving
the conjecture of �28�.

The main result of this paper is that we have added a
further maximally superintegrable system in N dimensions to
the rather short list of known ones �5,10,32–34�.

IV. OPEN PROBLEMS

From the previous considerations, it emerges that it would
be desirable to construct systematically transformations map-
ping a superintegrable system into another system, that is
also superintegrable, and defined in a reduced phase space. It
seems natural to associate such transformations to the rich
symmetry structure possessed by superintegrable systems.
For instance, changes of variables of the type �13� are clearly
related to invariance properties under rotation. From this
point of view, the role of higher-order groups of transforma-
tions generated by the flow associated with integrals that are
polynomials in the momenta remains to be fully investigated.
A quantum mechanical version of this reduction procedure is
also to be understood. For N=3 the quantum system was
treated in �29�. The reduction was performed for the classical
system. The reduced system was then quantized in Cartesian
coordinates.
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