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The dynamics of three-wave parametric coupling is considered on an example of nonequilibrium magneto-
strictive medium under electromagnetic pumping. Subthreshold and supercritical mode of three-wave excita-
tion are described analytically and simulated numerically for a triad of magnetoelastic waves. Theoretical
analysis of the supercritical mode shows that space-time development of three-wave excitation in such a
nonequilibrium system has the character of explosive instability and localization of “positive energy” waves.
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I. INTRODUCTION

Interaction of elastic vibrations with an extremely nonlin-
ear magnetic subsystem of solid media provides favorable
conditions for modeling and experimental studies of strongly
nonlinear dynamic phenomena in distributed coupled sys-
tems �1�. Controllability of magnetoelastic coupling by ex-
ternal magnetic field opens the wide range of supercritical
parametric effects such as elastic wave phase conjugation
�WPC� and front reversal �2–4�, double bistability of para-
metric magnetoelastic resonance �1,5�, three-phonon coupled
parametric excitation �6�, self-pulsing and excitability in a
magnetoelastic resonator �7,8�, etc. In the present paper, we
report the results of an analytical study and a numerical
simulation of explosive instability and spatial localization
mode of parametrically coupled triads of hybridized magne-
toelastic waves.

Explosive dynamics in nonlinear wave systems is usually
associated with the presence of so-called “negative energy
waves” interacting with normal positive waves �9–11�. The
energy of a negative wave decreases when its amplitude is
increasing. As a result the amplitudes of positive and nega-
tive waves can increase instantaneously due to their interac-
tion and energy exchange. In spite of a number of theoretical
works describing the mathematical models of negative and
positive wave interaction, only a few experimental results on
the observation of explosive instability in nonlinear wave
systems were reported, mainly in the plasma physics field
�12–14�. Taking into account the energetic reason, the com-
mon opinion is that explosive instability is impossible in the
systems with only positive or only negative waves. In this
paper the explosive instability for the system of purely posi-
tive energy waves is demonstrated on an example of para-
metric coupling of three magnetoelastic waves in magnetic
crystal under homogeneous electromagnetic pumping. The
threshold of the instability development will be derived.
Moreover, it will be shown that at the supercritical mode of
pumping the explosive increase of amplitudes of the travel-
ing wave triad is accompanied by spatial localization of the
deformation field, similarly to the “peaking and localization”
phenomena in physics of combustion and explosion �15� or
in laser thermochemistry �16�.

II. DYNAMIC EQUATIONS OF THREE-WAVE
PARAMETRIC COUPLING

We consider the nonlinear interaction of magnetoelastic
waves with a transversal alternative magnetic field h��t� on
an example of antiferromagnetic crystal of symmetry group
D3d

6 , with a magnetic anisotropy of “easy plane” type
�AFEP�. Such crystals are known as model objects for non-
linear acoustics and magnetoelastic dynamics of solids. Their
magnetic dynamics can be described by only one dynamic
variable ��t ,r�, corresponding to the angle of rotation of the
antiferromagnetic vector in the base plane, at frequencies
much lower than the microwave resonance frequency of the
antiferromagnetic mode �1�. The magnetoelastic Lagrangian
density L of the crystal consists of elastic Le, magnetic Lm,
and magnetoelastic LME components

L = Le�u�̇ , û� + Lm��̇,�,��� + LME�û,�� , �1�

Le =
1

2
�u�̇2 −

1

2
Ĉ�2�û2, �2�

Lm =
M0

2HE
��−2��̇2 − vm

2 ����2�

+ �HD + H cos � + h��t�sin ��2� , �3�

LME = �B̂1û�cos 2� + �B̂2û�sin 2� , �4�

where � is the crystal density, Ĉ�2� is the second order elastic

modulus tensor, û is the matrix of elastic deformations, B̂1,2
are the matrixes of magnetostriction, � is the magnetome-
chanical ratio, vm is the spin wave velocity, H, HE, HD are
external bias, exchange, and Dzyaloshinsky-Moria fields, re-
spectively, and M0 is the magnetic sublattice magnetization.
The details on notations can be found in Ref. �1�.

The Lagrangian �1� creates the system of coupled equa-
tions of motion
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d

dt

�L

���̇
−

�

���
� dr�L = 0, �5�

where �� = �u� ,�� is the four-dimensional dynamic variable,

and � /��� means a variational derivative.
For quasistatic reaction of magnetic subsystem on alter-

native deformations at frequencies much lower than the reso-
nance frequency of quasiferromagnetic mode �	� fà

=��H�H+HD�+2HEHms, where Hms is the effective field of
magnetoelastic anisotropy, the system �5� can be resolved
relatively to the magnetic variable �=��û ,h��t��. The sys-
tem �5� in such cases is reduced to one equation for hybrid-
ized mode of magnetoelastic waves

�u�̈ = −
�

�u�
� dr�Feff = 0, �6�

where the effective potential energy density describing three-
wave parametric coupling is

Feff =
1

2
Ĉ�H�û2 + 	2HE

M0

2	 �

� f0

6

h��t�HD�32B̂1
2 − 3B̂2

2�B̂2û3,

�7�

where Ĉ�H� is the effective elastic modulus tensor renormal-
ized by magnetoelastic interaction �1�

Ĉ�H� = Ĉ�2� −
HE

M0
	 �

� f0

2

�2B̂2�2. �8�

For the AFEP crystal placed in the bias field H �x, with
the z axis parallel to the C3 crystallographic axis, the sym-
metry D3d

6 allows propagation in the �x ,z� plane of pure
transversal waves with polarization u �x.

Let us consider parametric coupling of wave triad with
wave vectors k1,2,3 corresponding to the following pulse con-
servation law:

k1 + k2 + k3 = 0 . �9�

We will also assume that the frequency of harmonic pumping
h��t�=h0 cos �pt corresponds to the resonance condition

�p = �1 + �2 + �3. �10�

For simplicity, we consider symmetric orientations of wave
vectors k2,3 relative to the z axis �k2y =−k3y� while orientation
of k1 vector is antiparallel to the z direction �see Fig. 1�. For
the case of one-dimensional parametric interaction in an ac-
tive layer of finite length �0
z
L�, the system of equations
for slowly variable amplitudes of waves A1,2,3�t ,z� can be
derived as

�n	 �An

�t
+ vn

�An

�z

 = ��nmlAm

*A
l
*, �11�

where �nml is the completely antisymmetric tensor �l ,m ,n
=1,2 ,3�, vn is the projection of the group velocity of wave
“n” on the z axis

vn =
C44�H�

��n
knz +

C14�H�
��n

kny , �12�

�n is the wave frequency

�n = �−1/2�C44�H�knz
2 + C66�H�kny

2 + 2C14�H�knyknz�1/2,

�13�

and � is the coupling coefficient for the parametric interac-
tion of three waves with the transverse pumping field given
by

� =
9

2�
h0HD	2HE

M0

2	 �

� f0

6

B14k1z�1

2
�B11 − B12�k2y

+ B14k2z�1

2
�B11 − B12�k3y + B14k3z . �14�

Here, Bij are the magnetostrictive constants in the Voigt’s
notation �1�. The system �11� is analyzed with boundary con-
ditions �A1�z=L=0 and �A2,3�z=0=A0 2,3, corresponding to
typical experimental configuration of input of the incident
waves �A2,3� from one side of the active zone �z=0� and the
absence of any source of backward wave �A1� from the other
side �zL�. The feature of equations �11� is that v1
0,
while v2,30.

III. STATIONARY SOLUTIONS

For stationary conditions �� /�t=0� the assumption
A02��2v2�1/2=A03��3v3�1/2 allows one to reduce the system
�11� to a system of two equations for the variables A1 and A2.
Under this assumption, the solutions of this system are

A1�z� = �A02A03�1/2� cosh��L�tanh���L − z�� ,

A2�z� = A02
cosh��L�

cosh���L − z��
, �15�

where the parameter � is defined from the relationship

�L

cosh��L�
= ���A02A03

�1v1
��−1L . �16�

Parameter �, dependent on the angle of incidence of waves
n=2,3, is equal to

θ

z

y
k1

z = 0

z = L

k2k3

x, H, u1,2,3

h(t)

θθ

z

y
k1

z = 0

z = L

k2k3

x, H, u1,2,3

h(t)

θ

FIG. 1. Geometry and vector diagram of the law of conservation
of momentum for the considered three waves �with wave vectors
k1,2,3� coupled excitation in antiferromagnets under high frequency
electromagnetic pumping �h�t��.
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� = ��2�3v2v3�1/4/��1v1�1/2. �17�

We note that for interaction of collinear waves we have �
=1 /�2. Solutions �15� correspond to the phase shift of the
three-wave correlator �A1A2A3�= �A1A2A3� exp�i��, relatively
to the phase of pumping, equal to �=�.

The solution of Eq. �16� is illustrated by Fig. 2. Under the
instability threshold, Eq. �16� has two solutions as shown on
Fig. 2. But, a stability analysis shows that only the one cor-
responding to the lower value of �L �point 1� is stable, i.e.,
the stationary solutions �15� are stable if �
�c, where �c
corresponds to the maximum on the curve of Fig. 2: �cL
=1.2.

The analysis shows that when the right-hand part of
Eq. �16� is higher than the critical value given by
��cL� /cosh��cL�=0.663, Eq. �16� has no solution. As will be
shown below by numerical simulation this condition corre-
sponds to the explosive instability behavior of the system.
Thus, the supercritical mode of such instability corresponds
to the following inequality:

���A02A03

�1v1
��−1L  0.663. �18�

The supercritical conditions can be achieved if magnetoelas-
tic coupling, amplitude of electromagnetic pumping, and ini-
tial amplitude of direct waves are strong enough. Estimation
of the threshold condition �15� for real AFEP crystal
�-Fe2O3 ��=5.29 g /cm3, C44=8.5�1011 dyn /cm3, 2B14=3
�107 erg /cm3, B11-B12=107 erg /cm3, M0=870 Gs, HE
=9.2�106 Oe, HD=22 kOe, Hme=0.6 Oe� of length L
�1 cm, under a bias field H=100 Oe, for initial deformation
k2A02�10−5 �with a frequency � /2�=10 MHz� defines the
critical values of pumping field strength h0c�1–10 Oe
available experimentally. The three-phonon single mode su-
percritical parametric excitations was recently observed in
�-Fe2O3 magnetoacoustic resonator in Ref. �6�.

IV. EXPLOSIVE INSTABILITY AND LOCALIZATION

Time-space pattern of the development of the explosive
instability was obtained by the direct numerical solution of
the system �11�. For numerical integration we used a Fourier

pseudospectral time domain �PSTD� code, with convolu-
tional perfect matched layers �17� introduced at each end of
the 1D domain in order to absorb outgoing waves. For time
integration, a fourth-order Adams-Bashforth method is used
to evaluate A1,2,3 at each time step.

The numerical computations were made for a L=0.03 m
length active layer, for collinear interactions ��=0 on Fig. 1�
with v2=v3=−v1=3000 m /s group velocities. The form of
the slowly variable amplitudes A2,3 on the boundary z=0 was
chosen to be equal to A2,3�0, t�=0.5A02�1−cos�2�t /T��,
where 0
 t
T and T=2 ms is the duration of the amplitude
envelope. The initial condition is A1,2,3�z ,0�=0.

Under the instability threshold, the spatial distribution of
the slowly variable amplitudes of waves A1,2 /A02 for station-
ary conditions can be calculated with the analytical solution
�15�. Comparison of this analytical solution with the direct
numerical calculation is displayed on Fig. 3, for
��A02 /�1v1��−1L=0.652. This validates the implementation
of the numerical simulation of system �11�.

Now, when the instability threshold is exceeded
���A02 /�1v1��−1L=0.678� the numerical calculations show
that the amplitude of waves A1,2 /A02 blowup in finite time.
This result is in accord with the analysis of three-phonon
single mode excitations for AFEP resonator in Ref. �6�.
Moreover, the numerical simulation for traveling wave triad
under consideration shows also the clearly expressed local-
ization of supercritical excitation in a space region that is
much smaller than the active area 0
z
L of the wave
propagation medium �see Fig. 5�.

In order to display the explosive instability and localiza-
tion with finite amplitudes, the electromagnetic pumping in
the numerical simulation was stopped �� was put to 0� at
time tpump=565.83 �s just before the blowup time. Time
evolution of the amplitude A2 /A02 at the position z=L is
shown on Fig. 4�a�. A zoom of the time evolution of A2 /A02
around the blowup time is shown on the inset of Fig. 4. A
logarithmic representation of this amplitude evolution dem-
onstrates that the increase of the amplitude, exponential at
the beginning of the parametric process, becomes faster
when the blowup time is approached. This is characteristic of
explosive instability. On Fig. 5 the spatial distributions of the
amplitudes A1 /A02 �dotted line� and A2 /A02 �solid line� at
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FIG. 2. Plot of the function f��L�= ��L� /cosh��L� versus �L.
Point 1 corresponds to a stable solution of the system �4� and point
2 to an unstable one. Above f��cL�=0.633, no stable solution can
be found, and explosive instability appears.
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FIG. 3. Spatial distribution of the slowly variable amplitudes of
waves A1,2 /A02 in the steady state regime under the threshold of
explosive instability. Results obtained by the analytical solution �5�
are shown with solid line, and results obtained by numerical calcu-
lation with dotted line.
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time tpump are displayed. The amplitudes A1 /A02 and A2 /A02
locally increase inside the active layer both at the same po-
sition. These results clearly demonstrate simultaneous time
and space localizations of phonons in the process of three-
wave coupled excitation in antiferromagnets under high fre-
quency electromagnetic pumping.

V. CONCLUSION

Numerical simulations of coupling of three positive en-
ergy magnetoelastic waves under homogeneous supercritical
electromagnetic pumping demonstrate behaviors typical for
phenomena of explosive instability and localization �10,15�.
In the framework of the theoretical model under consider-
ation, the stabilization occurs when the incident wave pulse
is rather short or the pumping is switched off in the begin-

ning of the supercritical process. Other mechanisms of sin-
gularity stabilization depend on higher order nonlinear prop-
erties of the magnetic medium. As was shown in Ref. �6� for
single mode three-phonon interaction in antiferromagnet, sta-
bilization is caused by the nonlinear frequency shift of the
mode. Another reason for stabilization can be the nonlinear
damping of high amplitude magnetoelastic waves. Nonlinear
mechanisms of stabilization are the subjects of special stud-
ies. The phenomenon of explosive instability of wave triad
under electromagnetic pumping is not specific for antiferro-
magnetic crystals and can be observed in any magnetic me-
dium with strong enough magnetoelastic interaction.
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FIG. 5. Spatial distributions of the amplitudes A1 /A02 �dotted
line� and A2 /A02 �solid line� at time tpump=565.83 �s.

0 0.2 0.4 0.6 0.8
0

50

100

150

200

250

300

Time (ms)

A2/A02
N

or
m

al
iz

ed
A

m
pl

it
ud

e

Time (ms)

(a)

0.57 0.572 0.574 0.576
0

100

200

300

(b)

0 0.2 0.4 0.6 0.8
0

50

100

150

200

250

300

Time (ms)

A2/A02
N

or
m

al
iz

ed
A

m
pl

it
ud

e

Time (ms)

(a)

0.57 0.572 0.574 0.576
0

100

200

300

(b)

FIG. 4. �a� Time evolution of the amplitude of wave A2 /A02 at
the position z=L when the explosive instability threshold is ex-
ceeded. The electromagnetic pumping is stopped at time tpump

=565.83 �s. In the inset �b�, a zoom of the time evolution of
A2 /A02 demonstrates increasing of amplitude in time faster than
exponential law.
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