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Particle random motion can exhibit both anomalous diffusion and non-Gaussian statistics in some physical
systems. Anomalous diffusion is quantified by a deviation from a=1 in a power law for a particle’s mean-
square displacement, MSD o (A7)®. A deviation from Gaussian statistics for a probability distribution function
(PDF) is quantified by fitting to a « function or Tsallis distribution, with a fit parameter ¢q. We report an
experiment and simulations to test a theory that connects anomalous diffusion and non-Gaussian statistics. In
the experiment, a single-layer dusty plasma, which behaved as a two-dimensional (2D) driven-dissipative
system, had a non-Gaussian PDF. By adjusting an externally applied laser heating, ¢ was varied over a wide
range. A correlation between the deviations from Gaussian statistics and normal diffusion for a 2D liquid was
found in the experiment. This correlation indicates a connection between anomalous diffusion and non-
Gaussian statistics. However, such a connection is lacking in equilibrium 2D Yukawa liquids, as demonstrated

in numerical simulations.
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I. INTRODUCTION

Random motion, such as Brownian motion, is tradition-
ally described as exhibiting both normal diffusion and
Gaussian statistics for fluctuating quantities [1]. However,
some systems, especially nonequilibrium systems, can devi-
ate from Gaussian statistics [2—4], or normal diffusion [5], or
both. A linkage between these two traits of nonequilibrium
systems, anomalous diffusion and non-Gaussian statistics, is
the focus of this paper. We begin by reviewing the terminol-
ogy for the two traits, and methods of measuring them.

Our approach is to analyze time series data for particle
positions, i.e., particle trajectories x(¢). Using these trajecto-
ries, we calculate particle displacements over time. We
choose to consider a two-dimensional (2D) system, although
our methods could be used also for three-dimensional (3D)
systems. For long time intervals, we calculate two param-
eters based on the displacements. First, to determine whether
motion is diffusive, a time series for the mean-square dis-
placement (MSD) is calculated. Second, to determine
whether random motion exhibits Gaussian statistics, the
probability distribution function (PDF) is calculated as a his-
togram of particle displacements.

The PDF allows a test for Gaussian vs non-Gaussian sta-
tistics. This test is convenient for experiments that allow
measuring time series for particle positions. The displace-
ment |x(7)—x(0)| for each particle in a system is computed
for the same time interval 7; we do this separately for x and
y. Note that the displacement is defined so that it is always a
positive value. A histogram of these displacements is then
made, yielding the PDF [5]. For Brownian motion, the PDF
is the positive one-half of a Gaussian function that is cen-
tered at zero. To test for non-Gaussian statistics, we deter-
mine whether the measured PDF is non-Gaussian.

While Gaussian distributions are common in the usual
statistical mechanics for thermal equilibrium systems, non-
Gaussian distributions also abound in many scientific and
economic fields. One prominent example is the power-law
tail distribution which is often observed, for example, in eco-
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nomics for the price change for a given stock over a time
interval [2]; in physiology for the histogram of heartbeat
interval increments [3]; and in physics for the distribution of
cluster sizes in self-organized critical dynamical systems [4].
Power-law tail distributions are said to have a fat tail, in
comparison to a Gaussian distribution.

Power-law tail distributions are often characterized by a x
function. For example, in plasma physics the « function
sometimes accurately models a velocity distribution [6],
) (1+02/ KU(Z))_K, where v, is a characteristic speed of
the distribution; this occurs in the solar wind due to weak
collisionality between particles [6]. The fluctuation of mag-
netic field in solar wind also exhibits a power law [7]. Here,
Kk is a parameter determining the shape of the distribution
function. In the limit k—o0, the « function approaches a
Maxwellian-Boltzmann, i.e., Gaussian distribution. For «
smaller than about 10, the « function has a power-law tail.
One could fit an observed PDF to a « function for particle
displacement,

{1+ Blx(7) = x(0)[ TP/}, (1)

where 3~ ! characterizes the width of the PDF, which always
increases with 7.

The Tsallis distribution is a power-law tail distribution
that was introduced in the context of a theory for nonexten-
sive statistical mechanics [8]. For any random variable z, the
Tsallis distribution is [1+8(g—1)z2]""@Y, which ap-
proaches a Gaussian for g=1, while g# 1 indicates non-
Gaussian statistics. In other words, the deviation from
Gaussian statistics can be measured by the parameter g.
Here, we will fit our observed PDF to a Tsallis distribution
using the displacement as the random variable z,

{1+ Blg - Dx(n) - x(0)[7}D. )

The Tsallis distribution in Eq. (2) is the same as the « func-
tion in Eq. (1), by a simple substitution of variables, x=(g
—1)!. It has been shown that Tsallis distributions can arise
from an entire family of microscopic Langevin equations, as
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a result of a specific interplay between the underlying deter-
ministic and stochastic forces [9].

The use of the Tsallis distribution was developed as part
of a theory for the statistical physics for a system that is
assumed to be nonextensive. In this approach, a quantity
called the generalized entropy is calculated from the prob-
ability of microstates of a system. The term nonextensive is
used to describe a system where the generalized entropy is
not the sum of its values for the subsystems that comprise the
entire system. Assuming that a generalized entropy is maxi-
mized under the conditions of constant energy and normal-
ization, it has been predicted that the distribution of random
variables such as particle displacements will be characterized
by a Tsallis distribution. Making these assumptions, the pa-
rameter ¢ is sometimes termed a measure of nonextensivity.

Anomalous diffusion is random motion quantified by a
deviation from a=1 in

MSD = (A7), (3)

where the diffusion exponent o must have a positive value.
Here, the mean-square displacement (MSD) is a time series
for the squared displacement [x(Af)—x(0)]* averaged over all
particles. Any Cartesian coordinate can be used in place of x
in calculating the MSD. For a large time Af, the MSD in-
creases, often as a power law of Az. Brownian motion is
characterized by MSD« (A¢)'"?, which is called normal dif-
fusion, and has the property a=1.

A diffusion exponent of a# 1, on the other hand, indi-
cates anomalous diffusion. In particular, superdiffusion, with
a>1, can arise from various causes including reduced di-
mensionality [10-13]. Superdiffusion can also occur due to
flows, for example, vortices in a liquid, but in this paper we
will consider only nonflowing systems.

It has been proposed that anomalous diffusion is linked to
non-Gaussian statistics [14]. In the next section we review
this theory and outline our approach to test it using an ex-
periment and simulations. We will find a correlation between
the superdiffusion and non-Gaussian statistics in the experi-
ment, which uses a nonequilibrium driven-dissipative 2D
system, but not in simulations of an otherwise similar 2D
equilibrium system.

II. CONNECTING ANOMALOUS DIFFUSION AND NON-
GAUSSIAN STATISTICS

A. Tsallis relation

A theory has been proposed to model anomalous diffusion
when it is due to non-Gaussian statistics [ 14]. This theory led
to

2
a=_—), (4)
3-¢q

which we term the Tsallis relation. This quantifies a connec-
tion between anomalous diffusion and non-Gaussian statis-
tics, predicting that a more highly non-Gaussian system
(larger ¢) will exhibit a greater degree of anomalous diffu-
sion (larger a). In other words, particle random motion is
predicted to be superdiffusive if the PDF is a non-Gaussian
distribution with g> 1.
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There are conflicting theoretical views on the validity of
the generalized entropy that underlies the Tsallis relation, Eq.
(4). On the one hand, there is an extensive theoretical litera-
ture based on the generalized entropy. These theories have
been described as a successful new statistics that has the
virtue of making a connection to the dynamics of a system
[15]. On the other hand, in a critique it was argued that
applying the generalized entropy leads to unphysical proper-
ties and that a temperature cannot be meaningfully measured
if g#1 [16-18]. This conflict in the theoretical literature
could be viewed either as a fundamental problem with the
generalized entropy, or merely as a confusion arising from
the use of the word “entropy” in the name of this quantity.

To help resolve a theoretical controversy like this, one
useful approach of course would be to conduct experiments.
We focus here on the Tsallis relation, Eq. (4), which can be
tested experimentally in physical systems where random par-
ticle trajectories can be tracked. Equation (4) makes use of
two measures, « and g, which can both be determined from
experimentally measured particle displacements. Any experi-
mental system allowing these measurements will be of inter-
est, especially when they yield measurements of particle mo-
tion that can be analyzed without relying on the same
assumptions as the model. A definitive test of the Tsallis
relation would require measurements of « over a wide range
of g as well as small random errors to provide a high signifi-
cance level for the conclusion. We note that this test does not
require measuring a temperature; it requires only measuring
a and q.

Two previous experimental comparisons to the Tsallis re-
lation have been reported. One was the center-of-mass mo-
tion of hydra cells in cellular aggregates [19], where values
a=1.24=*0.1 and g=1.5 were reported. Another was the mo-
tion of point defects in thermal convection patterns [20],
where a=1.33 was reported for observations over a narrow
range of g~ 1.5. Because these two experiments were per-
formed for a narrow range of ¢, they do not permit a com-
pelling test of Eq. (4). The authors are not aware of any other
experimental comparison to the Tsallis relation.

A molecular dynamics simulation was performed to test a
so-called y—g conjecture [21], which has the same form as
Eq. (4). This system that was simulated consisted of particles
at fixed positions with spins, lying in the x-y plane, that
interact. This simulation allowed varying ¢ over a wide
range. Different from our test here, the Tsallis ¢ in [21] was
estimated from velocity-autocorrelation function rather than
the PDF as we used here.

B. Approach for testing the connection

In this paper we will report experiments and simulations.
These yield, as-fit parameters for the data, values for g and
a. These experiments and simulations do not rely on any of
the assumptions underlying the Tsallis relation, for example,
the assumptions that ¢ is a measure of nonextensivity or that
the generalized entropy is defined appropriately. By taking
this approach, we intend to test the connection of anomalous
diffusion and non-Gaussian statistics predicted by the Tsallis
relation, without making use of the theory’s assumptions.
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Ultimately, we will compare the observed deviations from
normal diffusion and Gaussian statistics to determine
whether they are correlated as predicted by the Tsallis rela-
tion.

We now introduce two quantities, representing deviations
from normal diffusion and Gaussian statistics. First, we de-
fine a deviation from normal diffusion as

Sigr = a— 1. (5)

Second, for a deviation from Gaussian statistics, instead of
defining it as ¢g— 1, we are motivated by Eq. (4), to define it
as

2

5Gauss = -1, (6)
3-¢q

which is zero for Gaussian statistics, g=1, and increases with

q over any reasonable range of ¢g. Making use of these two

definitions, the Tsallis relation, Eq. (4), can be rewritten as

Saitt = OGauss» (7)

which is attractive for the purpose of testing using experi-
mental and simulation results.

Our experiment makes use of a physical system that can
be varied over a wide range of ¢g. Random motion of par-
ticles can be tracked, and fitting the MSD and PDF yields
experimental values for & and g. Our physical system allows
motion mainly in a two-dimensional (2D) plane without out-
of-plane buckling. This allows direct imaging of all particles
using a single camera, which simplifies the measurements. It
also allows recording large data sets. Like many 2D systems,
our experiment exhibits superdiffusion [5]. It also exhibits
non-Gaussian statistics, with a fat-tail PDF that fits a Tsallis
distribution, as we demonstrated previously [5]. In this paper,
we will determine whether there is a correlation between the
deviations from normal diffusion and Gaussian statistics, Oyt
and Jgas as an indication that non-Gaussian statistics and
anomalous diffusion are connected.

Our experimental system is a single-layer dusty plasma. A
dusty plasma is an ionized gas containing small particles of
solid matter, which are negatively charged by collecting elec-
trons and ions from a plasma [5,22-27]. The particles inter-
act with a Yukawa repulsion [28], which is a soft potential
allowing particles to interact most strongly with nearest
neighbors but also with particles farther away. Particles are
electrically confined into a single layer, forming a 2D sus-
pension. As they move, particles experience a frictional drag
in an ambient rarefied neutral gas. Direct imaging using
video microscopy allows the tracking of particles [30] in the
camera’s field-of-view (FOV) so that random motion can be
measured and characterized by using the MSD and PDF.

Unless we disturb the suspension, it almost never has an
out-of-plane particle in the camera’s FOV. The single-layer
suspension is extremely soft, with a compressional sound
speed of only 20 mm/s. Due to this extreme softness, if we
disturb the suspension by laser heating (described below), a
single out-of-plane particle can occasionally appear in an in-
complete second layer and disturb the main layer by moving
rapidly [29]. In preparing the experiment, we made efforts to
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eliminate out-of-plane particles before applying laser heat-
ing. During laser heating, those out-of-plane particles ap-
peared occasionally; when this resulted in a significant dis-
turbance to the main layer we excluded those data, so that
the conditions we analyze are more representative of steady-
state conditions.

Some of the experimental results presented here are based
on the same experiment as in Ref. [5]. There are four pri-
mary differences in the way we use the experimental data, as
compared to [5]. First, we have analyzed data for many more
conditions, yielding more data points for a and ¢q. We also
performed a second experiment at a different gas pressure.
Second, we use this larger data set to graph Syirr VS Ogauss tO
test for a correlation in these measures, as predicted by the
Tsallis relation, Eq. (7). Third, we exclude from our analysis
any time series where random particle motion was signifi-
cantly disturbed by an out-of-plane particle. Fourth, we com-
pare this nonequilibrium experiment to new simulations we
have performed to model equilibrium systems.

In the experiment, our dusty plasma is a driven-
dissipative system. The particle kinetic temperature, in
steady state, is set by a balance of driving forces and dissi-
pation due to neutral gas friction.

In the absence of laser heating, the particles self-organize
in a crystalline lattice structure due to the strong interparticle
Coulomb interaction. Under these conditions, the only driv-
ing forces are believed to be a combination of Brownian
kicks from neutral gas atoms and electrostatic fluctuations
that arise from natural instabilities due to ion flow. When we
apply laser heating, the particles experience strong kicks and
the kinetic temperature rises sufficiently so that the crystal-
line lattice is disturbed. At modest laser powers this results in
a liquid structure, which can be heated further by applying
even higher laser powers. We will use data for the liquid
structure to test for correlation of anomalous diffusion and
non-Gaussian statistics.

We will find that in this 2D nonequilibrium experiment, as
we vary the kinetic temperature, the measures of deviation
Ogiee from normal diffusion and g, from Gaussian statis-
tics will vary. This allows us to compare these deviations and
to test for a correlation indicating a connection between
anomalous diffusion and non-Gaussian statistics.

We also report simulation results for a 2D equilibrium
system that exhibits superdiffusion. As expected for the equi-
librium system, it lacks non-Gaussian statistics. The simula-
tions were performed with a kinetic temperature high enough
to yield a liquid structure.

In addition to reporting values for ¢ and «, we also report
a temperature for both experiment and simulation. Our ap-
proach here is to report a phenomenological value for the
particle kinetic temperature, based on measurements of par-
ticle velocities as determined by particle displacements over
a brief time Atf. Here, for two-dimensional motion, we will
report

T=m(v_‘,—17y)2, (®)

where m is particle mass, v,=[y(At;)—y(0)]/At;, and the bar
indicates an average over particles. We calculate this tem-
perature separately for x and y, and for the experiment we
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will report T calculated using only v,. We note that for a
nonequilibrium system, it has been argued that a kinetic tem-
perature 7 measured in this way may not have the same
physical meaning as a theoretical thermodynamic tempera-
ture [16,17]. In any case, our temperature measurements here
are not central to this paper because they are not required for
our test of the Tsallis relation. We use T for only one limited
purpose: To characterize how far from equilibrium a system
is, as indicated by fluctuations in 7.

III. EXPERIMENT METHOD

Here we review the experimental setup and procedures,
which were presented in more detail in Ref. [5]. The appa-
ratus, Fig. 1(a) of Ref. [5], centered on a vacuum chamber
filled with a partially ionized argon gas. We introduced
>6000 polymer microspheres of 4.83*+0.08 um in diam-
eter. These microspheres experienced a frictional drag on the
gas with a damping rate vg [31]. The microspheres acquired
a negative charge Q/e. Particles were electrically levitated in
a single horizontal layer. The interparticle interaction in this
type of single-layer dusty plasma has been found to obey a
Yukawa potential [28], characterized by a screening length
Ap. The particle areal density was measured to determine the
characteristic spacing a, termed the Wigner-Seitz radius [32].
Combining Q and a, we calculated a characteristic time scale
for collective particle motion, w;é. We performed experi-
ments under two conditions. For our main experiment, we
used 8.6 mTorr argon gas pressure. Parameters for this main
experiment were v;=2.5 s, Q/e=-5700, \,=0.21 mm, a
=0.24 mm, and w;(11=9.2 ms. In this main experiment, we
performed laser heating at 11 different laser powers in the
range 0.43<P; <4.2 W. Additionally, to check for consis-
tency in our results, we performed a second experiment us-
ing 12 mTorr argon pressure. This was done for three differ-
ent laser powers in the range 2.6 < P; <4.2 W, yielding less
data, which we will use to check for consistency with the
result of our main experiment. For the second experiment,
parameters were v;=3.5 57!, Q/e=—-6200, \,=0.20 mm, a
=0.24 mm, and w;},=8.2 ms.

Particle trajectories were measured by tracking particles
using video micrography. We used a horizontally swept ar-
gon laser beam to illuminate particles, which we imaged
from a top-view camera operated with an interval between
frames A7;=0.018 s. To allow precise measurement of par-
ticle positions from the camera images using the moment
method [30], we used a cooled camera, with a slightly defo-
cused lens, and bright illumination. We verified in a test that
the precision of our position measurements was so high that
it had no detectable effect on the MSD. We tracked particles
from frame to frame, yielding particle trajectories, i.e.,
threads, as shown in Fig. 1.

We used a large data set so that we can arrive at a signifi-
cant conclusion, despite random scatter in our final graphs.
We recorded movies of particle motion at 14 different heat-
ing laser powers. Each movie had either 2065 or 5500
frames. Altogether we made >2 X 107 measurements of par-
ticle positions.

Our experimental system is driven dissipative. Two laser
beams move about on the suspension, kicking at any given
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FIG. 1. Particle trajectories in our main experiment, for a sus-
pension with liquid structure, at the heating laser power P,
=4.2 W and temperature 7=51 000 K. Trajectories shown here are
for one cell, representing 1/6 of the camera’s full field-of-view
(FOV), for a time interval of 0.22 s. We use much longer trajecto-
ries to calculate the MSD (mean-square displacement) and PDF
(probability distribution function).

time a few particles in the *x directions [33]. The kicked
particles collide with other particles to thermalize their mo-
tion, increasing the kinetic temperature of the suspension. A
steady state is achieved, as the energy dissipation to the neu-
tral gas is balanced by the energy input from the heating
laser as well as the Brownian kicks from neutral gas atoms
and the natural instabilities in the dusty plasma. Particles are
deflected more often by collisions with other particles than
by the laser beams. As compared to the x direction, particle
motion in the y direction is less affected by the strong kicks
from the heating laser. Therefore, in using the experimental
data we will analyze only the particle motion in the y direc-
tion in computing the PDF, MSD, and T.

Our experiment had some nonideal aspects arising from
the laser heating, chiefly a nonuniformity in the kinetic tem-
perature, and coherent modes in particle motion. We describe
these next.

The temperature had both spatial and temporal fluctua-
tions due to the rastered motion of our laser beams, which at
any given time disturbed only small portions of the suspen-
sion. Averaged over the finite time of our movie, we find a
spatial variation. The most extreme spatial variation was for
our highest laser power, where the temperature in the hottest
portion of the FOV was 35% higher than in the coldest. To
reduce the effect of the spatial variation in our data analysis,
we will partition our full FOV into six cells. Each cell cor-
responds to a smaller portion of the suspension, with a more
uniform temperature than in the full FOV [5].

In addition to the desired random incoherent motion, par-
ticle motion also exhibited some intermittent mild oscilla-
tions at two frequencies, due to nonlinear combinations of
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the laser-rastering frequencies [33]. We characterized the
magnitude of this coherent motion by calculating the veloc-
ity power spectrum. We found that the power concentrated in
the coherent modes was <10% and <6% of the total power
for the x and y directions, respectively. In a test, we verified
that these coherent modes had no significant effect on the
conclusions of this paper. This test was done by numerically
filtering the time series for particle positions to remove the
two narrow frequency ranges containing most of the coher-
ent motion. In this test we recomputed the MSD and PDF
and there was no significant effect. We also recomputed g
and «, and we found that this changed their value only by a
small amount, as compared to the scatter in the data.

IV. DATA ANALYSIS METHOD
A. Particle trajectories

We analyze the particle trajectories in the experiment to
find the MSD and PDF, which we will use to quantify the
deviations &gy and dg,ye from normal diffusion and Gauss-
ian statistics, respectively. Here we provide greater detail for
our analysis methods, which are the same as in Ref. [5],
except that we now include far more data to allow a mean-
ingful test of correlation of Iy and S,y

1. MSD

We calculated an MSD time series separately for each cell
and laser power. An example of such a time series can be
found in Fig. 2 of Ref. [5]. Each data point in this time series
is for a given time Az. Because measuring superdiffusion
from MSD time series can be very sensitive to noise arising
from limited numbers of threads, we used as much data and
averaging as was practical. We computed each data point in
the time series by averaging the square displacement not
only over threads, but also over different overlapping time
segments of the threads [34]. To further reduce noise, we
averaged over all the available movies at a given laser power,
which numbered from 18 to 30. The number of threads per
movie was typically in the range 814 to 2000, corresponding
to our lowest and highest laser powers, respectively. (While
the number of particles in the FOV did not change, the num-
ber of threads identified by our software varied significantly
for different laser power because the lifetime of a thread
varied with laser power [5].) In the end, each data point in
the MSD time series was the result of averaging a large
number of values, for example, 1791 and 876 values for At
=1 and 5 s, respectively, in our main experiment.

To quantify the deviation from normal diffusion, we fitted
the averaged MSD time series in the range 108 <Atw,,
<540 to a power law, Eq. (3). This time interval was 1
< Ar=<35 s for our main experiment and 0.88 <Ar=<4.4 s for
our second experiment. This fitting yielded a value for the
exponent «, which corresponds to one data point in Fig. 3(b).
The scatter in the data in Fig. 3(b) is due to the finite num-
bers of movies and threads per movie.

2. PDF

We calculated the PDF for various time intervals 7, and
we repeated this for each cell and laser power. We performed
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these calculations for >200 different time intervals 7, in the
range 108 < Atw,;<540. Because the non-Gaussian statis-
tics that we hope to detect must be found in the large-
displacement tail of a distribution, where the number of
counts in a histogram are small, it is again necessary to use
as much data and averaging as practical. As in the case of the
MSD, we averaged over threads, then over overlapping time
segments for each thread, and then over movies. Figure 2
shows three examples of the PDF chosen from the >200
values of 7, for P;,=4.2 W and T=51 000 K.

To quantify the deviation from Gaussian statistics, we fit-
ted PDF curves to the Tsallis distribution, Eq. (2), yielding a
value for g. This value of ¢ was for a specific 7, and it was
repeated for various beginning points in time series for a
thread. It was also repeated for >200 lengths for the time
intervals, yielding >200 values for g. Averaging these >200
values yielded one measurement for g for each cell and laser
power, which corresponds to one data point in Fig. 3(a).

The final step of our analysis is to prepare a graph com-
paring « and ¢, Fig. 4. Recall that we varied a and g by
varying the laser power. We discuss Fig. 4 in detail, later.

B. Temperature fluctuations

Because our experiment was done with a nonequilibrium
system, and we will compare it to simulations intended to
model equilibrium systems, it is useful to quantify how far
from equilibrium a system was. We do this by recording a
time series for the kinetic temperature 7(z), calculated from
Eq. (8), and averaging the spatial-temporal variations over
space to yield only the time variation. We then characterize
the fluctuations of this spatially averaged kinetic temperature
about its mean. For equilibrium systems, these temporal fluc-
tuations arise from the finite number of particles, N. The
fluctuations are expected in general to be larger for a non-
equilibrium system, so that temperature fluctuation serves as
a nonequilibrium indicator. For both the experiment and
simulation, we began with a time series for the spatially av-
eraged kinetic temperature, 7(z), calculated from the mean-

square velocity fluctuation. We then calculated 67 and 7, the
rms fluctuation of 7(r) and average over time. The observed
fluctuation 67 should be compared to a canonical fluctuation,

T(2/N)'2, which is the theoretical fluctuation for a finite-size
2D system in thermal equilibrium [35]. For the experiment,
this was done separately for each cell, using the time series
T(t) recorded for each frame in a movie. For the simulation,
described in Sec. V, we used all the particles in the simula-

tion box. The outcome of this test is a ratio 8T/T(2/N)"? of
the observed fluctuation to the canonical fluctuation.

V. SIMULATION METHOD

To demonstrate that, in contrast to the experiment, some
systems have anomalous diffusion where « is unrelated to g,
we performed two kinds of numerical simulations. Both
simulations represent equilibrium systems, in contrast to the
experiment which is driven dissipative. The first kind of
simulation is molecular dynamics (MD), and the second is
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FIG. 2. (Color online) PDF for particle displacement. (a) Our
main experiment, with nonequilibrium conditions. Data shown here
are for three time intervals, 7. Using a logarithmic scale for PDF
plotted vs the squared displacement, a Gaussian function would be
a straight line; here, the PDF is non-Gaussian with a fat tail. The
smooth curves, from fitting to Eq. (2), yield values for ¢. Averaging
all values of ¢ for various time intervals, including the three shown
here and 197 more in the range from 1 to 5 s, yields a measurement
for ¢ for one movie and one data point in Fig. 3(a). (b) Equilibrium
simulations, for a I" corresponding to the experimental temperature
in (a), are nearly Gaussian. The experimental kinetic temperature 7
is computed using Eq. (8), and can be varied by adjusting the laser
power. Data shown here are for a liquid structure.

Langevin dynamics (LD). These simulate frictionless and
frictional systems, respectively.

In both kinds of simulation we used the same interparticle
potential, boundary conditions, particle number and
initial conditions, and diagnostics. The particle interaction
was a binary repulsive Yukawa potential, (r)
=Q? exp(-r/\p)/4meyr. The boundary conditions were peri-
odic, so that a particle exiting one side of the simulation box
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FIG. 3. Experimental results. Each data point corresponds to one
cell in one movie, at one Py. (a) The fit parameter ¢ would be unity
for Gaussian statistics, while our fat-tail PDF has ¢>1; i.e., this
driven-dissipative system exhibits non-Gaussian statistics. (b) Dif-
fusion exponent ¢, as calculated by fitting the MSD to a power law.
Normal diffusion has a=1, while anomalous diffusion has a# 1.
(c) Temperature fluctuations for the experiment. For an equilibrium
system, the ratio would be unity. Temperature fluctuations can arise
from finite-size effects [characterized by the ‘“canonical fluctua-
tion,” (2/N)" 27_'] and due to nonequilibrium effects. Here, the fluc-
tuations exceed the “canonical fluctuation level,” which is an indi-
cator of a nonequilibrium system.

reentered on the opposite side. We used N=16 384 particles,
which we started at random positions. We began recording
time series data for particle positions and kinetic temperature
after waiting 3800 w;[ll to achieve equilibriation. In a test, we
repeated a simulation for two different initial configurations
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FIG. 4. (Color online) Correlation of superdiffusion with non-
Gaussian statistics. (a) Variation of « vs 2/(3—¢). (b) For a more
meaningful test of correlation, we plot the data with shifted origin
so that the deviation from normal diffusion Jy=ca—1 is plotted vs
the deviation from Gaussian statistics 8gaus=2/(3—¢)—1. Note that
for simulations, which modeled 2D thermal equilibrium systems,
superdiffusion is not connected to non-Gaussian statistics, unlike
the experiment, which was driven dissipative.

of the particle positions, and we found that the results were
very close for both the MD and LD simulations. We used the
same diagnostics as in the experiment, Sec. IV, except that
we did not divide our simulation region into smaller cells.
The following dimensionless parameters were chosen to
mimic the run in our main experiment with 7,=51 000 K:
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The Coulomb coupling parameter was I'=Q?/(4mweyakyT)
=44, and the screening parameter was a/\p=0.9. These pa-
rameters correspond to a liquid structure.

In our MD simulation, we integrated the particle equation
of motion,

mit;=- V>, ¢y )

A Nosé-Hoover thermostat was applied to control the tem-
perature. Further details of our MD simulation method can
be found in Ref. [13].

In our LD simulation, we integrated the Langevin equa-
tion of motion,

mi;=— VE ¢;j— vpmi;+ {(1). (10)

Here, vgmr; is frictional drag, and {,(r) is a random force. At
each time step a random force {,(r) computed from a Gauss-
ian distribution with a zero mean and a magnitude chosen to
satisfy the fluctuation-dissipation theorem, £,(0){(r)
=2muvgkyT,+8(), according to a specified target temperature,
T\t This random force models a stationary Markovian pro-
cess. A random number was selected at each time step, for
each particle, from the Gaussian distribution, without corre-
lations with prior velocities or with the interparticle forces.
In a test of the simulations, we verified that the fluctua-
tions of kinetic temperature were as expected for a system in

equilibrium. We found that the ratio 6T/7(2/N)"? was 0.99
and 0.98 for our MD and Langevin simulations, respectively.
While a ratio of unity would be ideal, a ratio within a few
percent of unity as in our case is considered successful for
molecular dynamic simulations of liquids using a thermostat
[35]. This standard test gives us confidence that the simula-
tions accurately mimic a system in thermal equilibrium.

VI. RESULTS
A. Experiment
1. Temperature fluctuations

The fluctuations of kinetic temperature in the experiment
confirm that the system is nonequilibrium. In Fig. 3(c), we

see that the ratio 6T/T(2/N)"? exceeds unity. If our system
were in thermal equilibrium and had a canonical ensemble

fluctuation, the ratio 87/7(2/N)"? would be unity; however,

8T/ T(2/N)"? was typically larger by a factor of 2 or more in
our experiment. This serves as a quantitative measure of how
far from thermal equilibrium the experimental system was.

Examining the time series for temperature, we found that
the instantaneous temperature fluctuated around a constant
and did not have a universal upward or downward trend, for
most of our data. This indicates that our experiment has
reached a nearly steady state or dynamic equilibrium. The
main exception to this was the occasional appearance of an
out-of-plane particle that moved rapidly and disturbed the
main layer; we excluded such data from analysis, so that the
results we report are for two-dimensional motion under
nearly steady-state conditions.
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2. Non-Gaussian statistics

As reported in Ref. [5], particle random motion in our
nonequilibrium experimental system exhibits non-Gaussian
statistics. We found that the PDF fits the Tsallis distribution.
In Fig. 2, we present the PDF graphed with the squared dis-
placement as the horizontal axis so that the deviation from a
Gaussian distribution can be more easily identified. By per-
forming a least-squares fit to data as shown in Fig. 2, we
found a value for g for each cell and each laser power; this
was repeated for many different time intervals 7, not just the
three presented in Fig. 2(a), as explained in Sec. IV.

The deviation from a Gaussian distribution is character-
ized by g. We found that varying the laser power, and there-
fore the kinetic temperature, allowed us to vary ¢g. In the
absence of laser heating, the particles self-organized in a
crystalline lattice, and we found ¢g=1.5. Applying laser
power to heat the suspension, we found that g trends down-
ward at higher temperatures, approaching unity at the highest
temperatures that we attained. This inverse trend of ¢ with T
is observed over a wide range of temperature, spanning the
crystalline solid found at low temperature, the liquid at high
temperature, and the disordering transition regime in be-
tween, as indicated in Fig. 3.

The inverse trend for our data in Fig. 3(a) is reminiscent
of, but does not fit, a law g— 1 1/(U,/E,) that was theoreti-
cally [37] predicted, and experimentally [38] observed in op-
tical lattices, where U, characterizes the strength of a con-
fining potential and E, is an atomic recoil energy. We do not
have a detailed understanding of why ¢ varies with laser
power in the manner that is observed in this particular sys-
tem, but it is useful that we are able to vary ¢, in order to
enable a comparison to the Tsallis relation.

We note that the largest value of g is well below 5/3, the
largest value of ¢ for which a PDF has a finite variance. Lévy
flights, for example, are characterized by ¢>5/3 [39]. Our
system has significant non-Gaussian statistics, but not to the
extreme of, for example, Lévy flights. The results for our
second experiment are consistent with our main experiment,
in the range of ¢ that was observed.

To verify that non-Gaussian statistics observed here is not
transient, we have examined the time series for ¢ at different
intervals. For all the laser powers and cells where we report
results, the time series showed no conspicuous universal up-
ward or downward trend of ¢ with time.

3. Diffusion exponent

As reported in Ref. [5], particle random motion in our
system exhibits a low but statistically significant level of
superdiffusion over a wide range of temperature. Making use
of our new analysis, using more data, here we present details
in Fig. 3(b) of the temperature variation of the diffusion ex-
ponent a. The general downward trend of a with 7 is seen in
Fig. 3(b), for our main experiment, over a wide range of laser
power. Our data points are mostly above a=1, indicating
superdiffusion, with some scatter arising from finite data
time. Results from the second experiment are consistent with
the range of « observed in the main experiment.

4. Correlation of superdiffusion and non-Gaussian statistics

We now prepare two graphs to test the correlation be-
tween superdiffusion and non-Gaussian statistics, as pre-
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dicted by the Tsallis relation, Eq. (4). In Fig. 4(a), we graph
a vs 2/(3-¢g). The data in Fig. 4 has some scatter, arising
from the finite time of each movie. We will examine Fig. 4,
attempting to identify correlations between « and g, despite
this scatter.

In examining Fig. 4(a), it is important to consider that the
origin has no particular significance, and it is located far
from the data points, so that it is not particularly significant
that the data points appear to be clustered about the line of
unity slope passing through the origin. We believe that it is
more meaningful to graph the data with a shifted origin that
is meaningful for indicating deviations from normal diffu-
sion and Gaussian statistics. We do this in Fig. 4(b), making
use of the deviations introduced in Egs. (5) and (6), by
graphing the same data with dy¢=a—1 on the vertical axis
and 8g,u=2/(3—¢)—1 on the horizontal axis. Plotted this
way, an equilibrium system with Gaussian statistics would
appear at the shifted origin, as indicated by the intersection
of two dashed lines corresponding to normal diffusion a=1
and Gaussian statistics g=1. The prediction of the Tsallis
relation, Eq. (7), appears as a straight line passing through
the shifted origin.

Our chief result is that we observe a correlation between
superdiffusion and non-Gaussian statistics in our 2D liquid.
This correlation is seen in Fig. 4(b) as an upward trend in the
dependence of &g 0N Ogauss-

To quantify this correlation, we used linear regression to
fit the data to a line passing through the origin of Fig. 4(b).
Analyzing the resulting slope and its standard error using a
two-sided student’s 7-test, we find a p value less than 107 for
our main experiment. Thus, we can reject the null hypothesis
that the slope is zero at >99.9% significance level. In our
second experiment, which has less data and correspondingly
larger errors so that it is useful mainly for confirming results
from the main experiment, we find a p value of 0.053, and
we reject the null hypothesis with >90% significance level.
Thus, we conclude that there is a correlation between the
superdiffusion and the non-Gaussian statistics in our experi-
mental system.

Beyond verifying that there is a correlation, i.e., that the
slope is nonzero, a more challenging experimental test would
be to determine whether the slope is unity, as predicted by
the Tsallis relation Eq. (7). One might suggest that the Tsallis
relation appears confirmed in our experiment, as seen from
the agreement of many data points with the prediction of Eq.
(7). However, the scatter in our data in Fig. 4(b) prevents us
from making such a definitive conclusion. Experiments av-
eraged over more data, to provide better fits, would be re-
quired for a definitive test of the Tsallis relation.

B. Simulation

The main results for our simulation of a 2D equilibrium
liquid are an observation of Gaussian statistics together with
anomalous diffusion. These are based on the PDF and MSD,
respectively, in the same way as in the experiment. We
present these results next.

As would be expected for a system in thermal equilib-
rium, the particle motion in our simulations exhibits Gauss-
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ian statistics. We verified this by calculating the PDF for both
simulations, presented in Fig. 2(b). Note that the PDF ap-
pears to be a straight line, as would be expected for a Gauss-
ian distribution, when plotted with semilogarithmic axes and
the square displacement as the horizontal axis. Our PDF is so
close to a Gaussian that fitting it to the Tsallis distribution
yields g=1.007 =0.001, for both simulations. Such a negli-
gibly small deviation from g=1 Gaussian statistics is as ex-
pected, for a simulation that accurately mimics a system in
thermal equilibrium.

Even though our 2D simulations are for thermal equilib-
rium, they both exhibit superdiffusion. For the parameters
that were simulated here, we found that the diffusion expo-
nent o was 1.18 and 1.05, for our MD and LD simulations,
respectively. In our earlier MD simulations (with a smaller
N) [36], we showed that « is consistently >1 for a wide
range of temperature. In general, it is possible for 2D sys-
tems in thermal equilibrium to exhibit superdiffusion, and
some authors have even predicted that superdiffusion will
always occur in 2D liquids [10,11].

Combining these results for ¢ and « in Fig. 4, we include
data points for our two simulations of a 2D equilibrium sys-
tem. These simulation data differ conspicuously from the re-
sult of the experiment, which used a nonequilibrium system.
This comparison leads us to one of our main conclusions: A
2D system in equilibrium can exhibit superdiffusion without
any significant non-Gaussian statistics. In other words, su-
perdiffusion can arise in 2D for reasons that are unrelated to
non-Gaussian statistics. In such a case, the Tsallis relation
cannot be expected to apply.

VII. SUMMARY

We have conducted experiments with a 2D nonequilib-
rium driven-dissipative system and simulations of a 2D equi-
librium system. In the experiment, the system consisted of a
suspension of electrically charged microspheres in a plasma,
which experienced both frictional drag on rarified gas and
external energy input from rastered laser beams. We tracked
random particle motion, and calculated the time series for
mean-square displacement (MSD) and a histogram of par-
ticle displacements (PDF). Fitting the MSD time series to a
power law yields the diffusion exponent «, where a=1
would be expected for normal diffusion, and @>1 indicates
superdiffusion. Fitting the PDF to a « function or equiva-
lently a Tsallis distribution yields a fit parameter g, where
g=1 would be expected for equilibrium systems, while
g>1 is interpreted as an indication of non-Gaussian statis-
tics.
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We found that the experiment exhibited both superdiffu-
sion with a>1 and non-Gaussian statistics with g>1. By
adjusting the laser power used to heat the suspension, we
varied g over a wide range. Doing this, we found that a more
highly non-Gaussian system exhibits a greater degree of
anomalous diffusion.

To test for a correlation between anomalous diffusion and
non-Gaussian statistics, we defined two parameters, Jg and
OGauss: t0 quantify the deviations from normal diffusion and
Gaussian statistics, respectively. We plot our final data as
Oifr VS Ogauss- Large data sets were used to provide a signifi-
cant number of data points over a wide range of ¢, to allow
a meaningful test of correlation.

We found, with >99.9% significance level, that anoma-
lous diffusion and non-Gaussian statistics were correlated in
our main experiment with a 2D liquid. In other words, s
increases with dg,,s and despite the scatter we can verify
with >99.9% significance level that the slope is nonzero.
This result is qualitatively consistent with the Tsallis relation,
Eq. (7). However, we are unable to make a definitive quan-
titative test of the Tsallis relation, that the slope is unity. Such
a test would require reduced random errors, which in our
experiment arose from finite data sets.

We note that our finding of a correlation between anoma-
lous diffusion and non-Gaussian statistics does not prove a
causal relationship. We have not demonstrated that anoma-
lous diffusion is caused by non-Gaussian statistics, or vice
versa. It is possible that some other phenomenon is respon-
sible for both the non-Gaussian statistics and anomalous dif-
fusion that were observed in our experiment.

Our simulation of 2D equilibrium liquids exhibited super-
diffusion without a deviation from Gaussian statistics. This
result, which is entirely different from the nonequilibrium
experiment, demonstrates that not all systems with anoma-
lous diffusion can be described by the Tsallis relation. We
suggest that there is a need for clarification, in the theoretical
literature, to define the regimes of applicability of the Tsallis
relation.

Future experimental work would be required for an exact
test of the Tsallis relation, Eq. (4). Reduced random errors
would be required to perform this test with a sufficient sig-
nificance level. It would also be attractive to carry out ex-
periments with other experimental systems, where non-
Gaussian statistics might arise from mechanisms different
from those in our experiment.
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