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An accurate prediction of the particle charge in plasmas is of fundamental importance for a wide range of
problems from the study of dusty or complex plasmas to the controlled synthesis of nanoparticle materials in
plasmas. Despite its known deficiencies, the orbital motion limited �OML� theory, which strictly applies only
to collisionless plasmas, is the most widely used model to describe particle charging. This paper develops a
simple, analytical model to describe the charging of particles in plasmas over a wide range of pressures and
particle sizes. In spite of its simplicity, excellent agreement is found with results of a self-consistent molecular
dynamics Monte Carlo model and with experimental results found in the literature. In particular, the model
presented here provides significant improvements compared to the OML theory.
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I. INTRODUCTION

The charging of particles is arguably the most important
mechanism governing the interaction between plasmas and
particles. Significant advances have been made in under-
standing charging of micron-sized particles used in complex
plasma studies �1–11�. However, the situation for nanometer-
sized particles remains surprisingly confused.

Part of the problem with the accurate description of par-
ticle charging is the prevalent use of orbital motion limited
�OML� theory to describe electron and ion capture by par-
ticles. The original OML theory �see Ref. �12� for a review�
assumes that the effective potential around a particle, i.e., the
sum of the electrostatic and centrifugal potentials, decreases
monotonically towards the particle. The simple expressions
derived under this assumption are widely used in models for
nanoparticle charging �13–17�. A number of shortcomings of
the OML theory are now well established. As pointed out by
Allen �12,18� and Daugherty et al. �19�, a maximum in the
effective potential can arise when the electrostatic potential
varies more steeply than 1 /r2, leading to a reflection of ions
whose total energy is smaller than this potential barrier, an
effect neglected in the original OML theory. However, for
particles small compared to the Debye length, this effect is
expected to be small �2,19�.

More critical, however, is the OML theory’s neglect of
trapped ions. Trapped ions are generated by charge-exchange
collisions of energetic ions with less energetic neutrals in the
sheath around the particle, leading to ions with negative total
energy, which are trapped around the particle. As shown by
Goree �4�, this effect can become important even for very
low charge-exchange collision frequencies �cx, since both the
trapping and detrapping rate are proportional to �cx. The mo-
lecular dynamics simulation by Zobnin et al. �3� suggest that
the neglect of trapped ions causes the classical OML theory
to overpredict the negative particle potential by a factor of
�2. Lampe and co-workers developed an elegant, largely
analytical theory to describe trapped ions �1,2�. Their results
were consistent with Zobnin’s and showed that trapped ions
can be more important than untrapped ions in screening the
particle potential and for the ion flux towards the particle
surface. Recent experiments performed with micron-sized

particles suspended in a positive column �10,20� show good
agreement with Zobnin’s model �3� and confirm the OML
theory’s overestimation of the particle charge by a factor of
2–3. In a more recent study Rovagnati et al. �21�, using a
particle-in-cell Monte Carlo collision method, essentially
confirmed the results of Ref. �3�. However, the authors also
demonstrated the importance of considering the details of the
electron-neutral and ion-neutral collision processes, which
can lead to non-Maxwellian distribution functions close to
the particle and to deviations from the more simple theory in
�3�.

In 2005 Khrapak et al. �10� proposed a simple analytical
model based on the idea of a capture radius, i.e., a radius at
which the total energy of an ion that is created in a charge-
exchange collision event is smaller than −kTg, with k the
Boltzmann constant and Tg the gas temperature. Such ions
are essentially trapped in the potential field of the charged
particle and are bound to eventually be collected by the par-
ticle. Based on this simple idea, the authors derived an ex-
pression for the collision-enhanced ion current in the weakly
collisional regime that was identical to the one previously
obtained by Lampe �1�. In 2007 D’yachkov et al. �22� devel-
oped an analytical model that significantly expanded the
range of validity in terms of the collisionality of the ion
motion from the collisionless, i.e., OML regime all the way
to the strongly collisional, hydrodynamic range. Different
from the idea of a capture radius, the authors subdivided the
solution domain for their problem into two ranges: �1� a
collisionless layer around the particle of the thickness �i�e�,
the collision mean free path of ions �electrons�, in which the
particle motion was described within the framework of the
OML theory; and �2� the space outside of this collisionless
layer, in which a hydrodynamic approach was used to de-
scribe the electron and ion transport to the particle. The au-
thors’ model successfully described the collision-induced re-
duction of the particle charge found in Zobnin’s molecular
dynamics simulations �3� and in some experiments.

One consequence of D’yachkov et al.’s �22� assumptions
is that the resulting normalized particle potential exhibits no
explicit dependence on the particle size but rather only on
the particle Knudsen number Kna=�i /a, with a the particle
radius. While this is an attractive feature of the model, it is
not a priori clear that it correctly describes reality. Moreover,
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the model proposed in �22� abandons the attractive, since
physically motivated, concept of a capture radius. In this
paper, we demonstrate that based on the capture radius con-
cept, an equally elegant and more accurate model as in �22�
can be developed. Different from �22�, this model captures
the explicit dependence of the particle charge on the particle
size. It will also be shown that results of the model are in
good agreement with molecular dynamics simulations and
that they agree better with available experimental data than
the model in �22�. Furthermore, effects of high particle con-
centration leading to a strong depletion of the free electron
density in the plasma are consistently taken into account.

II. MOLECULAR DYNAMICS SIMULATION

As a benchmark for the semianalytical model proposed
here, a self-consistent molecular dynamics �MD� Monte
Carlo model was developed, largely following Zobnin’s
work �3�; details on its implementation can be found in that
reference. The ion equation of motion is integrated using a
velocity Verlet scheme, which is symplectic. The time step is
limited by the requirement of resolving the ion motion close
to the particle and it can be estimated as

dt � a� mi

2e�VOML�
. �1�

Here mi is the ion mass, and VOML is the particle potential
as predicted by the OML theory �see below�. Our model
differs from the one in �3� only in the choice of cross sec-
tions and in the inclusion of the effects of high particle con-
centrations. The gas considered here is argon. As the cross
sections of elastic scattering and resonant charge transfer for
argon ions in argon are of comparable magnitude �23�, both
processes are considered using the cross sections from �24�.
The effect of high particle density, which leads to a reduction
of the free plasma electron density, is taken into account by
forcing the simulation cell to be quasineutral over the aver-
age volume occupied by a particle.

4�	
a

Lp

�ni�r� − ne�r��r2dr + Q = 0 and Lp =�3 3

4�np
,

�2�

where ni, ne, and np are the ion, electron, and particle density,
respectively; r is the radius measured from the center of the
particle and Q is the particle charge. While Eq. �2� has been
formulated for the vicinity of one particle, it implies an infi-
nitely extended plasma in which the overall charge balance
between electrons residing on the particles, free electrons,
and positive ions needs to be conserved. This condition is
satisfied by adjusting the unperturbed electron density ne0. In
order to obtain a self-consistent solution, the Poisson equa-
tion, the analytical expression for the electron density �3�,
and Eq. �2� are solved iteratively.

Assuming a Maxwell-Boltzmann electron energy distribu-
tion, the electron current reaching the particle is calculated as

Ie = �a2ne0
8kTe

�me
�1/2

exp
 eVp

kTe
� , �3�

where Te and me are the electron temperature and mass, re-
spectively, and Vp is the particle potential. While non-
Maxwellian electron distribution functions have been ob-
served in the simulations in �21�, we here use the
Maxwellian assumption in order to be able to compare our
results with other literature results. However, the electron
current �3� could easily be modified to account for non-
Maxwellian electron distribution functions. While Eq. �3�
represents a continuous current, the particle charge is only
updated after an integer elementary charge was deposited on
the particle. This can become important for small particles
for which one elementary charge causes a significant change
of the particle potential.

Simulations were performed for a range of background
gas pressures from 10−5–105 Pa, particle diameters from
10 nm–1 �m, and fractions of negative charges residing on
the particles from 0–98 %, and for two electron temperatures
of 2.5 and 5.0 eV. The unperturbed ion density ni0 was kept
constant at 1010 cm−3 and the ion temperature was 0.025 eV.

Figure 1 shows results of the molecular dynamics simu-
lation for a particle with a diameter of 500 nm. The normal-
ized particle potential z=−eVp /kTe is shown as a function of
the particle Knudsen number Kna in the insert. At high
Knudsen numbers �low pressures� the MD results converge
toward the classical OML theory. At high pressures and
small Kna the particle potential approaches the result of the
hydrodynamic limit. At intermediate Knudsen numbers Kna
�102, the normalized particle potential has a minimum, at
z�0.5, i.e., five times smaller than the potential predicted by
the OML theory. This reduction of the potential is a result of
the collision enhancement of the ion current, as already
shown in �1,3,10�.

However, the minimum of z occurs at Kna�102. This
suggests that the particle Knudsen number is not the natural
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FIG. 1. �Color online� Normalized particle potential z as a func-
tion of the capture radius Knudsen number KnR0

for a particle with
a diameter of 500 nm, ni0=1010 cm−3, Te=2.5 eV, Ti=0.025 eV,
and np /ni0�0. Also plotted are the probabilities of performing zero
�P0�, one �P1�, and more than one collision �P�1� inside the capture
radius sphere.
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variable to describe the transition from the OML to the hy-
drodynamic regime. For a sensibly defined Knudsen number,
the transition is expected to appear around 1. We propose
that a rational Knudsen number for the problem of particle
charging needs to be defined in terms of the capture radius,
rather than the particle radius. Following �10�, we define the
capture radius R0 of an ion with kinetic energy Ekin through
Ekin+U�R0�=0, where U=U�r� is the ion potential energy,
which is a priori unknown. To derive an estimate for R0, we
approximate U by a linearized Yukawa potential as follows:

U�r� = eVp
a

r
exp
−

r − a

�DL
� � eVp

a

r
�1 −

r − a

�DL
 , �4�

with �DL the linearized Debye length, defined by 1 /�DL
2

=1 /�Di
2 +1 /�De

2 with �Di and �De the ion and electron Debye
lengths, respectively �19�. The numerical investigation in
�19� revealed that the Yukawa potential using the linearized
Debye length is a good approximation of the actual potential
as long as the particle radius is smaller than �DL. Defining R0
as the radius at which R0 equals the ion kinetic energy Ekin,
we find

R0�Ekin� =

e�Vp�a
1 +
a

�DL
�

Ekin + e�Vp�
a

�DL

. �5�

We now define the capture radius Knudsen number as KnR0
=�i / �2�R0�, with

�R0 = 	
0

�

R0�Ekin�f�Ekin�dEkin = 1.22R0
3

2
kTi� . �6�

The factor �=1.22 arises from the energy dependence of the
capture radius when averaged of a Maxwellian distribution f
of ion energies. In the following, we denote R0�3kTi /2� with
R0 for simplicity. As can be seen from Fig. 1, the minimum
of the normalized particle potential appears at KnR0

�1. This
suggests that the capture radius Knudsen number is the natu-
ral variable to describe the problem. Further shown in Fig. 1
are the probabilities of an ion approaching the particle from
the unperturbed plasma to perform zero, exactly one, and
more than one collision �25� inside the capture radius sphere.

P0 = exp
−
1

KnR0

� , �7a�

P1 =
1

KnR0

exp
−
1

KnR0

� , �7b�

P�1 = 1 − �P0 + P1� . �7c�

Figure 1 demonstrates that there is a strong correlation
between the minimum in the normalized particle potential
and the maximum in the probability of performing one col-
lision inside R0. This suggests that the collision-enhancement
of the ion current is maximum if most ions perform one
collision within the capture radius sphere. These ions be-
come trapped and will eventually be collected by the par-

ticles, possibly after further collisions. The increase of the
normalized potential when P�1 dominates is related to the
increasing collisional inhibition of the ion transport to the
particle in the hydrodynamic regime.

III. ANALYTICAL MODEL

The overall behavior of the collision probabilities in Fig.
1 suggests that P0, P1, and P�1 are characteristic for the
contributions of the OML, the collision-enhanced, and the
hydrodynamic ion transport to the particle. Based on this
observation, we propose an analytical model for the ion cur-
rent for the entire range of KnR0

by accounting for three
components, i.e., the OML, collision-enhanced, and hydro-
dynamic ion currents, which are weighed by P0, P1, and P�1,
respectively. Therefore,

Ii = P0Ii
OML + P1Ii

CE + P�1Ii
HY . �8�

Expressions for Ii
OML and Ii

HY were derived in �10�. The
collision-enhanced ion current Ii

CE is estimated by the ther-
mal flux of ions crossing a sphere around the particle defined
by average capture radius.

Ii
OML = �a2vi,thni,0
1 −

eVP

kTi
� , �9a�

Ii
CE = ���R0�2ni0vi,th, �9b�

Ii
HY = 4�ani,0�i�Vp� . �9c�

Here vi,th is the thermal velocity of ions and �i is the ion
mobility.

It is obvious that the approach used in Eq. �8� correctly
describes the two limiting cases for the ion current, i.e., the
collisionless OML limit at very low pressures and the colli-
sional hydrodynamic limit at large pressures. There are many
examples in plasma sheath theory, where the hydrodynamic
approach still yields a reasonable approximation even in the
case when ions perform only a few collisions in the sheath
�e.g., �26��. Hence the collision probability P�1 has been
defined to fade in this effect already for weakly collisional
cases. The rationale for including a contribution of the
collision-enhanced current is to approximate the effect of
ions that get collected by the particle as a result of a single
collision while traveling through the capture radius sphere.
As a result of this collision event, ions get transformed from
initially free ions with positive total energy into trapped ions
with negative total energy. These ions will eventually get
collected by the particle, however, the details of the actual
capture process do not need to be known. Thus in steady
state, one only requires knowledge of the frequency with
which ions are being trapped in the capture sphere �repre-
sented by P1Ii

CE�.
Using these arguments, the total ion current including all

three components becomes,
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Ii = �a2vi,thni,0�
1 −
eVP

kTi
� +

2�3R0
3

a2�i
exp
−

2�R0

�i
�

+ 4�ani,0�i�Vp��1 − 
1 +
2�R0

�i
�exp
−

2�R0

�i
� .

�10�

We now define some important nondimensional quantities:
�=Te /Ti, 	=�DL /a, and M =me /mi. Equating expression
�10� for the ion current with the OML electron current �8�,
using the Einstein relation, and remembering that the diffu-
sion coefficient can be expressed as Di= �3� / �16�2��vi,th�i,
we obtain the following equation:

ni,0

ne,0
�M

� ��1 + �z� +
2�2�z��	 + 1��3

Kna�3	 + 2z��3

+
3�

4�2
Kna�z�exp
 4�z��	 + 1�

Kna�3	 + 2z���
− 
1 +

4�z��	 + 1�
Kna�3	 + 2z����


exp
−
4�z��	 + 1�

Kna�3	 + 2z���exp�z� = 1. �11�

For given nondimensional parameters M, �, 	, and Kna, Eq.
�11� is a nonlinear equation for the normalized particle po-
tential z. While this equation could be written in a more
compact form if expressed in terms of the capture radius R0
or the capture radius Knudsen number KnR0

, these param-
eters are a function of the particle potential and therefore not
suitable to be used as independent parameters.

Figure 2 shows the comparison between the MD results
for z and the values obtained with Eq. �11� for different par-
ticle sizes. For clarity, we plot the results against the capture
Knudsen number KnR0

, rather than the particle Knudsen
number Kna, which was used as an independent parameter. It
is obvious that the simple analytical model proposed with

Eq. �11� captures the results of the MD simulation very well.
Both the analytical model and the simulation yield a mini-
mum of the normalized particle potential at KnR0

�1, which
corroborates that the capture radius Knudsen number is the
sensible normalized variable of the problem. Different from
�22�, our MD simulations indicate that there is an explicit
dependence of the normalized particle potential on the par-
ticle size in terms of the width of the minimum of z. Our
analytical model equation �11� generally captures this trend
very well.

As the agreement between our analytical model and the
MD simulations is quite good, one may wonder whether this
is due to the particular definition of the capture radius �R0
defined above in Eqs. �5� and �6�. Hence a sensitivity analy-
sis was performed in which the value of � was changed to
test the influence of the specific definition of the capture
radius. Figure 3 shows the results for two nanoparticles with
diameters of 100 nm and 1000 nm. Apparently the influence
of � is rather small. Since the value of � was defined by
averaging over a Maxwellian distribution function for the
ions �Eq. �6��, which may not always be accurate �21�, one
may conclude that the actual shape of the ion distribution
function will also only have a small influence on the normal-
ized particle charge.

For very small particles such that a /�DL�e�Vp� /Ekin, one
can simplify the definition of the capture radius in Eq. �5� to

R0�Ekin� =
e�Vp�a
Ekin

=
2

3
z�a , �12�

which essentially corresponds to deriving the capture radius
based on the unscreened Coulomb potential. With this defi-
nition, Eq. �11� can be simplified to
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ni,0

ne,0
�M

� ��1 + �z� +
16��z��3

27Kna
+

3�

4�2
Kna�z�exp
 4�z�

3Kna
�

− 
1 +
4�z�

3Kna
��exp
−

4�z�

3Kna
�exp�z� = 1. �13�

The solution of Eq. �13� is also shown in Fig. 3. It is in rather
good agreement with the solution of the more accurate model
equation �11� for the particle of 100 nm diameter, with the
exception of the transitional region between the OML and
collision-enhanced regime. However, as Eq. �13� eliminates
any dependence on the particle radius, the agreement with
the results for the 1000 nm particle is rather poor. Equation
�11� is thus the more general model which needs to be used
for larger particles.

In Fig. 4 we compare the results of our analytical model
with experimental results reported by Khrapak and co-
workers �10� for particles with 0.6 �m radius obtained with
three different methods. As the presence of a high density of
particles will reduce the electron density compared to the ion
density, we report results for two different situations: ni0
=ne0 and ni0=4ne0. Obviously, our analytical model �11� de-
scribes the experimental results very well. Both the results of
our model and the experimental results show a significant
reduction of the normalized particle potential with respect to
the OML theory, whose results are also indicated in Fig. 4. In
the same figure we also compare the results of our model
with the ones of other analytical models reported in the lit-
erature �3,10,22�. Our model produces results very close with
the model presented by Khrapak et al. �10�. These two mod-
els show the best agreement with experimental results. How-
ever, the applicability of Khrapak’s model is limited to the
slightly collisional regime and does not include the transition
to the hydrodynamic regime. The paper by Zobnin et al. �3�
already had identified a simple analytical expression for the
collison-enhanced current and suggested that it be treated as
an additional component to the OML ion current. Using
these expressions from Ref. �3� still yields reasonably good

agreement with the experimental data, however, not as good
as the present model and the model by Khrapak et al. �10�.
Moreover, the expressions in Ref. �3� are again limited to the
weakly collisional regime. In contrast, the model derived by
D’yachkov et al. �22� is not limited to the weakly collisional
regime but applies to a wide range of pressures. However, its
agreement with the experimental results is not very good, at
least, for particles of the size as shown in Fig. 3. This poor
agreement with experimental results was already obvious in
Fig. 4 of D’yachkov’s paper. Obviously, our model, based on
the concept of a capture radius, yields a more accurate de-
scription of available experimental data.

Finally, Eq. �11� can be modified to account for the reduc-
tion of the electron density in the case of high particle den-
sity. Rewriting the plasma-quasineutrality condition as

ne,0

ni,0
= 1 +

np

ni,0
Qp = 1 +

np

ni,0

4��0aVp

e
= 1 − 4�np�Di

2 �Dlz�

	
,

�14�

we can introduce the nondimensional quantity =�Di
2 �Dlnp,

leading to

	

	 − 4�z�
�M

� ��1 + �z� +
2�2�z��	 + 1��3

Kna�3	 + 2z��3

+
3�

4�2
Kna�z�exp
 4�z��	 + 1�

Kna�3	 + 2z���
− 
1 +

4�z��	 + 1�
Kna�3	 + 2z����


exp
−
4�z��	 + 1�

Kna�3	 + 2z���exp�z� = 1. �15�

Note that usually, �Di��De and �Di��Dl. Hence 
=�Dl

3 np describes the number of particles in a cube with the
length defined by the linearized Debye length.

Figure 5 shows the comparison between the MD simula-
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tion results and the results of the analytical expression �13�
for a wide range of collisionality and particle density. Calcu-
lations were performed for �npQ� /ni0=4�z� /	
=0,0.5,0.75,0.9,0.98, i.e., situations in which between 0
and 98% of all negative charges reside on the particles. It is
evident that the analytical model �15� reproduces the results
of the MD simulation very well.

IV. CONCLUSIONS

We have presented a simple analytical model to describe
the charging of nanoparticles in plasmas. The model covers a
wide range of collisionality from the collisionless �OML�
regime to the highly collisional hydrodynamic regime. The
model is based on the concept of a capture radius of ions,
which is defined such that ions undergoing charge-exchange
collision within this radius will eventually be collected by
the particle. The ion current is described as a sum of three
components: the collisionless OML current, the collision-

enhanced transition regime current, and the hydrodynamic
current over the collisional regime. These three components
are weighted with their respective probablilities of ions per-
forming zero, one, and more than one collision within a
sphere around the particle defined by the capture radius. Par-
ticle potentials derived based on this simple model were
found to be in good agreement with results of molecular
dynamics simulations and experimental results. Furthermore,
the effect of high particle density was included by introduc-
ing a parameter that measures the number of particles in a
volume defined by a cube with the length of the linearized
Debye length. Good agreement between the analytical model
and MD simulations and experimental results was found.
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