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The equation governing quadratic and cubic transparent dispersion within the framework of the slowly
varying envelope approximation is shown to admit an infinite-energy uniformly moving Airy wave packet
solution, as well as a square-integrable accelerating Airy solution. Some insight is provided regarding the local
acceleration dynamics in the latter case and comparisons are made with the “accelerating” beam solution
introduced by Siviloglou and Christodoulides and experimentally demonstrated by Siviloglou, Broky, Dogariu,
and Christodoulides recently. It is shown, in particular, that under certain parametrizations, the presence of
cubic dispersion can increase the “depth of penetration” of a wave packet. In other words, a pulse can
propagate for a larger range without sustaining significant dispersive distortion than in the presence of qua-
dratic dispersion alone. Finally, imaging properties of accelerating airy wave packets are discussed.
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I. INTRODUCTION

Electromagnetic wave propagation in a linear, homoge-
neous, transparent, dispersive medium is governed by the
scalar equation

�2u�r�,t� + �op
2 �− i�/�t�u�r�,t� = 0 �1.1�

if polarization is neglected. In this expression, u�r� , t� is a real
field and �op

2 �−i� /�t� is a real pseudodifferential operator. A
physical interpretation of the latter is provided in the fre-
quency domain; specifically,

F��op
2 �− i�/�t�u�r�,t�� = �2���ũ�r�,�� , �1.2�

where F� � denotes Fourier transformation and ũ�r� ,�� is the
Fourier transform of u�r� , t� with respect to time. The function
���� appearing on the right-hand side of Eq. �1.2� is a real
wave number.

For a physically convenient central radian frequency �0,
the real field u�r� , t� is expressed as follows:

u�r�,t� = ��r�,t�exp�i�0�t − z/vph�� + cc, z � 0. �1.3�

Here, ��r� , t� is a complex-valued envelope function and
vph=�0 /���0� denotes the phase speed in the medium com-
puted at the central frequency �0. A formal introduction of
Eq. �1.3� into Eq. �1.1� yields the following exact equation
governing the envelope function ��r� , t�:

���
2 +

�2

�z2 − 2i���0�
�

�z
− �2��0�

+ �
m=0

�
1

m!
	 �m

��m�2���	
�=�0


− i
�

�t
�m���r�,t� = 0.

�1.4�

Here, ��
2 denotes the transverse �with respect to z� Laplacian

operator. Usually, at this stage in the study of wave propaga-
tion through dispersive media, one introduces the moving
reference frame �=z, �= t− �z /vgr�, in terms of the group
speed vgr=1 /�1; �1�d���� /d���=�0

. Then, Eq. �1.4� is
transformed into
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�1.5�

A number of techniques have been developed based on
the type of approximations made to the exact Eq. �1.5�. In
the sequel, use will be made of the slowly varying envelope
approximation �SVEA� �1�, whereby one neglects the second
derivative with respect to z �paraxial approximation�, as well
as the mixed derivative term involving z and �. Furthermore,
dispersive effects up to third order will be retained. One,
then, has
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�1.6�

For normal dispersion, �2 and B are positive and negative
quantities, respectively. In this case, Eq. �1.6� can be nondi-
mensionalized as


i
�

�Z
+

1

2

�2

�T2 − i
b

3

�3

�T3���T,Z� = 0, T =
�

�0
, Z = z

�2

�0
2

� 0, b =
B

�2�0
� 0, �1.7�

where �0 is a convenient time scale. For anomalous disper-
sion, on the other hand, both �2 and B are negative quanti-
ties. In this case, Eq. �1.6� can be nondimensionalized as


i
�

�Z
−

1

2

�2

�T2 + i
b

3

�3

�T3���T,Z� = 0, T =
�

�0
, Z = − z

�2

�0
2

� 0, b =
B

�2�0
� 0. �1.8�

The discussion in the sequel will be restricted to the case of
anomalous dispersion.

II. UNIFORMLY MOVING AIRY WAVE PACKET

The quadratic dispersion term in Eq. �1.8� can be elimi-
nated by means of a gauge transformation �2�; specifically,
through the new wave packet

	�T,Z� = exp
i
1

2b
T�exp
i

1

24b2Z��
T +
1

4b
Z,Z� ,

�2.1�

which obeys the linearized Korteweg-deVries equation


 �

�Z
+

b

3

�3

�T3�	�T,Z� = 0. �2.2�

The latter has the following specific Airy solution:

	�T,Z� =
1

�bZ�1/3Ai� T

�bZ�1/3� . �2.3�

�Of course, other solutions can be found by similarity meth-
ods.� The solution of Eq. �1.8� can be obtained by inverting
Eq. �2.1� and using Eq. �2.3�.

��T,Z� =

exp�− i
1

24b2 �a + 12bT − 2Z��
b1/3�a + Z�1/3 Ai� T − Z/�4b�

b1/3�a + Z�1/3� .

�2.4�

In this expression, a is an arbitrary positive constant param-
eter. This non-square-integrable wave packet moves uni-
formly along the Z direction with an effective normalized
speed equal to 4b. This solution is clearly dispersive; it
broadens in T as the range Z increases.

III. ACCELERATING AIRY WAVE PACKET

A general solution to Eq. �1.8� can be obtained by means
of the Fourier synthesis

��T,Z� = �
−�

�

d
 exp�i
T�exp
i

2

2
Z�exp
ib


3

3
Z��̃0�
� .

�3.1�

A specific solution arises from the modulated Gaussian spec-
trum

�̃0�
� = exp�− a
2�exp� i

3
�
3 − 3a2
 − ia3�� , �3.2�

where a is a free positive parameter; specifically,

��T,Z� =
1

�1 + bZ�1/3

�exp�6a�2T − Z2� + iZ�− 6a2 − 6T + Z2�
12�1 + bZ�2 �

�exp�b
4Za�− a2 + 3T + a2bZ� + i6Z2�a2 − T�

12�1 + bZ�2 �
�Ai�
T −

Z2

4
− iaZ� + bZ�T − a2�

�1 + bZ�4/3 � . �3.3�

In the absence of cubic dispersion �b=0�, this solution sim-
plifies as follows:

�SC�T,Z� = exp�6a�2T − Z2� + iZ�− 6a2 − 6T + Z2�
12

�
�Ai
T −

Z2

4
− iaZ� . �3.4�

This is essentially the analog of the finite-energy “accelerat-
ing” beam solution �for which the variable T is spacelike�
introduced by Siviloglou and Christodoulides and experi-
mentally demonstrated by Siviloglou, Broky, Dogariu, and
Christodoulides recently ��3–5�; see also, Ref. �6��. If, fur-
thermore, the parameter a is set equal to zero, Eq. �3.4� be-
comes a variant of the infinite-energy �nonspreading� accel-
erating Airy solution to the one-dimensional Schrödinger
equation introduced by Berry and Balazs �7� in the context of
quantum mechanics, viz.,

�BB�T,Z� = exp� iZ�− 6T + Z2�
12

�Ai
T −
Z2

4
� . �3.5�

It should be pointed out that �SC�T ,Z� follows from the work
in Appendix A of the Berry and Balazs paper �7�. Also, it can
be derived from �BB�T ,Z� in Eq. �3.5� through the complex
translation Z→Z+ i2a and the additional change T→T−a2.

Due to the infinite energy content of �BB�T ,Z�, the no-
tions of a centroid �average temporal position� and variance
�a measure of the average temporal pulse width or dispersive
spreading in range� cannot be defined. This is not the case for
the square-integrable solution ��T ,Z� given in Eq. �3.3�. It is
our aim to determine explicit expressions for these two av-
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eraged measures and use them to provide some insight re-
garding the nonlinear evolution of the wave packet. �The
centroid and variance of the Siviloglou-Christodoulides so-
lution �SC�T ,Z� �see Ref. �6�� follow from those of ��T ,Z�
in the limit as the parameter b becomes zero.�

It is convenient toward this goal to define first the phase-
space �time-frequency� Wigner distribution, viz.,

W�T,
,Z� 
1

2�
�

−�

�

d exp�i
��*
T +
1

2
��
T −

1

2
� .

�3.6�

It can be determined explicitly as follows:

W�T,
,Z� =
1

21/3��1 + bZ�1/3 exp�2a�3T�1 + bZ� + Z�a2b�− 1 + bZ� + 3
�1 + bZ���
3�1 + bZ�2 �

�Ai� 22/3

�1 + bZ�4/3 �T − a2bZ + bTZ + 
�1 + bZ��Z + 
 + bZ
��� . �3.7�

A comparison of the Wigner functions for b�0 and b=0 is
shown in Figs. 1�a� and 1�b� for three values of the normal-
ized range Z. The parameter values are a=5�10−2 in both
figures, b=10−1 for the first figure, and b=0 for the second
one. The total energy and the desired centroid and variance
can be obtained from the Fourier transform of W�T ,
 ,Z�
with respect to T, viz.,

Ŵ�S,
,Z�  �
−�

�

dT exp�iTS�W�T,
,Z� . �3.8�

Specifically,

TE�total energy� = �
−�

�

d
Ŵ�0,
,Z� =
exp�2a3/3�
4�3/2�2a

,

�T�Z���centroid� = i
1

TE
�

−�

�

d

�

�S
Ŵ�0,
,Z� =

1 − 4a3 + bZ

4a
,

2�Z��variance� = −
1

TE
�

−�

�

d

�2

�S2Ŵ�0,
,Z�

=
8a3 + 2aZ2 + �1 + bZ�2

8a2 . �3.9�

Setting b equal to zero one obtains the corresponding aver-
aged quantities for the Siviloglou-Christodoulides solution
�see Ref. �6�� as follows:

TESC =
exp�2a3/3�
4�3/2�2a

,

(a)

(b)

FIG. 1. �a� Density plot of the
Wigner distribution function
W�T ,
 ,Z� vs T, 
 for three val-
ues of the normalized range Z:
From left to right, Z=0,5 ,7. Pa-
rameter values: a=5�10−2, b
=10−1. �b� Density plot of the
Wigner distribution function
W�T ,
 ,Z� vs T, 
 for three val-
ues of the normalized range Z:
From left to right, Z=0,5 ,7. Pa-
rameter values: a=5�10−2, b=0.

ACCELERATING AIRY WAVE PACKETS IN THE… PHYSICAL REVIEW E 78, 046605 �2008�

046605-3



�T�Z��SC =
1 − 4a3

4a
,

2�Z�SC =
8a3 + 2aZ2 + 1

8a2 . �3.10�

It should be noted that both ��T ,Z� and �SC�T ,Z� contain the
same total energy and their variances change parabolically in
range. However, the centroid of the former varies linearly in
range whereas that of the latter is constant.

Being the square-integrable version of Eq. �3.5�, the
Siviloglou-Christodoulides accelerating Airy wave packet
given in Eq. �3.4� has the property that it can propagate for
long ranges Z without significant dispersive distortion as
long as the positive parameter a is small �of the order of
10−2�. An important question, then, is the following: What is
the effect of the third-order dispersion parameter b on the
spreading properties of the Airy solution given in Eq. �3.3�?
A composite of the graphs ���T ,Z��2 versus T �blue, light
gray� and ��SC�T ,Z��2� versus T �red, dark gray� for different
values of the normalized range Z is shown in Fig. 2. The
parameter values are a=5�10−2 and b=10−1 for Fig. 2�a�
and a=10−1 and b=10−1 for Fig. 2�b�. It is seen that the
presence of cubic dispersion increases the “depth of penetra-
tion” of the wave packet. In other words, the pulse can
propagate for a larger range without sustaining significant
dispersive distortion than in the presence of quadratic disper-
sion only. This seems to be a surprising result because a
comparison of the variances in Eqs. �3.9� and �3.10� shows
that 2�Z� increases faster with range than 2�Z�SC. How-
ever, we use as a measure of the effectiveness of the accel-
erating Airy solution ��T ,Z� against dispersive distortion the
integrity of its major lobe with range. It will be shown below
that such an effectiveness arises from the different accelera-
tion rates of ��T ,Z� and �SC�T ,Z�.

It is instructive to examine the local reshaping of the in-
tensity ���T ,Z��2 as the range Z increases using the de
Broglie-Bohm �8� approach, which has been proven very
useful in quantum mechanics. Toward this end, the solution
to Eq. �1.8� is written as

��T,Z� = R�T,Z�exp�iS�T,Z�� , �3.11�

where both the amplitude R�T ,Z� and the phase S�T ,Z� are
real functions. Then, a family of local trajectories �rays� can
be obtained by setting up the Hamilton-Jacobi equations

d

dZ
T�Z� = v�Z�,

d

dZ
v�Z� = −

�

�T
�Q�T,Z��T→T�Z�,

Q�T,Z�  −
1

2R�T,Z�
�2

�T2R�T,Z� . �3.12�

The function Q�T ,Z� is known as the Bohm quantum me-
chanical potential when Z is timelike, as in the case of the
�1+1�D Schrödinger equation. An alternative method for es-
tablishing local trajectories is to use the de Broglie-Bohm
method as follows:

d

dZ
T�Z� = v�Z� ,

v�Z� = �−
�

�T
S�T,Z� = Im��*�T,Z���/�T���T,Z�

���T,Z��2 ��
T→T�Z�

.

�3.13�

Let us first apply Eq. �3.12� or �3.13� to the infinite energy
Berry-Balazs wave packet �BB�T ,Z� given in Eq. �3.5�. A
straightforward calculation yields the relation dT /dZ=Z /2.
One interpretation is that, modulo a constant assumed to
equal zero, the rightmost lobe of the Airy wave packet
�BB�T ,Z� moves in range according to the formula T=Z2 /4,
which precisely coincides with the expression obtained by
setting the argument of the Airy function in Eq. �3.5� equal to
zero.
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FIG. 2. �Color online� �a� Composite of the graphs ���T ,Z��2 vs
T �blue, light gray�, and ��SC�T ,Z��2 vs T �red, dark gray� for dif-
ferent values of the normalized range Z: From left to right,
Z=0,5 ,7 ,10. Parameter values: a=5�10−2, b=10−1. �b� Compos-
ite of the graphs ���T ,Z��2 vs T �blue, light gray�, and ��SC�T ,Z��2
vs T �red, dark gray� for different values of the normalized range Z:
From left to right, Z=0,5 ,7 ,10. Parameter values: a=10−1,
b=10−1. �c� Composite of the graphs ���T ,Z��2 vs T �blue, light
gray�, ��SC�T ,Z��2 vs T �red, dark gray�, and ��G�T ,Z��2 vs T �black�
for different values of the normalized range Z: From left to right,
Z=0,1 ,4 ,6 ,8 ,10. Parameter values: a=5�10−2, b=10−1.
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If, next, the de Broglie–Bohm formalism is applied to the
Siviloglou-Christodoulides wave packet �SC�T ,Z� given in
Eq. �3.4�, one obtains

d

dZ
T�Z� =

Z

2
+ Im�Ai��− iaZ + T�Z� − Z2/4�

Ai�− iaZ + T�Z� − Z2/4� � ,

�3.14�

where Ai�� � denotes the derivative of the Airy function with
respect to its argument. It is clearly seen in this case that the
rightmost lobe of the Airy wave packet �SC�T ,Z� evolves in
range approximately according to the formula T=Z2 /4 only
for very small values of the parameter a, as correctly pointed
out in Ref. �3�.

The de Broglie–Bohm formalism is applied finally to the
wave packet ��T ,Z� given in Eq. �3.3�, which arises from the
presence of both quadratic and cubic dispersion. As a result,
one obtains

d

dZ
T�Z� =

1

2

Z

1 + bZ

+ Im�Ai��T + bTZ − Z�4ia + 4a2b + Z�/4�
Ai�T + bTZ − Z�4ia + 4a2b + Z�/4� � .

�3.15�

In this case, the rightmost lobe of the Airy wave packet
��T ,Z� evolves in range approximately according to the
formula T= �Z /2b�−ln�1+bZ� /2b2 for very small values of
the parameter a. This behavior differs from the expression
T= �a2bZ+Z2 /4� / �1+bZ� one would obtain by setting equal
to zero the real part of the argument of the Airy function in
Eq. �3.3�. It should be noted that in the limit as b approaches
zero �no cubic dispersion�, both expressions above tend to
T=Z2 /4. For a finite value of the parameter b, both expres-
sions above tend to T=Z2 /4 for small values of the param-
eter a and the range Z. For larger ranges, the Siviloglou-
Christodoulides wave packet accelerates faster than the
solution ��T ,Z� associated with both quadratic and cubic
dispersion. It is clear from Fig. 2 that it is this slowdown
arising from the presence of cubic dispersion that adds to the
depth of penetration of the wave packet. The differences in
the variances mentioned earlier play a minor role. For the
parameters used in Fig. 2�b�, for example, the standard de-
viations of ��T ,Z� and �SC�T ,Z� at Z=10 equal 8.6617 and
8.1024, respectively.

The ticks on the bottom of the graphs in Figs. 2�a� and
2�b� have the following meaning. Starting from the left side,
the first and second ticks indicate the positions of the cen-
troids of �SC�T ,Z� and ��T ,Z�, respectively. The third tick is
the value T= �Z /2b�−ln�1+bZ� /2b2 corresponding to the ap-
proximate motion of the front of the major lobe of the wave
packet ��T ,Z� for small values of the parameter a. The right-
most tick indicates the value T=Z2 /4 corresponding to the
approximate motion of the major lobe of the wave function
�SC�T ,Z� for small values of the parameter a.

Consider, next, the normalized Gaussian pulse �0�T�
=exp�−T2 / �22�� / ��1/4�� at Z=0. This initial pulse
evolves in a medium characterized by anomalous quadratic
and cubic dispersion as follows:

�G�T,Z� =
�1/4�2

�bZ�1/3 exp� �2 − iZ��6bTZ − �Z + i2��
12b2Z2 �

� Ai�4bTZ − �Z + i2�
4�bZ�4/3 � . �3.16�

A superposition of Fig. 1�a� and the evolution of wave packet
�G�T ,Z� is shown in Fig. 2�c�. The width of the initial
Gaussian pulse has been chosen to be approximately the
same with the widths of the main lobes of ��T ,Z� and
�SC�T ,Z� at Z=0. The parameters a and b are identical to
those in Fig. 1�a�. Figure 2�c� clearly shows the significant
dispersive spreading of the Gaussian pulse in comparison to
the dispersive spreading of the main lobes of both ��T ,Z�
and �SC�T ,Z�. Of course, as already mentioned, the disper-
sive distortion of �SC�T ,Z� is more pronounced than that of
��T ,Z�.

IV. IMAGING WITH ACCELERATING AIRY WAVE
PACKETS

It is desirable in some applications to synthesize the input
signal at Z=0 so that the output signal has some optimal
characteristics �e.g., pulse width� at some prescribed space-
time point. In “chirped” radar systems, for example, the in-
put signal is frequency modulated, which, in turn, gives rise
to the phenomenon of pulse compression. An example of
such pulse “imaging” in media characterized by both qua-
dratic and cubic dispersion will be shown in this section
using a special square-integrable initial condition.

For the solution of Eq. �1.8� to have the property of im-

aging, the spectrum �̃0�
� in Eq. �3.1� is chosen as follows:

�̃0�
� = � exp�− a
2�exp
 i

3
p
3� . �4.1�

Here, p is a parameter smaller than zero that will determine
the range Z= �p� at which the initial condition will “image” to
a desired pulse. Using the standard normalization constraint

�
−�

�

dT�0
*�T��0�T� = 1, �4.2�

� and a must satisfy the relation a=�4 / �8��. Then, the ini-
tial pulse can be determined explicitly as follows:

�0�T� =
1

2�
�

−�

�

d
� exp�i
T�exp
ip

3

3
�exp�− a
2�

=
1

2�
�

−�

�

d
� exp�− i
T�exp
i�p�

3

3
�exp�− a
2�

=
�

�p�1/3 exp�−
a�2a2 + 3�p�T�

3�p�2 �Ai
 a2

�p�4/3 −
T

�p�1/3� .

�4.3�

When the modified modulated Gaussian spectrum given in
Eq. �4.1� is introduced into Eq. �3.1� three distinct cases must
be considered.
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Case (i). Z+ p�0.

���T,Z� =
�

�p + bZ�1/3

�exp�i�ia + Z/2��2�ia + Z/2�2

3�p + bZ�2
+

T

�p + bZ���
� Ai�−

�ia + Z/2�2

�p + bZ�4/3 −
T

�p + bZ�4/3� . �4.4�

Case (ii). Z+ p=0.

��T,Z = − p� =
1

�2�

�

�2a − i�p�
exp
−

1

2

T2

2a − i�p�� .

�4.5�

Case (iii). Z+ p�0.

���T,Z� =
�

�p + bZ�1/3

�exp�i�ia + Z/2��2�ia + Z/2�2

3�p + bZ�2
−

T

�p + bZ���
� Ai�−

�ia + Z/2�2

�p + bZ�4/3 +
T

�p + bZ�4/3� . �4.6�

For the problem under consideration, the solution “pivots”
about Z=−p, where the “desired” Gaussian pulse is formed.
The image range is seen to equal Z=2�p�. The evolution of
����T ,Z��2 from Z=0 to Z=1 is shown in Fig. 3�a� and the
evolution of ����T ,Z��2 for Z�1 is shown in Fig. 3�b� for
the parameter values a=10−1, b=5�10−1, and p=−5�10−1.
The wavelets displaced away from the main pulse at Z=0
contain higher temporal frequencies than those close to the
origin and, therefore, have larger velocities of propagation.
For 0�Z�1, these wavelets converge on the ones moving at
smaller velocities. The imaging of the initial pulse to the
Gaussian one at the range Z=1 is the result of this “disper-
sive focusing.”

V. CONCLUDING REMARKS

It has been shown that the equation governing quadratic
and cubic transparent dispersion within the framework of the
slowly varying envelope approximation can admit infinite-
energy uniformly moving Airy wave packet solutions as well
as square-integrable accelerating Airy solutions. Some in-
sight has been provided regarding the local acceleration dy-
namics in the latter case and comparisons have been made
with the “accelerating” beam solutions introduced by Sivilo-
glou and Christodoulides and experimentally demonstrated
by Siviloglou, Broky, Dogariu, and Christodoulides recently.
It has been shown that under particular parametrizations the
presence of cubic dispersion can increase the “depth of pen-
etration” of the wave packet. In other words, the pulse can
propagate for a larger range without sustaining significant
dispersive spreading than in the presence of quadratic disper-
sion alone. Finally, physically applicable imaging properties
of accelerating Airy wave packets have been discussed.
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FIG. 3. �a� Evolution of ����T ,Z��2 vs T for four values of the
normalized range Z: From left to right, Z=0,0.5,0.7,1. Parameter
values: a=10−1, b=5�10−1, p=−5�10−1. �b� Evolution of
����T ,Z��2 vs T for four values of the normalized range Z: From
left to right, Z=1,2 ,3 ,8. Parameter values: a=10−1, b=5�10−1,
p=−5�10−1.
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