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Accurate dispersion relations are fundamental in the evaluation of many astrophysical processes such as, for
example, heat loss by neutrino emission. In this paper, the parallel propagating wave modes of a magnetized,
degenerate, electron gas are evaluated exactly using the S-matrix form of the linear response tensor �for a
relativistic quantum magnetized electron gas� and the vertex formalism. The modes are then discussed in terms
of the dissipative regions in which they occur. In addition to analogous modes to the unmagnetized case, there
also exist doublet modes due to the logarithmic singularites that occur in the dissipative regimes of both the
longitudinal and transverse dispersion relations and modes above the gyromagnetic thresholds for one of the
transverse components. These additional modes only appear over a restricted range of wave numbers and are
unique to the magnetized case.
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I. INTRODUCTION

Although the dispersive properties for an unmagnetized
degenerate electron gas have been extensively studied �see
e.g., �1–6��, the same cannot be said for the dispersive prop-
erties of a magnetized degenerate electron gas. The preva-
lence of magnetic fields in most astrophysical environments
justifies a more comprehensive study of the modes for a
magnetized gas. Previous work in the magnetized regime
consists of the following. Cover, Kalman and Bakshi �7� pre-
sented exact expressions for the real parts of the longitudinal
and transverse dielectric response tensors in the limit kz=0
for parallel propagating photons in a magnetized degenerate
electron gas. Kowalenko, Frankel, and Hines �3� did likewise
but only for the longitudinal mode and Landau quantum
number n=0 along with its imaginary parts for arbitrary kz.
Pulsifer and Kalman �8� presented graphs of the longitudinal
dispersion relations for parallel propagating photons in a
magnetized degenerate gas in the pair creation regime em-
phasizing the existence of the pair modes—modes appearing
above the pair creation thresholds above a critical wave num-
ber for both the longitudinal and transverse modes. They did
not, however, give explicit forms for the real parts of the
response tensors. Pérez Rojas and Shabad �9� discussed the
forms of the dispersion relations near the two thresholds
�pair creation and gyromagnetic absorption� and gave a com-
prehensive account of the absorption regions due to pair cre-
ation �above the pair creation threshold� and excitation of
particles for the longitudinal mode �below the gyromagnetic
absorption edge�, in the degenerate limit in the kz ,kz

2−�2

plane �parallel propagation�.
In this paper, exact expressions for the Hermitian parts of

the linear response tensors for a given magnetic field B and
Fermi momentum pF are presented, allowing for solutions
to the dispersion relations. This was made possible by elect-

ing to consider a degenerate electron gas and parallel propa-
gation �k �B�. For a degenerate electron gas, the
temperatureT of the electrons must satisfy T�TF where TF

�=5.930�109��1+ �pF /m�2�1/2−1� K� is the Fermi tempera-
ture and pF is the Fermi momentum which is related to the
cube root of the mass density of electrons. For a given Fermi
momentum, this limits the temperature of the electrons for
which the results derived here are valid.

Neutrino emission in the interior of very hot or dense stars
is an effective heat loss mechanism. The rate of neutrino
production is significantly affected by the presence of a
background plasma which instigates the plasma process, the
decay of plasmons and photons into neutrino pairs. As the
degenerate, electron gases that exist in the interior of stars
are magnetized, a thorough understanding of the wave modes
of a magnetized, degenerate, electron gas is crucial if one is
to study such heat loss mechanisms. Such a study is timely
as there has been renewed interest in this field for unmagne-
tized plasmas �e.g., the neutrino luminosity of white dwarfs
�10�, energy losses in stars �11��. Analysis of the plasma
process for a magnetized, degenerate, electron gas is under-
way and will be reported elsewhere.

The paper is set out as follows. In Sec. II, the polarization
tensor for a degenerate electron gas is evaluated in the dis-
sipative �above the pair creation threshold �PC and below the
gyromagnetic absorption edge �GA� and nondissipative
��GA����PC� regimes. In Sec. III, the dispersion relations
are solved for photons propagating in the direction of the
magnetic field �chosen to be in the z direction� such that the
4-wave vector of the photon is given by k= �� ,0 ,0 ,kz�. As
well as solutions similar to those found for an unmagnetized
degenerate electron gas, there also exist pair and gyromag-
netic absorption modes in the dissipative regime ���PC and
���GA, respectively as well as solutions near the gyromag-
netic absorption edges for one of the transverse modes which
are nonexistent for the unmagnetized case. In Sec. IV, the
results are discussed and comparisons are made with the un-
magnetized, degenerate limit and previous work.*weise@physics.usyd.edu.au
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II. RESPONSE TENSORS

The general expression for the S-matrix form of the linear
response tensor for a relativistic quantum magnetized elec-
tron gas is �12�

��	�k� = −
e3B

2

�

�,q,��,q�
	

−�

� dpz

2

	

−�

� dpz�

2

2

���pz� − �pz

+ kz�
�nq

��pz� − ��nq�
���pz��

� − ��q + ���q� + i0
��q�q

�����	, �1�

where ��q�q
�����	 is the product of two vertex functions, viz.

��q�q
�����	 = ��q�q

����k�����q�q
����k��*	, �2�

defined by �50� in Melrose and Parle �13�. The quantum
numbers q ,q� include the Landau quantum numbers n ,n�,
the spins � ,��, and the parallel �to the magnetic field� mo-
menta pz , pz�. The contribution for given n ,n� is related to
one-photon pair creation with n ,n� determining the incoming
and outgoing energy eigenvalues �using natural units with
�=c=1�, �n�pz�= �m2+ pz

2+2neB�1/2 and �n�
� �pz��= �m2+ pz�

2

+2n�eB�1/2, respectively, of the electron and positron, with
kz=�pz−��pz� relating the components along B of the
3-momenta of the photon, the electron ��� ,�= + � and the
positron ��� ,�=−�. Taking the degenerate limit of the plasma
contribution for which the occupation numbers are unity for
the electrons �nq

+=nq�
+ =1� with energies below the Fermi en-

(a)

(b)

(c)

(d)

FIG. 1. �a�: The boundaries of the different regions in the �-kz plane for �33, parameters pF=2.2m, B=Bcr, and n=1. The solid and dotted
lines are the �=kz and �= 
�PC
n=1 lines, respectively. The dashed-double-dotted and short-dashed lines, labeled �P1 and �P2, are the �
= ��F

2 �2p1kz+kz
2�1/2+�F lines, respectively. The long-dashed and dashed-dotted lines, labeled �G1 and �G2, are the �= 
��F

2 �2p1kz

+kz
2�1/2−�F
 lines, respectively. �b� The boundaries of the different numbered regions in the GA dissipative regime of �11 and i�12,

parameters pF=2.2m, B=Bcr, and �=1 for IA ��=n� and IB ��=n��, polarizations e�
� , respectively. The solid and long-dashed lines are the

�=kz and �= 
�GA
�=1 lines, respectively. The short-dashed and dashed-double-dotted lines are the �= 
��F
2 �2p1kz+kz

2+2eB�1/2−�F
 lines,
respectively. �c� As for �b�, but for ID ��=n� and IC ��=n��, polarizations e�

� , respectively, with the short-dashed and dashed-double-dotted
lines here being the �= 
��F

2 �2p1kz+kz
2−2eB�1/2−�F
 lines, respectively. �d� As for �b�, but for �=2.
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ergy �zero otherwise� and zero for the positrons �nq
−=nq�

−

=0�, and then summing over � ,�� and the spins � ,�� �where

only the ��q�q
�����	 have spin dependences�, one obtains

��	�k� = −
e3B

2

�
n,n�

nmax�	
−pn

pn dpz

2

�
 ��n�n

+ ��	

� − � + �� + i0



pz�=pz−kz

+ 
 ��n�n
−+ ��	

� − � − �� + i0



pz�=−pz+kz

�
− 	

−pn�

pn� dpz�

2

�
 ��n�n

+ ��	

� − � + �� + i0



pz=pz�+kz

+ 
 ��n�n
+− ��	

� + � + �� + i0



pz=−�pz�+kz�
�� , �3�

with pn= �pF
2 −2neB�1/2, pn�= �pF

2 −2n�eB�1/2 both real such
that if 2nmaxeB� pF

2 �2�nmax+1�eB then the sums over n� ,n

extend from n� ,n=0 to n� ,n=nmax, and ��n�n
�����	

=��,����q�q
����k�����q�q

����k��*	, the values of which are given

in the Appendix for B= �0,0 ,B� and k
= �k� cos � ,k� sin � ,kz�.

With the restriction k �B �k�=0�, so that k= �� ,0 ,0 ,kz�,
the J-functions, which appear in ��n�n

�����	 and are related to
the Laguerre polynomials, are greatly simplified such that
Jn�−n

n and Jn�−n
n−1 are only nonzero when n�=n with n�0 and

n�1, respectively, having values of unity, and Jn�−n+1
n−1 and

Jn�−n−1
n are only nonzero �unity� when n�=n−1 �n�0� and

n�=n+1 �n�0�, respectively. Hence the only components of
the linear response tensor that are nonzero are
�00,�03,�30,�33 with n�=n and �11=�22,�12=−�21 with
n�=n�1. Further, as �00,�03,�30 are expressible in terms of
�33 say, viz.

�03 = �30 =
kz�

33

�
, �00 =

kz
2�33

�2 ,

via the charge continuity and gauge invariant relations, one
need only evaluate �33 explicitly.

Substituting in the forms of ��n�n
�����	 and after some rear-

rangment, the �33,�11, i�12 components, in the dissipative
regimes above the pair creation threshold and below the gy-
romagnetic absorption edge, are of the form

�33 =
e3B

2

�
n=0

nmax �n
02�2an

2
��2 − kz
2�2	

−pn

pn dpz

�n
� ��2 − kz

2� + 2kzpz + 2��n

�pz − �0 − �0 − i0��pz − �0 + �0 + i0�
+

��2 − kz
2� − 2kzpz − 2��n

�pz + �0 − �0 − i0��pz + �0 + �0 + i0�
� ,

�11 =
e3B

16
2��2 − kz
2�

�A + C + D + B� ,

i�12 =
e3B

16
2��2 − kz
2�

�− A + C − D + B� ,

A = �
n=0

nmax 	
−pn

pn dpz

2�n
�4��2 − kz

2� +
��2 − kz

2 − 2�2n + 1�eB���2 − kz
2 − 2eB + 2pzkz + 2��n�

�pz − �1 − �1 � i0��pz − �1 + �1 � i0�
� ,

C = �
n=1

nmax 	
−pn

pn dpz

2�n
�4��2 − kz

2� +
��2 − kz

2 − 2�2n − 1�eB���2 − kz
2 + 2eB + 2pzkz + 2��n�

�pz − �2 − �2 � i0��pz − �2 + �2 � i0�
� ,

D = �
n�=1

nmax 	
−pn�

pn� dpz�

2�n�
�
�4��2 − kz

2� +
��2 − kz

2 − 2�2n� − 1�eB���2 − kz
2 + 2eB − 2pz�kz − 2��n�

� �

�pz� + �2 − �2� � i0��pz� + �2 + �2� � i0�
� ,

B = �
n�=0

nmax 	
−pn�

pn� dpz�

2�n�
�
�4��2 − kz

2� +
��2 − kz

2 − 2�2n� + 1�eB���2 − kz
2 − 2eB − 2pz�kz − 2��n�

� �

�pz� + �1 − �1� � i0��pz� + �1 + �1� � i0�
� , �4�

where
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�0 =
kz

2
, �1 =

kz

2
�1 −

2eB

�2 − kz
2�, �2 =

kz

2
�1 +

2eB

�2 − kz
2� ,

�0 =
�

2
�1 −

4�n
02

�2 − kz
2 ,

�1 =
�

2
���2 − kz

2 − 2eB�2

��2 − kz
2�2 −

4�n
02

�2 − kz
2 ,

�2 =
�

2
���2 − kz

2 + 2eB�2

��2 − kz
2�2 −

4�n
02

�2 − kz
2 ,

with �n
02=m2+2neB and an one-half for n=0 and unity for

n�0. The thresholds for pair creation �PC� and gyromag-
netic absorption �GA� result from the conditions �0 ,�1 ,�2
=0 and are given by �PC= �4�n

02+kz
2�1/2 , ���n

0+�n�1
0 �2+kz

2�1/2

and �GA=kz , ���n
0−�n�1

0 �2+kz
2�1/2, respectively. The values of

�1� ,�2� and the relevant thresholds from the conditions
�1� ,�2�=0 are as for �1 ,�2 but with n replaced by n�. Note
that the GA edge for �33 is at the light line, whereas for �11

and i�12, it lies above the light line. The upper signs on the
i0 terms in the denominators are applicable for � satisfying
0���kz and ���PC and the lower signs for � satisfying
kz����GA. The first �n�0, n�=n+1� and third �n��1,
n=n�−1� terms of �11, i�12 �A and D in �4�� are associated
with left circular �LC� polarized photons, polarization e−

�

=2−1/2�0,1 ,−i ,0�, and give rise to the imaginary components

labeled A and D, respectively, in �7�. The second �n��1, n
=n�−1� and fourth �n��0, n=n�+1� terms �C and B in �4��
are associated with right circular �RC� polarized photons,
polarization e+

�=2−1/2�0,1 , + i ,0�, and give rise to the imagi-
nary components labeled C and B, respectively, in �7�.

The integrals over pz in �4� have poles at pz= ��i��i� and
−��i��i� �i=0,1 ,2� when −pn��i��i� pn and −pn�
−��i��i�� pn, respectively. The real and imaginary parts of
�33,�11, i�12 can be found using Plemelj’s formula,

1

f�pz� � i0
= P� 1

f�pz�
� � i

„f�pz�… , �5�

where f�pz�= pz− ��i��i�, pz+ ��i��i�, P denotes the
Cauchy principal value of the integral �the real part� and the
second term is the semiresidue, such that

�i
	
−p

p

dpzg�pz�
„f�pz�… = � i
�
j

g�pzj�

f��pzj�


,

where the sum is over all the zeroes f�pzj�=0. With the inte-
grals over pz� treated in the same manner and using the no-
tation

��	 = �
�

nmax


��	
�, � = n,n�, �6�

the real and imaginary parts in the dissipative regimes �0
� 
���GA
� , 
���PC
�� are as follows:


Re �33
n�=n =
e3B

2
2

�n
02�2kzan

�k��2 − kz
2�2 ln
 4kz

4�n
04 − ��2 − kz

2�2�pnkz − 2�k�F�2

4kz
4�n

04 − ��2 − kz
2�2�pnkz + 2�k�F�2
 ,


Im �33
n�=n =
e3B

2


�n
02�2kzan

�k��2 − kz
2�2 I0,


Re �11
�=n,n� =
e3B

16
2��2 − kz
2�

�A + C + D + B� ,


Re i�12
�=n,n� =
e3B

16
2��2 − kz
2�

�− A + C − D + B� ,

A = 
�2��2 − kz
2�ln��F + pn

�F − pn
� +

��2 − kz
2 − 2�2n + 1�eB�kz

2�k1
�ln
 kz

4��2 − kz
2 − 2eB�2 − 4��2 − kz

2�2�pnkz − ��k1�2

kz
4��2 − kz

2 − 2eB�2 − 4��2 − kz
2�2�pnkz + ��k1�2


+ ln
 4kz
4�n

04 − �pnkz��2 − kz
2 − 2eB� − 2�k1�F��2 − kz

2��2

4kz
4�n

04 − �pnkz��2 − kz
2 − 2eB� + 2�k1�F��2 − kz

2��2
��

n�0

,

C = 
�2��2 − kz
2�ln��F + pn

�F − pn
� +

��2 − kz
2 − 2�2n − 1�eB�kz

2�k2
�ln
 kz

4��2 − kz
2 + 2eB�2 − 4��2 − kz

2�2�pnkz − ��k2�2

kz
4��2 − kz

2 + 2eB�2 − 4��2 − kz
2�2�pnkz + ��k2�2


+ ln
 4kz
4�n

04 − �pnkz��2 − kz
2 + 2eB� − 2�k2�F��2 − kz

2��2

4kz
4�n

04 − �pnkz��2 − kz
2 + 2eB� + 2�k2�F��2 − kz

2��2
��

n�1
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D = 
�2��2 − kz
2�ln��F + pn�

�F − pn�
� +

��2 − kz
2 − 2�2n� − 1�eB�kz

2�k2�
�− ln
 kz

4��2 − kz
2 + 2eB�2 − 4��2 − kz

2�2�pn�kz − ��k2� �2

kz
4��2 − kz

2 + 2eB�2 − 4��2 − kz
2�2�pn�kz + ��k2� �2


+ ln
 4kz
4�n�

04 − �pn�kz��2 − kz
2 + 2eB� − 2�k2� �F��2 − kz

2��2

4kz
4�n�

04 − �pn�kz��2 − kz
2 + 2eB� + 2�k2� �F��2 − kz

2��2
��

n��1

,

B = 
�2��2 − kz
2�ln��F + pn�

�F − pn�
� +

��2 − kz
2 − 2�2n� + 1�eB�kz

2�k1�
�− ln
 kz

4��2 − kz
2 − 2eB�2 − 4��2 − kz

2�2�pn�kz − ��k1� �2

kz
4��2 − kz

2 − 2eB�2 − 4��2 − kz
2�2�pn�kz + ��k1� �2


+ ln
 4kz
4�n�

04 − �pn�kz��2 − kz
2 − 2eB� − 2�k1� �F��2 − kz

2��2

4kz
4�n�

04 − �pn�kz��2 − kz
2 − 2eB� + 2�k1� �F��2 − kz

2��2
��

n��0

,


Im �11
LC = − 
Im i�12
LC =
e3B

16
�

�2 − kz
2 − 2�2n + 1�eB

�2 − kz
2 
 kz

�k1
IA


n�0

+ 

�2 − kz
2 − 2�2n� − 1�eB

�2 − kz
2 
 kz

�k2�
ID


n��1
� ,


Im �11
RC = 
Im i�12
RC =
e3B

16
�

�2 − kz
2 − 2�2n − 1�eB

�2 − kz
2 
 kz

�k2
IC


n�1

+ 

�2 − kz
2 − 2�2n� + 1�eB

�2 − kz
2 
 kz

�k1�
IB


n��0
� , �7�

where the subscripts LC and RC refer to the left and right circular polarized components, respectively. The nonzero I0 , IA→D
are given by

I0 = �+ 2, kz � 2pn,�4�n
02 + kz

2 � � � �F + ��F
2 − 2pnkz + kz

2,

+ 1, �F + ��F
2 − 2pnkz + kz

2 � � � �F + ��F
2 + 2pnkz + kz

2,

− 1, 
��F
2 − 2pnkz + kz

2 − �F
 � � � ��F
2 + 2pnkz + kz

2 − �F,
� �8�

IA = �+ 2, kz � pn�1 + �n+1
0 /�n

0�, ���n
0 + �n+1

0 �2 + kz
2 � � � �F + ��F

2 − 2pnkz + kz
2 + 2eB ,

+ 1, �F + ��F
2 − 2pnkz + kz

2 + 2eB � � � �F + ��F
2 + 2pnkz + kz

2 + 2eB ,

+ 1, region 4,
�

ID = − 1, regions 8�,9�,

IC =�
+ 2, kz � pn�1 + �n−1

0 /�n
0�, ���n

0 + �n−1
0 �2 + kz

2 � � � �F + ��F
2 − 2pnkz + kz

2 − 2eB ,

+ 1, �F + ��F
2 − 2pnkz + kz

2 − 2eB � � � �F + ��F
2 + 2pnkz + kz

2 − 2eB ,

+ 1, regions 7,8,

+ 1, region 6,

+ 2, region 5,
� �9�

IB = �− 1, regions 3�,4�,

− 1. region 2�,

− 2, region 1�,
� �10�

and where �k=kz�0 /�, �k1=kz�1 /�, �k2=kz�2 /�, �k1� =kz�1� /�, �k2� =kz�2� /�. The different numbered regions in the gyromag-
netic absorption regimes for Im �11 and Im i�12 are as follows:

region 1, 0 � kz � pn��n+1
0

�n
0 − 1�, ��F

2 + 2pnkz + kz
2 + 2eB − �F � � � ���n

0 − �n+1
0 �2 + kz

2,

region 2, 0 � kz �
eB

�F − pn
, �
��F

2 − 2pnkz + kz
2 + 2eB − �F
,kz�max � � � ��F

2 + 2pnkz + kz
2 + 2eB − �F,
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region 3, kz �
eB

�F + pn
, 
��F

2 − 2pnkz + kz
2 + 2eB − �F
 � � � �kz,��F

2 + 2pnkz + kz
2 + 2eB − �F�min,

region 4, pn
2 � 2eB,pn − �pn

2 − 2eB � kz � pn + �pn
2 − 2eB, 0 � � � 
��F

2 − 2pnkz + kz
2 + 2eB − �F
 ,

region 5, 0 � kz � pn�1 −
�n−1

0

�n
0 �, 
��F

2 − 2pnkz + kz
2 − 2eB − �F
 � � � ���n

0 − �n−1
0 �2 + kz

2,

region 6, 0 � kz �
eB

�F − pn
, �
��F

2 + 2pnkz + kz
2 − 2eB − �F
,kz�max � � � 
��F

2 − 2pnkz + kz
2 − 2eB − �F
 ,

region 7,
eB

�F + pn
� kz �

�2eB�F

�n
0 ,


��F
2 + 2pnkz + kz

2 − 2eB − �F
 � � � �kz, 
��F
2 − 2pnkz + kz

2 − 2eB − �F
�min,

region 8, �pn
2 + 2eB − pn � kz � �pn

2 + 2eB + pn,

0 � � � �
��F
2 − 2pnkz + kz

2 − 2eB − �F
, 
��F
2 + 2pnkz + kz

2 − 2eB − �F
�min,

region 9, kz �
�2eB�F

�n
0 , 
��F

2 − 2pnkz + kz
2 − 2eB − �F
 � � � 
��F

2 + 2pnkz + kz
2 − 2eB − �F
 , �11�

with the primed regions being as the unprimed with n re-
placed by n�.

These different regions for the imaginary parts in the �-kz
plane are presented in Fig. 1 for the parameters pF=2.2 m,
B=Bcr for which nmax is 2. These parameters were chosen to
give an nmax not too large so that the number of solutions to
the dispersion relations in the dissipative regions was a man-
ageable number for a cleaner description of the main trends.
The different regions in the PC and GA dissipative regimes
for �33 are depicted in Fig. 1�a� for an n value of 1. The solid
and dotted lines are the �=kz and �= 
�PC
n=1 lines, respec-
tively. The equations to the lines labeled �P1 and �P2 in the
PC regime are ��F

2 +2pnkz+kz
2�1/2+�F and ��F

2 −2pnkz+kz
2�1/2

+�F, respectively, with �P2 being equal to the PC threshold
at kz=2pn. The equations to the lines labelled �G1 and �G2 in
the GA regime are ��F

2 +2pnkz+kz
2�1/2−�F and 
��F

2 −2pnkz
+kz

2�1/2−�F
, respectively. The value of I0 is +2 between the
lines �PC= �4�n

02+kz
2�1/2 and �P2 for kz satisfying kz�2pn; +1

between the lines �P2 and �P1; and, −1 between the lines
�G2 and �G1. The different regions for both �11 and i�12 in
the PC regime are similar to those in Fig. 1�a� with the equa-
tions to the lines �P1 and �P2 being ��F

2 �2pnkz+kz
2

+2eB�1/2+�F, respectively, arising from the n�0 term �viz.
A� and ��F

2 �2pnkz+kz
2−2eB�1/2+�F, respectively, arising

from the n�1 term �viz. C�. The kz values where ��F
2

−2pnkz+kz
2�2eB�1/2+�F are equal to the PC thresholds are

pn�1+�n�1
0 /�n

0�. The values of IA,C are +2 between the lines
�PC= ���n

0+�n�1
0 �2+kz

2�1/2 and �P2 for kz� pn�1+�n�1
0 /�n

0�,

and +1 between the lines �P2 and �P1 for arbitrary kz. The
numbered regions in �11� in the GA dissipative regime of �11

and i�12 are drawn for two values of �, namely �=1 in Fig.
1�b� satisfying p�

2 �2eB and �=2 in Fig. 1�d� satisfying p�
2

�2eB, where �=n ,n� for Im A, Im B, and polarizations e�
� ,

respectively. For Im D, Im C with polarizations e�
� , a single

value of ��=n� ,n� of 1 was chosen in Fig. 1�c� as there was
no significant difference in the forms of the regions for dif-
ferent � values.

In the regime �GA����PC, the components �33, �11,
i�12 are real. The forms of the response tensors in this
dissipation-free �DF� zone can be obtained from their forms
above the PC threshold or below the GA edge by the method
of analytic continuation. Specifically treating n� as a dummy
variable and setting equal to n, the �k ,�k1 ,�k2 become
i�k� , i�k1� , i�k2� with

�k� =
kz

2
� 4�n

02

�2 − kz
2 − 1,

�k1� =
kz

2
� 4�n

02

�2 − kz
2 −

��2 − kz
2 − 2eB�2

��2 − kz
2�2 ,

�k2� =
kz

2
� 4�n

02

�2 − kz
2 −

��2 − kz
2 + 2eB�2

��2 − kz
2�2 ,

so that, in the DF zone �
�GA
n��� 
�PC
n�, the linear re-
sponse tensors are as follows:
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�33
n = −
e3B�2kz


2��2 − kz
2�2

�n
02an

�k�
�arctan�1/y� − �arctan�1/x� , x � 0


 + arctan�1/x� , x � 0
�� ,


�11
n =
e3B

8
2��2 − kz
2��2��2 − kz

2�ln��F + pn

�F − pn
� −

��2 − kz
2 − 2�2n + 1�eB�kz

�k1�
��arctan�1/y1� , y1 � 0


 + arctan�1/y1� , y1 � 0
�

− �arctan�1/x1� , x1 � 0


 + arctan�1/x1� , x1 � 0
��� ,

+
e3B

8
2��2 − kz
2��
2��2 − kz

2�ln��F + pn

�F − pn
� −

��2 − kz
2 − 2�2n − 1�eB�kz

�k2�
�arctan�1/y2� − �arctan�1/x2� , x2 � 0


 + arctan�1/x2� , x2 � 0
��


n�0
� ,


i�12
n =
e3B

8
2��2 − kz
2�

��2 − kz
2 − 2�2n + 1�eB�kz

�k1�
��arctan�1/y3� , y3 � 0


 + arctan�1/y3� , y3 � 0
� − �arctan�1/x3� , x3 � 0


 + arctan�1/x3� , x3 � 0
��

−
e3B

8
2��2 − kz
2�

��2 − kz
2 − 2�2n − 1�eB�kz

�k2�

�arctan�1/y4� − �arctan�1/x4� , x4 � 0


 + arctan�1/x4� , x4 � 0
��


n�0
, �12�

where

x =
kz�2�n

02kz − pn��2 − kz
2��

2�k��F��2 − kz
2�

,

y =
kz�2�n

02kz + pn��2 − kz
2��

2�k��F��2 − kz
2�

� 0,

x1 =
kz�2kz�n

02 − pn��2 − kz
2 − 2eB��

2�k1� �F��2 − kz
2�

,

y1 =
kz�2kz�n

02 + pn��2 − kz
2 − 2eB��

2�k1� �F��2 − kz
2�

,

x2 =
kz�2kz�n

02 − pn��2 − kz
2 + 2eB��

2�k2� �F��2 − kz
2�

,

y2 =
kz�2kz�n

02 + pn��2 − kz
2 + 2eB��

2�k2� �F��2 − kz
2�

� 0,

x3 =
kz�kz��2 − kz

2 − 2eB� − 2pn��2 − kz
2��

2��k1� ��2 − kz
2�

,

y3 =
kz�kz��2 − kz

2 − 2eB� + 2pn��2 − kz
2��

2��k1� ��2 − kz
2�

,

x4 =
kz�kz��2 − kz

2 + 2eB� − 2pn��2 − kz
2��

2��k2� ��2 − kz
2�

,

y4 =
kz�kz��2 − kz

2 + 2eB� + 2pn��2 − kz
2��

2��k2� ��2 − kz
2�

� 0.

�13�

With 
�PC
n� 
�PC
n+1 for all response tensors and 
�PC
n�
� 
�PC
n�+1, 
�GA
n� 
�GA
n+1, 
�GA
n�� 
�GA
n�+1 for

�11, i�12, some of the 
��	
n terms in the sum �6� may be in
the dissipative regime while others may be in the nondissi-
pative regime depending upon the value of � for given kz, B.
For example, consider the linear response tensor �33 and an
� satisfying �4�0

02+kz
2�1/2��� �4�1

02+kz
2�1/2 for which the

n=0 term is of a natural logarithm form as in �7� whereas the
other terms �n�0� are of an arctan form as in �12�. Note that
for an � in the GA region of �33, for which the gyromagnetic
edge is equal to kz, all the terms are of a natural logarithm
form as given in �7�.

III. DISPERSION RELATIONS

The homogeneous wave equation for an electromagnetic
field in a medium is of the form

��	�k�A	�k� = 0,

��	�k� = k2g�	 − k�k	 + 4
��	�H��k� , �14�

where A��k� is the 4-potential. The source terms have been
neglected and consequently only the Hermitian �H� part of
the linear response tensor is retained, viz.

��	�H��k� = 1
2 ���	�k� + �*	��k�� .

Constructing the tensors ��	�k�, whose elements are the co-
factors of �	��k�, and using the gauge invariance and charge
continuity conditions, k	��	�k�=0 and k���	�k�=0, one has
��	�k�=k�k	��k�, where ��k� is an invariant. The dispersion
equation becomes

��k� = 0, �15�

any particular solution, �=�M�k�, of which is the dispersion
relation for a wave mode M �14�. Explicit evaluation of ��k�
gives the following dispersion relations:
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�2 − 4
�33�H� = �2 − 4
 Re��33 + �vac
33 �

= �2 − 4
 Re��33�total = 0,

k2 − 4
��11�H� + i�12�H�� = �2 − kz
2 − 4
 Re��11 + i�12�total

= �2 − kz
2 − 4
 Re��+� = 0,

k2 − 4
��11�H� − i�12�H�� = �2 − kz
2 − 4
 Re��11 − i�12�total

= �2 − kz
2 − 4
 Re��−� = 0, �16�

the first of which is defined as the longitudinal �L� mode with
polarization tensor eL

�= �0,0 ,0 ,1� and the latter two as the
transverse modes ��� with polarization tensors e�

�

=2−1/2�0,1 , � i ,0�, respectively. These dispersion relations
represent the dominant non-k� dependent solutions in the
oblique angle limit �� small� of ��k�=0, the lowest order in
k� being k�

2 . Although the vacuum contributions to the Her-

mitian parts of the linear response tensors in the dispersion
relations are small compared to the particle contributions
over much of �-kz space, the singularites that arise at each
PC threshold cancel out the analogous singularites in the
particle contributions. Inclusion of the vacuum contributions
to the Hermitian parts of the linear response tensors is there-
fore imperative. The same is true for the imaginary vacuum
contributions that occur above the PC thresholds.

The electron contributions to the imaginary parts of �33

are given in �7�. The vacuum contributions to the imaginary
parts of �33 are also as in �7� but with an I0 given by −2 for
frequencies satisfying �� �4�n

02+kz
2�1/2. The sum of these

contributions then gives the total contribution to the imagi-
nary parts of �33 as

Im��33�total =
e3B

2


�n
02�2kzan

�k��2 − kz
2�2 I0, �17�

with

I0 =�
0, kz � 2pn, �4�n

02 + kz
2 � � � �F + ��F

2 − 2pnkz + kz
2, two cancel,

− 2, kz � 2pn,�4�n
02 + kz

2 � � � �F + ��F
2 − 2pnkz + kz

2, full vacuum,

− 1, �F + ��F
2 − 2pnkz + kz

2 � � � �F + ��F
2 + 2pnkz + kz

2, half-vacuum,

− 2, � � �F + ��F
2 + 2pnkz + kz

2, full vacuum,

− 1, 
��F
2 − 2pnkz + kz

2 − �F
 � � � ��F
2 + 2pnkz + kz

2 − �F, full electron.
� �18�

The imaginary parts of �11+ i�12 due to the electrons are given by the sum of Im �11 and Im i�12 in �7�, viz. 2 Im �11,
polarization e+

� �IC and IB only� and those of �11− i�12 by the difference of Im �11 and Im i�12 in �7�, viz. 2 Im �11, polarization
e−

� �IA and ID only�. The imaginary parts of �11� i�12 due to the vacuum are also given by the sum and difference of �11 and
i�12 as given in �7� but with only IC and IA being nonzero and having the value −2 for �� ���n

0+�n−1
0 �2+kz

2�1/2 and �� ���n
0

+�n+1
0 �2+kz

2�1/2, respectively. The sums of the electron and vacuum contributions give the total contributions to the imaginary
parts of �11� i�12 which are as follows:

Im
��+�
RC =
e3B

8
 �

�2 − kz
2 − 2�2n − 1�eB

�2 − kz
2 
 kz

�k2
IC


n�1

+ 

�2 − kz
2 − 2�2n� + 1�eB

�2 − kz
2 
 kz

�k1�
IB


n��0
� , �19�

with

IC =�
0, kz � pn�1 + �n−1

0 /�n
0�, ���n

0 + �n−1
0 �2 + kz

2 � � � �F + ��F
2 − 2pnkz + kz

2 − 2eB , two cancel,

− 2, kz � pn�1 + �n−1
0 /�n

0�, ���n
0 + �n−1

0 �2 + kz
2 � � � �F + ��F

2 − 2pnkz + kz
2 − 2eB , full vacuum,

− 1, �F + ��F
2 − 2pnkz + kz

2 − 2eB � � � �F + ��F
2 + 2pnkz + kz

2 − 2eB , half-vacuum,

− 2, � � �F + ��F
2 + 2pnkz + kz

2 − 2eB , full vacuum,

+ 1, regions 7,8, full electron

+ 1, region 6, full electron,

+ 2, region 5, full electron,

�
IB = �− 1, regions 3�,4�, full electron

− 1, region 2�, full electron

− 2, region 1�, full electron,
� �20�

and
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Im��−�
LC =
e3B

8
 �

�2 − kz
2 − 2�2n + 1�eB

�2 − kz
2 
 kz

�k1
IA


n�0

+ 

�2 − kz
2 − 2�2n� − 1�eB

�2 − kz
2 
 kz

�k2�
ID


n��1
� , �21�

with

IA =�
0, kz � pn�1 + �n+1

0 /�n
0�,���n

0 + �n+1
0 �2 + kz

2 � � � �F + ��F
2 − 2pnkz + kz

2 + 2eB , two cancel,

− 2, kz � pn�1 + �n+1
0 /�n

0�,���n
0 + �n+1

0 �2 + kz
2 � � � �F + ��F

2 − 2pnkz + kz
2 + 2eB , full vacuum,

− 1, �F + ��F
2 − 2pnkz + kz

2 + 2eB � � � �F + ��F
2 + 2pnkz + kz

2 + 2eB , half-vacuum,

− 2, � � �F + ��F
2 + 2pnkz + kz

2 + 2eB , full vacuum,

+ 1, region 4, full electron,

�
ID = − 1, regions 8�,9�, full electron. �22�

In deriving the longitudinal and transverse modes below, the
vacuum contributions to the Hermitian parts of the linear
response tensors are taken from Bakshi, Cover, and Kalman
�15�.

A. Longitudinal modes

There are a number of possible modes satisfying the dis-
persion relation

�2 − 4
 Re��33�total = 0, �23�

namely, the gyromagnetic absorption and pair creation
modes below the GA edge at �=kz and above the PC thresh-

old at �= �4�0
02+kz

2�1/2, respectively, originating when the nu-
merator or denominator of the argument of the natural loga-
rithm in Re 
�33
n of �7� passes through zero, and a mode �L

beginning in the nondissipative regime �kz��� �4�0
02

+kz
2�1/2� at low kz then cutting the light line and extending

into the gyromagnetic regime at higher kz similar in nature to
the longitudinal mode of an unmagnetized degenerate elec-
tron gas. Each of these modes are discussed below.

1. Gyromagnetic absorption modes

Rewriting Re 
�33
n as


Re �33
n = −
e3B

2
2

�n
02�2kzan

�k�kz
2 − �2�2 � �ln
 kz�2�n

02kz + pn�kz
2 − �2�� + 2�k�F�kz

2 − �2�
kz�2�n

02kz + pn�kz
2 − �2�� − 2�k�F�kz

2 − �2�



− ln
 kz�2�n
02kz − pn�kz

2 − �2�� + 2�k�F�kz
2 − �2�

kz�2�n
02kz − pn�kz

2 − �2�� − 2�k�F�kz
2 − �2�


� , �24�

and the dispersion relation as 1−4
 Re��33�total /�2=0, then
the denominators of the arguments of the first and second
natural logarithm terms in �24� are zero at frequencies 
�F
− ��F

2 −2pnkz+kz
2�1/2
 and ��F

2 +2pnkz+kz
2�1/2−�F such that

Re �33→ ��, respectively. If the left-hand side �LHS� of the
dispersion relation is negative as one approaches 
�F− ��F

2

−2pnkz+kz
2�1/2
 from below, then a mode occurs on either

side of �= 
�F− ��F
2 −2pnkz+kz

2�1/2
 as 4
 Re �33 /�2→−�. If,
however, the LHS of the dispersion relation is positive as one
approaches ��F

2 +2pnkz+kz
2�1/2−�F from below, then a mode

occurs on either side of �= ��F
2 +2pnkz+kz

2�1/2−�F as
4
 Re �33 /�2→ +�. This behavior is shown in Fig. 2�a�
where 1−4
 Re��33�total /�2 is plotted as a function of �
�0���kz� for the parameters B=Bcr, pF=2.2 m, and kz
=0.1 m �nmax=2�. There are three peak-trough arrangements,
the peaks �Re �33→−�� occurring at 
�F− ��F

2 −2pnkz
+kz

2�1/2
 and the troughs �Re �33→ +�� at ��F
2 +2pnkz

+kz
2�1/2−�F, with the arrangement lowest in frequency corre-

sponding to n=nmax and highest to n=0. Just before each

arrangement begins, 1−4
 Re��33�total /�2 is positive �true
for arbitrary B, pF, and kz� resulting in two modes for each n,
1�n�nmax, at frequencies

� = ��F
2 + 2pnkz + kz

2 − �F � 
�, 
− � 
+,

as 1−4
 Re��33�total /�2 tends to −� and passes through zero
twice, either side of ��F

2 +2pnkz+kz
2�1/2−�F. When n=0, a

single mode occurs just below ��F
2 +2pFkz+kz

2�1/2−�F, viz.

� = ��F
2 + 2pFkz + kz

2 − �F − 
− � ��F
2 + 2pFkz + kz

2 − �F,

as 1−4
 Re��33�total /�2 approaches −�. Eventually it passes
through zero and forms the mode �L discussed below. The
line �G1 in Fig. 1�a� is the n=1 value of ��F

2 +2pnkz+kz
2�1/2

−�F either side of which a doublet mode occurs. As one steps
through frequency searching for the sign change in 1
−4
 Re��33�total /�2, the separation between the two compo-
nents of the doublet mode is wide enough to be easily dis-
cernible �step size ���10−3 for the parameters in Fig. 2�a��.
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2. Mode �L near the light line

At low kz, this mode begins above the light line, cuts the
light line at a kz value of k0 say, and then at larger kz becomes
the line ��F

2 +2pFkz+kz
2�1/2−�F+
+, namely the higher fre-

quency n=0 doublet of the logarithmic singularity of the GA
mode. The value of k0 can be estimated via the �2−kz

2→0
limit of the plasma part of �23�, viz.

k0
2 �

4e3B�F



�
n=0

nmax pnan

�n
02 . �25�

In Fig. 2�b�, the different longitudinal modes, namely the
gyromagnetic absorption modes �solid short-dashed lines
a ,b ,c for n=0,1 ,2, respectively�, �L �solid black line inde-
cipherable from line a� and the pair modes �lines A ,B ,C
discussed below�, are presented for the parameters pF
=2.2m and B=Bcr. The grey dotted lines are the correspond-
ing PC thresholds.

3. Pair modes

Rewriting 
Re �33
n as


Re �33
n =
e3B

2
2

�n
02�2kzan

�k��2 − kz
2�2

��ln
 kz�2�n
02kz − pn��2 − kz

2�� + 2�k�F��2 − kz
2�

kz�2�n
02kz − pn��2 − kz

2�� − 2�k�F��2 − kz
2�



− ln
 kz�2�n
02kz + pn��2 − kz

2�� + 2�k�F��2 − kz
2�

kz�2�n
02kz + pn��2 − kz

2�� − 2�k�F��2 − kz
2�

�

�26�

for 
���PC
n, and the dispersion relation as 1
−4
 Re��33�total /�2=0, then for kz�2pn the numerator and
denominator of the arguments of the first and second natural
logarithms in �26� are zero at frequencies �F+ ��F

2 −2pnkz
+kz

2�1/2 and �F+ ��F
2 +2pnkz+kz

2�1/2 such that Re �33→ ��,
respectively. When kz�2pn, the denominators of the argu-
ment of the first and second natural logarithms are zero at
�F+ ��F

2 −2pnkz+kz
2�1/2 and �F+ ��F

2 +2pnkz+kz
2�1/2, respec-

tively, resulting in Re �33→ +� in both cases. If the LHS of
the dispersion relation is positive as one approaches �F
+ ��F

2 −2pnkz+kz
2�1/2 from below then a mode only occurs

when kz�2pn on the approach and departure of �F+ ��F
2

−2pnkz+kz
2�1/2 as Re �33 /�2→ +�. If, on the other hand, the

LHS of the dispersion relation is negative as one approaches
either �F+ ��F

2 +2pnkz+kz
2�1/2 �for all kz� or �F+ ��F

2 −2pnkz
+kz

2�1/2 �for kz�2pn� from below, then modes only occur
either side of these two frequencies as Re �33 /�2→−�.

For kz�2pn, one has 1−4
 Re��33�total /�2�0 just above
the PC thresholds and no modes arise. For kz�2pn, 1
−4
 Re��33�total /�2 is positive and pair modes occur either
side of �F+ ��F

2 −2pnkz+kz
2�1/2, viz.

� = �F + ��F
2 − 2pnkz + kz

2 � 
 � �F + ��F
2 − 2pkz + kz

2.

These pair modes are presented in Fig. 2�b� for the param-
eters pF=2.2m and B=Bcr, viz. the black dashed-double-
dotted lines A ,B ,C are the n=0,1 ,2 pair modes �F+ ��F

2

−2pnkz+kz
2�1/2, respectively, that lie above wave numbers

2pn �viz. to the right of lines 1, 2, 3�. Their continuation into
regimes where they are no longer modes are drawn as the
grey long-dashed lines. The lines A�, B�, C� are the n
=0,1 ,2 components of ��F

2 +2pnkz+kz
2�1/2+�F, respectively,

drawn as grey long-dashed lines. By including these lines,
the extent of the dissipation experienced by each of the pair
modes becomes apparent. For example, all pair mode dou-
blets lie entirely within dissipative regimes; the amount of
dissipation is greatest when the modes are closest to their PC
thresholds; and, each pair mode with n�0 has the additional
imaginary contributions from the pair modes of lower n val-
ues.

B. Transverse modes

The transverse modes satisfying the dispersion relation

�2 − kz
2 − 4
 Re���� = 0 �27�

(a)

(b)

FIG. 2. �a�: The left-hand side of the longitudinal dispersion
relation, 1−4
 Re��33�total /�2=0, is plotted as a function of �, 0
���kz, for the parameters pF=2.2m, B=Bcr, and kz=0.1m. Peaks
and troughs occur at the logarithmic singularities when one has �
= 
��F

2 �2pnkz+kz
2�1/2−�F
, respectively. �b� The different longitudi-

nal modes for the parameters pF=2.2m and B=Bcr. The different
lines are discussed in the text.
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comprise the pair modes above the PC thresholds analogous
to the longitudinal case; modes �� below the ���1

0−�0
0�2

+kz
2�1/2 gyromagnetic edge similar to the transverse mode for

an unmagnetized, degenerate electron gas; a mode just above
each gyromagnetic absorption edge for the ��+� component;
and, the more complicated gyromagnetic absorption modes
for 
0����GA
n.

1. Modes below and just above the gyromagnetic absorption
edges

There are transverse modes, denoted by ��, with polar-
ization e�

� of an analogous nature to the unmagnetized trans-
verse mode, that occur below the GA edge and asymptote to
the light line from above for large kz. For a given kz, they
occur when the dispersion relation �27� is satisfied, the LHS
of which increases smoothly with � from below zero to
above zero. The LHS of the dispersion relation is negative or
positive depending upon whether the frequency � satisfies
0����� or ����, respectively. Superimposed on this
smoothly varying function are the peaks and troughs of the
modes made up of the GA modes and modes just above the
GA edges. Both �� modes are situated at frequencies satis-
fying 
���GA
nmax

.
A mode is possible with polarization e+

� at each n, 1�n
�nmax or n�, 0�n��nmax should �2−kz

2−4
 Re��+� be ini-

tially negative or positive before approaching �� at the gy-
romagnetic edges at ����

0 −���1
0 �2+kz

2�1/2, �=n ,n� from
above for kz� pn�1−�n−1

0 /�n
0� or kz� pn���n�+1

0 /�n�
0 −1�, re-

spectively. For kz� pn�1−�n−1
0 /�n

0�, the two �2−kz
2−Re��+�

values, one at each n, 1�n�nmax and the other at each n�,
0�n��nmax−1, sum to zero, the value of pn�1−�n−1

0 /�n
0�

being less than kz� pn���n�+1
0 /�n�

0 −1�. For pn�+1�1
−�n�

0 /�n�+1
0 ��kz� pn���n�+1

0 /�n�
0 −1�, 0�n��nmax−1 and kz

� pn���n�+1
0 /�n�

0 −1�, n�=nmax, however, modes occur �G0,
G1,¯, say� above their respective GA edges, ���n�+1

0

−�n�
0 �2+kz

2�1/2, �2−kz
2−4
 Re��+� being initially positive as

���GA���+�. Each of these modes, over a restricted range
of kz, contributes two solutions to the dispersion relation, the
first �lower in frequency� essentially at the GA edge as the
LHS of the dispersion relation changes from finite, positive
to −�, and the second �G0,G1, ¯ � as the LHS of the dis-
persion relation returns to a finite, positive value. This sec-
ond solution can be a considerable distance away from the
edge �e.g., B=Bcr, pF=2.2m, kz=0, n�=2, first peak at ��3

0

−�2
0�=0.4096m, second peak at ��3

0−�2
0�+
=0.4230m, 


=0.0134m�. No analogous modes exist for the transverse
component Re��−�.

The GA modes occur when the arguments of the numera-
tors or denominators of the natural logarithms in

4
 Re��11� i�12�
�, viz.


4
 Re��11 + i�12�
�=n�,n = �T1�n�� − P1�n���n��0 + �T2�n� + P2�n��n�1,


4
Re��11 − i�12�
�=n�,n = �T1�n� + P1�n��n�0 + �T2�n�� − P2�n���n��1,

T1��� =
e3B

2

�2 ln��F + p�

�F − p�
�

+
��2 − kz

2 − 2�2� + 1�eB�
���2 − kz

2 − 2eB�2 − 4��
02��2 − kz

2�
ln
 4kz

2��
04 − �p���2 − kz

2 − 2eB� − ���2 − kz
2 − 2eB�2 − 4��

02��2 − kz
2��F�2

4kz
2��

04 − �p���2 − kz
2 − 2eB� + ���2 − kz

2 − 2eB�2 − 4��
02��2 − kz

2��F�2
� ,

P1��� =
e3B

2


��2 − kz
2 − 2�2� + 1�eB�

���2 − kz
2 − 2eB�2 − 4��

02��2 − kz
2�

� ln
 kz
2��2 − kz

2 − 2eB�2 − �2p���2 − kz
2� − ����2 − kz

2 − 2eB�2 − 4��
02��2 − kz

2��2

kz
2��2 − kz

2 − 2eB�2 − �2p���2 − kz
2� + ����2 − kz

2 − 2eB�2 − 4��
02��2 − kz

2��2
 ,

T2��� =
e3B

2
2�2 ln��F + p�

�F − p�
�

+
��2 − kz

2 − 2�2� − 1�eB�
���2 − kz

2 + 2eB�2 − 4��
02��2 − kz

2�
ln
 4kz

2��
04 − �p���2 − kz

2 + 2eB� − ���2 − kz
2 + 2eB�2 − 4��

02��2 − kz
2��F�2

4kz
2��

04 − �p���2 − kz
2 + 2eB� + ���2 − kz

2 + 2eB�2 − 4��
02��2 − kz

2��F�2
� ,
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P2��� =
e3B

2
2

��2 − kz
2 − 2�2� − 1�eB�

���2 − kz
2 + 2eB�2 − 4��

02��2 − kz
2�

� ln
 kz
2��2 − kz

2 + 2eB�2 − �2p���2 − kz
2� − ����2 − kz

2 + 2eB�2 − 4��
02��2 − kz

2��2

kz
2��2 − kz

2 + 2eB�2 − �2p���2 − kz
2� + ����2 − kz

2 + 2eB�2 − 4��
02��2 − kz

2��2
 , �28�

are zero, whereby the right-hand side �RHS� of �28� tends to
+� or −� over a small range of frequencies. Should these
logarithmic singularities cause the LHS of the dispersion re-
lation to pass through zero �either side of the singularity�,
then these doublet modes are defined as the GA modes. The
four possible GA modes for each polarization lie on either
side of 
��F

2 �2p�kz+kz
2+2eB�1/2−�F
, 0���nmax with �

=n ,n� �polarization e�
� � and 
��F

2 �2p�kz+kz
2−2eB�1/2−�F
,

1���nmax with �=n ,n� �polarization e�
� �. The frequencies

of the possible modes, polarization e�
� , in relation to ��

determine which of these occur.
For the transverse component Re��−�, the GA modes,

with possible values of n ,n� in the ranges 0�n�nmax, 1
�n��nmax and polarization e−

�, are


�
n � 
��F
2 − 2pnkz + kz

2 + 2eB − �F
,

pn
2 � 2eB, pn − �pn

2 − 2eB � kz � pn + �pn
2 − 2eB ,

�29�

and


�
n� � 
��F
2 − 2pn�kz + kz

2 − 2eB − �F
,

kz � pn� + �pn�
2 + 2eB , �30�

for � satsifying 0���kz. These GA doublet modes are

situated below the light line ����−� and are drawn as single
lines for convenience in Fig. 3�a� for the parameters B=Bcr

and pF=2.2m �nmax=2�. The modes are drawn in black, their
continuations into regimes where they are no longer modes
are drawn in grey. The �− mode is drawn as the solid black
line, the n=0 and 1 dispersion relations satisfying �29� �la-
beled C and D� are drawn as the dotted lines, and the n�
=1 and 2 dispersion relations satisfying �30� �labeled A and
B� are drawn as the dashed lines. In descending frequency,
the grey dashed-dotted lines are the n=0,1 ,2 components of
��F

2 +2pnkz+kz
2+2eB�1/2−�F and the grey solid lines are the

n�=1 and 2 components of 
��F
2 +2pn�kz+kz

2−2eB�1/2−�F
.
By including these components and comparing Fig. 3�a� with
Figs. 1�b� and 1�c�, the dissipative regions 4 and 8�, 9�,
respectively, are apparent. For example, consider the lower
frequency modes of the doublets labeled A, C and B, D. The
former are in nondissipative regimes and the latter are par-
tially in both nondissipative and dissipative regimes. The
higher frequency modes of all these doublets, however, are in
dissipative regions.

For the transverse component Re��+�, the GA modes with
possible values of n, n� in the ranges 1�n�nmax, 0�n�
�nmax and polarization e+

� are


�
n� � 
��F
2 − 2pn�kz + kz

2 + 2eB − �F
 �pn�
2

� 2eB , kz � eB/��F + pn�� ,

pn�
2

� 2eB , eB/��F + pn�� � kz � pn� − �pn�
2 − 2eB, kz � pn� + �pn�

2 − 2eB ,
�
�31�


�
n � 
��F
2 − 2pnkz + kz

2 − 2eB − �F
, eB/��F − pn� � kz � pn + �pn
2 + 2eB , �32�

with 0��� �kz ,�+�min,


�
n� � 
��F
2 + 2pn�kz + kz

2 + 2eB − �F
, kz � eB/��F − pn�� , �33�


�
n � 
��F
2 + 2pnkz + kz

2 − 2eB − �F
, eB/��F + pn� � kz � �pn
2 + 2eB − pn, �34�

for kz��+, �+���kz or


�
n� ��
��F
2 − 2pn�kz + kz

2 + 2eB − �F
 , 0 � kz � eB/��F + pn�� ,


��F
2 + 2pn�kz + kz

2 + 2eB − �F
 , 0 � kz � pn���n�+1
0 /�n�

0 − 1� ,� �35�


�
n � 
��F
2 − 2pnkz + kz

2 − 2eB − �F
, pn�1 − �n−1
0 /�n

0� � kz � eB/��F − pn� , �36�

for kz��+, kz����+, and
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(a) (c)

(b) (d)

(e)

FIG. 3. �a�: The gyromagnetic absorption modes are plotted as a function of kz for the transverse component Re��−� with polarization e−
�,

for the parameters pF=2.2m and B=Bcr. The solid line represents the mode �−, the dotted lines labeled C and D are the n=0 and n=1 values,
respectively, of 
�
n in �29�. The long-dashed lines labeled A and B are the n�=1 and n�=2 values, respectively, of �30�. �b� The left-hand
side of the transverse dispersion relation �2−kz

2−4
 Re��+�=0 is plotted as a function of � �0����GA� for the parameters pF=2.2m,
B=Bcr, ��=10−4m, and kz=0.1m. �c� As for �b� but for kz=0.5m. �d� The gyromagnetic absorption modes are plotted as a function of kz for
the transverse component Re��+� with polarization e+

�, for the parameters pF=2.2m and B=Bcr. The different lines are defined in the text. �e�
Transverse pair modes above the pair creation thresholds for the parameters pF=2.2m and B=Bcr. See the text for a description of the
different lines.
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�
n� � ��F
2 + 2pn�kz + kz

2 + 2eB − �F, pn���n�+1
0 /�n�

0 − 1� � kz � eB/��F − pn�� , �37�


�
n ��
��F
2 + 2pnkz + kz

2 − 2eB − �F
 , 0 � kz � eB/��F + pn� ,


��F
2 − 2pnkz + kz

2 − 2eB − �F
 , 0 � kz � pn�1 − �n−1
0 /�n

0� ,
� �38�

with �kz ,�+�max����GA. In Figs. 3�b� and 3�c�, �2−kz
2

−4
 Re��+� is plotted as a function of � �0����GA� for
the parameters B=Bcr, pF=2.2m, ��=10−4m, and kz=0.1m
and 0.5m, respectively. Whether 
��F

2 �2p�kz+kz
2+2eB�1/2

−�F
, 
��F
2 �2p�kz+kz

2−2eB�1/2−�F
, �=n�n, respectively,
are modes or not is determined by their location in �-kz
space as dictated by �31�–�38�.

For kz=0.1m, �2−kz
2−4
 Re��+� is positive as one ap-

proaches each logarithmic singularity, viz. ���+. The first
three peaks in Fig. 3�b� correspond to the n�=0,1 ,2 compo-
nents of �31� and do not form solutions to the dispersion
relation. The next two troughs do form GA modes and are
the n=1,2 components of the first case in �38�. The next
three peaks do not form GA modes as they belong to the
n�=2,1 ,0 components of �37�, a kz value of 0.1m being be-
low the minimum kz of pn���n�+1

0 /�n�
0 −1� required to form a

mode. The distinct trough at kz�0.42m, between the n�=2
and n�=1 components of �37�, which along with the n�=0
component do not form modes, corresponds to the mode G2
just above the GA edge at ���n�+1

0 −�n�
0 �2+kz

2�1/2, n�=2 �the
n�=0,1 components �troughs� being canceled out at this low
kz value by the corresponding n=1,2 components �peaks��.
Finally the last two troughs form modes and correspond to
the second case in �38�. These modes are all doublets.

For kz=0.5m, �+ has the value 0.5088m. The first three
peaks in Fig. 3�c� occur below �+ and hence form the GA
modes given in �31�, the kz of 0.5m being greater than
eB / ��F+ pn�� but less than pn�− �pn�

2 −2eB�1/2 for n�=0,1 ,2.
Interspersed within these three peaks are the two troughs at
�= 
��F

2 +2pnkz+kz
2−2eB�1/2−�F
, n=1,2, which do not form

GA modes as they do not satisfy the �+����GA condition
in the first case of �38�. The next peaks and troughs occur
when ���+. The two troughs and peak marked 1, 2, and 3,
respectively, correspond to the n�=2,1 ,0 values of 
��F

2

+2pn�kz+kz
2+2eB�1/2−�F
 of �37�. Although the condition

�+����GA is satisfied, the kz condition pn���n�+1
0 /�n�

0 −1�
�kz�eB / ��F− pn�� is only satisfied for n�=2,1 �the two
troughs�, these forming GA modes. The peak and trough
marked 4 and 5, respectively, correspond to the n=2 and n
=1 values of 
��F

2 −2pnkz+kz
2−2eB�1/2−�F
, the second case

of �38�, the kz restriction only being satisfied for the n=1
case which consequently forms a GA mode. The doublet
nature of the modes is easily discernible for the frequency
step of 10−4m chosen in Figs. 3�b� and 3�c�, the separation
between the two modes of the doublet being the order of a
few step sizes.

In Fig. 3�d�, the GA modes are drawn in black for the
transverse mode �+ as a function of kz. As �+ and kz are
indiscernible on the scale of Fig. 3�d�, only the modes arising
from Eqs. �31�, �32�, �37�, and �38� are considered. The

short-dashed lines are the n=1,2 components of 
��F
2

−2pnkz+kz
2−2eB�1/2−�F
 in �32� and the second equation in

�38�; the dashed-dotted lines are the n�=0,1 ,2 components
of 
��F

2 −2pn�kz+kz
2+2eB�1/2−�F
 of �31�; the long-dashed

lines are the n=1,2 components of 
��F
2 +2pnkz+kz

2

−2eB�1/2−�F
 of the first equation in �38�; and, the dashed-
double-dotted lines are the n�=0,1 ,2 components of 
��F

2

+2pn�kz+kz
2+2eB�1/2−�F
 of �37�. The dotted lines labeled

G0, G1, and G2 are the truncated n�=0,1 and the entire
n�=2 �0�kz� pn���n�+1

0 /�n�
0 −1�� components, respectively,

of the mode just above the GA edges �for convenience drawn
as the single mode at the appropriate GA edge�. The line
labeled G2 on the scale used in Fig. 3�d� is only discernible
as two dots near ��0.4m. The continuation of �31�, �32�,
�37�, and �38� into regimes where they are no longer modes
are drawn in grey. Comparing Fig. 3�d� with Fig. 1�c� and
Figs. 1�b� and 1�d�, the dissipative regions 7,8 and 3�, 4�,
respectively, are apparent. Determination of the �+ mode
was made difficult at times by the presence of the resonant
modes, a problem exacerbated for B and pF parameters gen-
erating large nmax values. The GA modes for the Re��−�
component lie below the light line and consequently caused
no problems when determining the �− mode.

2. Pair modes above the pair creation thresholds

The next set of transverse modes are the pair modes above
the PC thresholds arising when the numerator or denomina-
tor of the arguments of the natural logarithms in
4
 Re��11� i�12� as given in �28� tend to zero such that
�2−kz

2−4
 Re���� passes through zero.
With 4
 Re��11� i�12� as in �28� and �2−kz

2

−4
 Re���� positive above the PC thresholds, pair modes
arise from the n-dependent terms when 4
 Re��11� i�12�
tends to +�. For the transverse components Re��11� i�12�,
this corresponds to

� = �F + ��F
2 − 2pnkz + kz

2 � 2eB � 


� �F + ��F
2 − 2pnkz + kz

2 � 2eB , �39�

with polarization e�
� for kz� pn�1+�n�1

0 /�n
0� and n between 1

or 0 and nmax, respectively. These pair modes are depicted in
Fig. 3�e� for the parameters B=Bcr and pF=2.2m. In this
figure, the dotted lines in ascending frequency are the n=0,
1, and 2 components of the pair mode �F+ ��F

2 −2pnkz+kz
2

+2eB�1/2 for the transverse mode Re��−� with polarization
e−

�; the dashed lines in ascending frequency are the n=1 and
2 components of the pair mode �F+ ��F

2 −2pnkz+kz
2−2eB�1/2

for the transverse mode Re��+� with polarization e+
�; and, the

solid grey lines are the respective PC thresholds drawn in for
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reference. The pair modes given by the doublet �39� are
drawn as single dispersion curves.

IV. RESULTS AND DISCUSSION

Before summarizing the main features of the dispersive
properties of a parallel-propagating, magnetic degenerate
electron gas, the results are compared with the unmagnetized
case and previous work. In the same manner as the numera-
tor or denominator of the arguments of the natural logarithm
terms in Re �33 and Re��11� i�12� for the magnetized case
pass through zero, so they do for the unmagnetized case at
�=�F+ ��F

2 �2pF
k
+ 
k
2�1 /2 and �= 
�F− ��F
2 �2pF
k


+ 
k
2�1/2
 �16�. However, unlike the magnetized case where
pair and gyromagnetic absorption doublet modes occur for
the longitudinal and two transverse modes, the coefficient in
front of the natural logarithm in the unmagnetized case is
zero such that

lim
x→0

x ln x → 0

and no such analogous modes exist.
The unmagnetized transverse mode, �T say, and the mag-

netized transverse modes �� behave similarly, beginning
above the light line �except for the �+ mode which begins
below the light line, crossing it at some low kz� and then
asymptoting to it from above at large 
k
, kz, respectively. In
the magnetized case however, these modes are in the dissi-
pative regime below the gyromagnetic absorption edge
whereas in the unmagnetized case the mode occurs in the
dissipation-free zone, 
k
��T� �4m2+ 
k
2�1/2. The longitu-
dinal mode for the unmagnetized case, �L�
k
�, forms a
tonguelike feature �16�, which cuts the light line at some 
k
,
the upper �L�0� value being above the light line and the
lower �L�0� value being below. The longitudinal mode near
the light line for a magnetized gas also begins in the
dissipation-free zone, cuts the light line at k0 and becomes
the higher frequency n=0 component of the gyromagnetic
absorption doublet mode.

The polarization matrix element i�12 presented in the
work by Cover, Kalman, and Bakshi and Pérez Rojas and
Shabad is opposite in sign to the i�12 �=i�12 / �4
�� pre-
sented here, resulting in �� corresponding to their
���=�11� i�12�. Taking the cold plasma limit of the longi-
tudinal ��33� and the two transverse ��11� i�12� components
in �4�, one obtains

K3
3 = 1 −

�p
2

�2 , K1
1 � iK2

1 = 1 −
�p

2

�2

1

1 � �c/�
, �40�

for the dielectric response tensors �Kj
i =
 j

i +4
� j
i /�2�, where

�p and �c are the plasma and cyclotron frequencies, respec-
tively. As �11� i�12 in this limit correctly reproduces the x
and o modes, respectively, one finds that the sign difference
in i�12 between the authors in �7–9� and that obtained here is
due to differences in convention. Taking this into account,
the real parts of the response tensors as presented in Eqs. �7�
and �12� taken in the limit kz=0 agree with the results of
Cover, Kalman, and Bakshi �7�. Further, the pair modes �pair
creation collective modes� of Pulsifer and Kalman �8� are
reproduced.

In this paper, the real and imaginary parts of the response
tensors for a parallel-propagating, magnetized, degenerate
electron gas have been presented along with a study of the
resultant longitudinal and transverse modes. The modes re-
sulting from a logarithmic singularity, such as the pair modes
and the gyromagnetic absorption modes, are doublets since
��k� given by �16� passes through zero twice, namely, on
either side of the singularity. One of the modes of the dou-
blets has a �� /�� value which is positive and the other a
value which is necessarily negative. Should the mode be in a
dissipative regime, then the latter produces a negative energy
wave �see �42� below�.

In the limit of weak damping, the damping coefficient
�M�k� of the mode M, whereby the energy in the waves
varies as exp�−�M�k�t�, is given by �14�

�M�k� = 2i
RM�k�

�M
4
�M

A �k� , �41�

with �M
A related to the anti-Hermitian part of the response

tensor, viz. �M
A �k�=e

M�
* eM��A���kM�, and equal to


i Im��33�total
�M
and 
i Im����
�M

for the longitudinal and
transverse modes, respectively. The quantity RM�k� is the ra-
tio of electric to total energy in the waves, viz.

�RM�k��−1 = − � 1

�

��M

��
�

�M

, �42�

with �M =e
M�
* eM	�H�	 and �H�	 the Hermitian part of

��	�=k2g�	−k�k	+4
��	� yielding �M =−�M with �L and
�T given by �2−4
 Re��33�total and �2−kz

2−4
 Re����, re-
spectively, so that

�RM�k��−1 = � 1

�

��M

��
�

�M

, �43�

and �M becomes

�M�k� = −
2

�M
� 1

�

��M

��
�

�M

−1

4
 Im �M , �44�

where Im �M is negative and �M is equal to 
��33�total
�M
and


����
�M
. A mode with a �M value greater than zero is a

damped wave mode and one with a �M value less than zero is
a growing wave mode. The amount of damping and/or
growth can be insignificant as in the case of the pair modes,
the logarithmic singularities being over a small range in fre-
quency. However, for the longitudinal gyromagnetic absorp-
tion modes say, it can be significant. The necessary existence
of negative energy growing wave modes as part of the
growing-damped doublet produced at the mode-forming
logarithmic singularities is somewhat puzzling for a degen-
erate electron gas, as there is no source of free energy. These
growing modes, however, invariably have extremely large
negative �� /�� values. Either a more complex description
than that of weak damping is needed for these doublet modes
or the �� /�� values of the growing components are so large
as to yield zero growth. If the latter is the case, then the other
modes of the GA and pair doublets, with positive �� /��
values, are damped in regions of dissipation. For example,
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the pair modes are entirely within dissipative regions
whereas the modes just above the gyromagnetic absorption
edges for the transverse component �+ can be entirely in a
nondissipative region �e.g., G0� or partially in both nondis-
sipative and dissipative regions �e.g., G1 ,G2 , . . .�, the modes
being damped when they are in dissipative regions.

The longitudinal mode �L is in a nondissipative region.
The �� modes, predominantly lying above the light line, are
at times in dissipative regions. Positive 
�� /��
��

values
imply damped wave modes in these regions with �M values
of considerable strength as �� are near the light line �and
thus �−kz in the denominator of the expression for Im����
is small� and the 
�� /��
��

values are of the order of m.
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APPENDIX: VERTEX FUNCTIONS

Since we are summing over the spin states, ��q�q
����k���	 is

independent of the choice of spin operator; one may evaluate
it by making any explicit choice of spin eigenstates. Choos-
ing coordinate axes

B = �0,0,B�, k = �k� cos �,k� sin �,kz� , �A1�

explicit evaluation gives

2�n�
� �n��n�n

����k��00 = ��n�
� �n + pz�pz + ���m2���Jn�−n

n−1 �2

+ �Jn�−n
n �2� + 2���pn�pnJn�−n

n−1 Jn�−n
n ,

2�n�
� �n��n�n

����k��01 = − ���npn��Jn�−n
n−1 ei�Jn�−n+1

n−1

+ Jn�−n
n e−i�Jn�−n−1

n �

− ��n�
� pn�Jn�−n

n ei�Jn�−n+1
n−1

+ Jn�−n
n−1 e−i�Jn�−n−1

n � ,

2�n�
� �n��n�n

����k��02 = i���npn��Jn�−n
n−1 ei�Jn�−n+1

n−1

− Jn�−n
n e−i�Jn�−n−1

n �

+ i��n�
� pn�Jn�−n

n ei�Jn�−n+1
n−1

− Jn�−n
n−1 e−i�Jn�−n−1

n � ,

2�n�
� �n��n�n

����k��03 = ��n�
� pz + �npz����Jn�−n

n−1 �2 + �Jn�−n
n �2� ,

2�n�
� �n��n�n

����k��11 = ��n�
� �n − pz�pz − ���m2���Jn�−n+1

n−1 �2

+ �Jn�−n−1
n �2�

+ 2���pn�pn cos�2��Jn�−n+1
n−1 Jn�−n−1

n ,

2�n�
� �n��n�n

����k��22 = ��n�
� �n − pz�pz − ���m2���Jn�−n+1

n−1 �2

+ �Jn�−n−1
n �2�

− 2���pn�pn cos�2��Jn�−n+1
n−1 Jn�−n−1

n ,

2�n�
� �n��n�n

����k��33 = ��n�
� �n + pz�pz − ���m2���Jn�−n

n−1 �2

+ �Jn�−n
n �2� − 2���pn�pnJn�−n

n−1 Jn�−n
n ,

2�n�
� �n��n�n

����k��12 = − i��n�
� �n − pz�pz − ���m2���Jn�−n+1

n−1 �2

− �Jn�−n−1
n �2�

+ 2���pn�pn sin�2��Jn�−n+1
n−1 Jn�−n−1

n ,

2�n�
� �n��n�n

����k��13 = − ��pn�pz�Jn�−n
n−1 e−i�Jn�−n+1

n−1

+ Jn�−n
n ei�Jn�−n−1

n �

− �pnpz��Jn�−n
n e−i�Jn�−n+1

n−1

+ Jn�−n
n−1 ei�Jn�−n−1

n � ,

2�n�
� �n��n�n

����k��23 = − i��pn�pz�Jn�−n
n−1 e−i�Jn�−n+1

n−1

− Jn�−n
n ei�Jn�−n−1

n �

− i�pnpz��Jn�−n
n e−i�Jn�−n+1

n−1

− Jn�−n
n−1 ei�Jn�−n−1

n � , �A2�

with the J-functions related to generalized Laguerre polyno-
mials,

J	
n�x� = �− �	J−	

n+	�x� = � n!

�n + 	�!�
1/2

e−x/2x	/2Ln
	�x� ,

with argument x=k�
2 /2eB. The tensor is Hermitian, and

��n�n
����k���	= ��n�n

����k��*	� determines the remaining compo-
nents in terms of those written in �A2�.
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