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Instability of electro-osmotic channel flow with streamwise conductivity gradients
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This work considers the stability of an electro-osmotic microchannel flow with streamwise electrical con-
ductivity gradients, a configuration common in microfluidic applications such as field amplified sample stack-
ing. Previous work on such flows has focused on how streamwise conductivity gradients set a nonuniform
electro-osmotic velocity which results in dispersion of the conductivity field. However, it has been known for
many years that electric fields can couple with conductivity gradients to generate unstable flows. This work
demonstrates that at high electric fields such an electrohydrodynamic instability arises in this configuration and
the basic mechanisms are explored through numerical simulations. The instability is unique in that the non-
uniform electro-osmotic flow sets the shape of the underlying conductivity field in a way that makes it
susceptible to instability. While nonuniform electro-osmotic flow sets the stage, the instability is ultimately the
result of electric body forces due to slight departure from electroneutrality in the fluid bulk. A simple stability
map is created where two dimensionless numbers can predict system stability reasonably well, even though the
system formally depends on six dimensionless groups.
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I. INTRODUCTION

One challenge in designing microfluidic devices to per-
form bioanalytical operations on chip is detection of samples
at low concentration. In addition to the development of new
instrumentation that can lower detection thresholds, numer-
ous microfluidic systems have been designed which can am-
plify sample concentration. Amplification techniques such as
field amplified sample stacking (FASS) [1] and large volume
sample stacking [2] use gradients in fluid electrical conduc-
tivity to enhance sample concentration. FASS has received
particular attention due to the ease with which it can be in-
tegrated into microfluidic devices [3,4].

FASS relies upon using background electrolytes with re-
gions of high and low electrical conductivity in the channel’s
streamwise direction, an example is shown in Fig. 1(a).
Imagine that a channel is started with regions of uniform
electrical conductivity and only streamwise conductivity gra-
dients (red indicates high conductivity, blue represents low).
An electric potential is suddenly applied across the entire
length of the channel. Since the ohmic current down the
channel is constant at any streamwise location, most of the
potential is dropped across the low conductivity sample re-
gion (analogous to three resistors in a series where the
middle resistor is the largest). Thus, the electric field is high
in the low conductivity sample as shown in Fig. 1(b). In
FASS, the sample ions which are to be detected are initially
mixed in the low conductivity region. These sample ions are
at a much lower concentration than the background electro-
Iytes such that they do not initially influence the overall fluid
conductivity. These sample ions will feel an electrophoretic
velocity proportional to the local electric field. Sample ions
in the low conductivity region will be driven quickly from
the region and then slow significantly once they reach the
interface with the high conductivity buffer where the electric
field is lower. Sample ions that were originally uniformly
distributed throughout the low conductivity region will be-
come stacked at the interface. FASS can be implemented
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with one or two conductivity interfaces where stacking can
occur [4], we study the two interface system in this work.
When an electric field is applied, the background electro-
lyte in Fig. 1(a) will undergo a net electro-osmotic flow
down the channel. A solid surface in contact with an electro-
lyte typically acquires a surface charge and forms an electric
double layer, composed of the wall charge and a counterion
shielding layer with a thickness on the order of the Debye
length. Electro-osmosis results upon the application of an
external field parallel to the surface, which sets the diffuse
ions of the double layer in motion and induces a motion of
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FIG. 1. (Color online) (Top) Schematic of the geometry of in-
terest for this problem. Low conductivity fluid is surrounded by
high conductivity buffer. (Middle) When an electric field is applied
across the length of this channel, the field is highest in the low
conductivity region due to Ohm’s law. The result is that the sample
ions have a higher electrophoretic velocity in the low conductivity
region. All sample ions quickly leave the low conductivity region
and stack at the interface with the high conductivity region. (Bot-
tom) The electro-osmotic velocity is highest in the low conductivity
sample region. The centerline velocity must then vary inversely
with the slip velocity for mass conservation to be obeyed.
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the bulk, neutral liquid near the wall [5]. Typical microchan-
nel flows have characteristic scales of order 10 microns or
greater and Debye lengths of 10 nm or less so that the elec-
tric double layer is confined to a thin layer near the wall. For
thin electrical double layers, the electrolyte motion outside of
the double layer can be modeled with a slip velocity condi-
tion [6]. This slip velocity is proportional to the electric field
tangential to the wall.

In a homogeneous fluid when the electric field is constant
everywhere, electro-osmotic flow in microchannels has a
uniform velocity profile (outside the double layers). In our
system where the electric field is nonuniform in the stream-
wise direction, the electro-osmotic velocity of the low con-
ductivity region is faster than the high conductivity region.
The channel’s centerline velocity at any streamwise location
must vary inversely with the local electro-osmotic slip veloc-
ity in order to maintain mass conservation. Thus the nonuni-
form electro-osmotic flow generates axial pressure gradients
[11]. The resulting flow at low Reynolds number will be
Poiseuille flow superimposed on a slip flow; as shown in Fig.
1(c). Mass conservation demands that the integral of the ve-
locity profile across the channel (the flow rate) at any stream-
wise location be constant. Since the bulk flow in the channel
has a Poiseuille velocity profile, the interface between high
and low conductivity regions will not remain vertical and
there will be Taylor dispersion of the fluid sample [5,7]. Tay-
lor dispersion is a flow-induced effect that can act like mo-
lecular diffusion in the streamwise direction, only the effec-
tive diffusion constant is much greater than molecular
diffusion.

This dispersion effect has been recognized since the dis-
covery of FASS and is known to decrease stacking efficiency
by quickly broadening the interface between the high and
low conductivity regions [1,8]. Due to the importance of
FASS, there have been recent numerical and experimental
studies on the basic flow and sample dispersion in microflu-
idic geometries [4,9—11]. In these works, the focus has been
on the effect of sample dispersion driven by heterogeneous
electro-osmotic slip. There has been little discussion of the
role that the electric body force in the nearly electroneutral
fluid bulk can have on stability. Further, a number of papers
have applied lubrication approximations to develop one-
dimensional (1D) models that account for the full flow field
[4,7,12]. These models all assume that the modeled flow is
stable, though there have been no calculations to test whether
this is true.

In recent years, it has been shown that microfluidic flows
involving fluids with varying electrical conductivity can be
unstable upon application of an electric field [13-17]. The
interaction of an applied electric field and fluid conductivity
gradients generates charge in the fluid bulk, the applied elec-
tric field will exert a force on the charged fluid and electro-
hydrodynamic (EHD) motions can arise. While these insta-
bilities have only recently been explored in microfluidic
applications, it has been known for at least 40 years that
electrohydrodynamic motion can occur whenever electric
fields are applied to liquids with gradients in their electrical
properties [18,19]. The study of instabilities arising from
conductivity gradients was pioneered by Melcher and co-
workers over 30 years ago [20-23].
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Possible instabilities in FASS applications was cited as
one of original motivations for studying EHD instabilities in
microfluidics [15,16]. Controlling instability in on-chip elec-
trophoresis systems allowed Jung er al. [24] to achieve a
1000-fold increase in detection signal. The occurrence of in-
stability in FASS configurations has been discussed but to
the best of our knowledge has not been directly studied.

In this work we predict, via numerical simulation, the
occurrence of an EHD instability in a flow with streamwise
gradients in electrical conductivity. We explore the geometry
shown in Fig. 1(a) and expand previous numerical studies
that did not account for the electrical body force [10] or
limited the parameter regime to cases such that instability
would not be observed [9]. Much of the previous work on
FASS has focused on the transport and dispersion of the
sample ions, in this work we will only study the stability of
the background electrolyte. We will show that instability
arises from bulk conductivity gradients which are set up by
the flow field resulting from the streamwise variation of
electro-osmosis. Using our simulations, we will explore the
basic mechanism of such instabilities. While many of our
conclusions are based on simplified two-dimensional simula-
tions, we show that the basic effect is robust and the insta-
bility occurs in three-dimensional simulations as well. Fi-
nally, we develop a simple criterion that can inform whether
or not stability is likely given the system parameters.

II. FORMULATION

In an earlier work, a set of governing equations suitable
for the study of electrokinetic instabilities in microchannels
was developed [15]. The foundation of these governing
equations are conservation of mass for a two species sym-
metric electrolyte solution, Poisson’s equation for the electric
field, conservation of mass for an incompressible liquid, and
conservation of momentum including the body force due to
an electric field. The general ion transport equations [5] for a
dilute, symmetric, monovalent, binary electrolyte (such as
KCl in water) can be written as

Dc*

=V-(DVc'+wFc"VO), (1)
Dt
-
Fi:V-(DVc‘—ch‘V(I)). )

Here, ¢* is the concentration of positive ions, ¢~ is the con-
centration of negative ions, ® is the electric potential, D is
the diffusivity, w is the mobility, and F is the Faraday con-
stant. Further, D/Dt=(d/dt+v-V), is the material derivative
where v is the velocity field. The right-hand sides of Egs. (1)
and (2) represent the divergence of the ion flux which is
composed of molecular diffusion and electromigration.

Our reduced equations make the electroneutrality assump-
tion which states that the difference in cationic and anionic
concentrations is small compared to the background concen-
tration, namely ¢*= ¢~ = . This assumption is well justified
in the fluid bulk outside the very thin electric double layers
that form at the channel walls [15]. Using electroneutrality,
one can add and subtract Egs. (1) and (2) to readily obtain
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Dc
E=V-(DVO), (3)

0=V-(cV®D). (4)

Since the electrical conductivity is proportional to the total
ionic concentration (under the assumption of a symmetric
electrolyte) we can replace the concentration ¢ with the elec-
trical conductivity o.

Even though we have made the electroneutrality assump-
tion, the slight imbalance in ¢*—c¢~ yields sufficient charge
that the electrical body force in the fluid bulk must be con-
sidered [15]. Equations (3) and (4) are therefore coupled to
the mechanical problem through the addition of a body force
in the incompressible Navier-Stokes equations. To close the
problem, Poisson’s equation for the electric potential is used
to compute the charge density in the fluid bulk from the
electric potential. Our complete equation set is therefore

— =DV?0, 5
Dr o ()
V. (cV®d)=0, 6)
eV = — p, (7)
V.-v=0, (8)

D
p;j:—Vp+,u,V2V—pEVq3. 9)

Here, € is the permittivity of the buffer, py is the charge
density, p is the buffer liquid density, p is the pressure, and w
is the liquid viscosity. Equations (5)—(9) represent the con-
servation of conductivity, current continuity (i=oV®), Pois-
son’s equation for the electric potential, conservation of mass
for an incompressible fluid, and conservation of momentum,
respectively. Details on the applicability of Egs. (5)—(9) and
a more rigorous derivation can be found in the literature [ 15].
The brief derivation we have provided above is meant to be
more illustrative than rigorous.

To nondimensionalize the problem we use the following
scales: [x,v,z]=[L,H,H], [u,v,w]=U,,, [t]=H/U, [®]
=E,H, [pgl=€E,/H, [o]=0,, [P]=pU/L, where H is the
height of the channel, L is the length, E, is the applied elec-
tric field, o, is the low conductivity, and the characteristic
velocity, U€U=6E§H/ M, represents the balance between the
viscous and electrical forces. This scaling yields the follow-
ing equation set:

— =—V?g, (10)

Dr Ra

V.-oaVd=0, (11)
V.-v=0, (12)
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D
Re;j:—VP+V2<DVCI>+V2V, (13)

where the Reynolds and Rayleigh number are, respectively,
defined as

Re = pUH
M
and
U,,H
Ra=——
D

Note that the Rayleigh and Reynolds number are related
through the Schmidt number; Ra=Re Sc, where Sc=pD/u
and is a property of the fluid. Alternate scalings have been
used and these are reviewed by Posner and Santiago [17].

It is important to note that Eqs. (10)—(13) are only valid
for the bulk fluid region outside the electric double layer
(EDL). This assumption is valid since the typical microchan-
nel dimensions, ~10 wm, are much greater than the typical
double layer thicknesses, ~10 nm. The electric double layers
are accounted for through the tangential boundary conditions
on velocity with the standard Helmholtz-Smoluchowski slip
formula [5]. The flow at the solid walls is bounded by a slip
plane which excludes the EDLs of the system and at which
the electro-osmotic velocity is directly proportional to the
local electric field,

vV t=—R(VD-t, (14)

where { is the dimensionless {-potential and R,=U,,/U,, is
the ratio of the characteristic electro-osmotic velocity to elec-
troviscous velocity. The electro-osmotic velocity is given by
the Helmholtz-Smoluchowski formulation

— eEogR
M

Ue (15)
Using these definitions, R, may be also interpreted as the
ratio of the (-potential to the applied potential, i.e., R,
=(EE0§R/,LL)(,LL/EEzH)ZgR/(EoH). The remaining boundary
conditions are that the normal components of velocity, elec-
tric field, and conductivity gradient vanish at solid walls.

It is experimentally observed that electro-osmotic velocity
depends upon the fluid conductivity [25]. For this work, we
adopt the empirical correlation {=(o/0o)™"* where oy is a
reference conductivity at which the dimensional {-potential
becomes {={g [15,25].

The geometry of interest is shown in Fig. 1(a). The con-
figuration starts with a low conductivity sample surrounded
by a high conductivity buffer with a vertical, diffuse inter-
face. Initially there are only axial conductivity gradients. We
assume periodic boundary conditions in the x direction such
that the sample is continuously traveling around a “ring.” As
we will show, the flow instability is confined to the low
conductivity region and the assumption of periodicity is
therefore unimportant to our basic result. Of course, in later
studies if one wants to directly compare experiments to cal-
culations, an assumption of periodicity may not be appropri-
ate depending upon the experimental arrangement. In this
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FIG. 2. (Color online) Snapshots of the conductivity field during FASS instability. Parameters are: Ra=2160, R,=0.056, Re=1.08, y
=10, and 6=0.1. In time, the snapshots move from left to right, then down. The dimensionless parameters correspond to E,
=25000 V/m, H=50 um, £=0.07 V, and D=5 X 10~'°. The other physical parameters are taken as typical of an aqueous solution. The color
bar is set such that red corresponds to o=10 and blue corresponds to o=1. The light colored regions correspond to intermediate values of
the conductivity and can be used to easily visualize the interface between high and low conductivity fluids. Given the high Rayleigh number,

the conductivity field acts as a tracer to visualize the flow.

work we will consider both two-dimensional (2D) and three-
dimensional (3D) versions of the geometry shown in Fig. 1.

The equations are solved numerically using Fourier-
Chebyshev spectral methods and details on the numerical
methods can be found in Ref. [26]. The basic numerical
scheme has been used in several previous works by Storey
and co-workers [7,15,26-28]. In addition to performing stan-
dard numerical tests as discussed in [26], we have also vali-
dated our codes against independent linear stability analysis
[15,26,28] and show that our full nonlinear simulations agree
with analytical depth averaged models which are valid under
limits of very thin channels [7,27].

The above formulation depends upon five dimensionless
numbers Ra, Re, Ry, y=0hion/ 0oy, and 6=H/L. Further, one
can vary the initial condition by changing the length of the
sample relative to the channel length introducing a sixth di-
mensionless parameter. Since the Reynolds number is typi-
cally small it does not play a significant role in the problem.

III. RESULTS
A. 2D unstable flow field

We begin by showing the basic mechanism of the insta-
bility in Fig. 2. Figure 2 shows snapshots of the conductivity
field to demonstrate the onset of electrohydrodynamic insta-
bility; the parameters are given in the caption. In these simu-
lations we are assuming that the channel is two dimensional
and that the channel depth is infinite. It is clear from the
images of the conductivity field at times =50, 60, and 70
that unstable flow and mixing occurs inside the low conduc-
tivity sample. Recalling Eq. (10), we see that the conductiv-
ity evolves according to a classic convection-diffusion equa-
tion. Since molecular diffusion is quite slow, Ra=2160, the
conductivity field effectively acts as a tracer that allows us to
visualize the flow. The images of the unstable conductivity
field in the sample region contrasts with previous simulations
at low electric fields (or neglecting body forces) where the
conductivity field remains more regular and symmetric about
the channel centerline, as at t=10 [7,9,10].

The mechanism of the instability is as follows. The
electro-osmotic slip velocity at the wall is proportional to the

electric field tangential to the wall. In the low conductivity
sample the electric field and thus the electro-osmotic slip is
higher than in the high conductivity buffer. The slip velocity
at the leading edge in the sample begins to overtake the
buffer causing the conductivity to “pile-up” in a shocklike
structure at the wall. The sharpening of the conductivity gra-
dient at the wall of the sample’s leading edge is easily seen
as time progresses from the first frame when the electric field
is suddenly applied to t=30. The result is a narrow region
with a very large gradient in the x velocity. Since du/dx is
large and negative at the location of the “shock,” then dv/dy
is large and positive at the wall in order to maintain incom-
pressibility. A large vertical velocity should be expected at
the shock location aimed toward the middle of the channel.
At the trailing edge of the sample, the situation is reversed.
At the trailing edge, du/dx is positive at the wall, therefore
dv/dy is negative in order to maintain incompressibility. A
vertical velocity aimed toward the wall should be expected at
the trailing edge.

Together, the behavior of the vertical velocity at the lead-
ing and trailing edge acts to circulate high conductivity fluid
through the centerline of the low conductivity sample. At
low electric fields these flow patterns and circulation are very
regular [7,9]. A strong “shock™ structure and nonlinear flow
only exist when the electric field is sufficiently high.

As time progresses, this circulation within the sample re-
gion sets up a configuration where the sample consists of a
thin high-conductivity center along the streamwise direction.
This configuration of a conductivity gradient orthogonal to
the applied electric fields is known to be unstable from pre-
vious work [15,17,26]. The instability seen in the sixth and
seventh frames of Fig. 2 are consistent with experiments of
Posner and Santiago [17]. The images show that once the
flow becomes unstable, that a well-mixed flow can be found
inside the low conductivity region. Unstable flow is only
observed in the sample where the electric field and electric
body forces are sufficiently high. Since the Reynolds number
is low, the flow is confined to the low conductivity sample
and the instability does not spread to the high conductivity
buffer.

Figure 3 shows the conductivity field at different electric
fields and at the same dimensionless time, t=50. Here we
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FIG. 3. (Color online) Snapshots of the conductivity field during
FASS instability for different electric fields. The parameters are the
same as Fig. 2 only the electric field is varied from E,
=20000 V/m to E,=35000 V/m from top to bottom. The applied
electric field in kV/m is denoted in the figure. The snapshots are
taken at the same dimensionless time, r=50.

can see the motion within the sample gaining a more chaotic
appearance as the electric field increases. Further, we can see
from this view that the instability is happening quicker rela-
tive to the electro-osmotic time. As the field increases the
sample has traveled less distance before it is overwhelmed
by instability, even though the electro-osmotic velocity in-
creases with electric field. This effect is due to the fact that
the electroviscous time, H/U,,, scales with Eﬁ and the
electro-osmotic time, H/U,,, scales with E,,.

This channel flow becomes unstable only when the ap-
plied electric field is above some threshold. In previous
works [13,15,16], the onset of electrohydrodynamic instabil-
ity was computed using analytical means. In those studies,
the conductivity field could be assumed stationary. In this
configuration, the conductivity field is set by a transient 2D
electro-osmotic flow. In Fig. 2 it is clear that the shape and
width of the sample region are rapidly evolving due to the
heterogeneous electro-osmotic flow even before instability
sets in. Note the change from the initial condition to the
conductivity field at r=10. Initially the conductivity gradi-
ents are only aligned with the electric field similar to the
work of Baygents and Baldessari [13]. After a short time the
conductivity field takes on a 2D shape and there are gradi-
ents in both the streamwise and spanwise directions. While it
would be possible to use analytical means to study the sta-
bility of the initial condition, the initial conductivity field
does not remain once the electric field is turned on. After a
very short time the electro-osmotic flow deforms the sample
into a complex 2D shape. Taylor dispersion continues to
cause the width of the sample region [1,7,8] to grow, reduc-
ing the overall conductivity gradients and susceptibility of
the configuration to instability. Thus, instability must occur
on a time scale fast relative to the time scale for Taylor
dispersion.

Due to all of these complexities, an analytical method for
determining a “true” stability threshold is not possible and
we use our 2D simulation to predict system stability. We
observe when the flow is stable, there is symmetry about the
channel centerline and therefore the vertical velocity is zero
at this location. It can be seen in Fig. 2, that when the flow is
unstable there is mixing across the centerline within the low
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FIG. 4. (Color online) (a) Maximum dimensionless vertical ve-
locity along the channel centerline as a function of time for different
electric fields; Ey=10000, 15000, 17000, 20000, and
25000 V/m from bottom to top. (b) Maximum dimensionless cen-
terline vertical velocity achieved over the course of the run as a
function of electric field. The other dimensional parameters are the
same as in Fig. 2.

conductivity region. Therefore, we use the maximum nondi-
mensional vertical velocity along the channel centerline as a
measure of system stability.

An example of this stability measure for a given geometry
is shown in Fig. 4(a). Here we show the maximum dimen-
sionless vertical velocity along the centerline as a function of
time for runs with increasing electric field. At low fields (E
=10000 V/m) we find that the centerline velocity remains
so low as not to be well distinguished from numerical round-
off error (107'). At moderate fields (E,=15000 V/m), we
see an initial exponential growth of the centerline vertical
velocity, a maximum of 107> is reached followed by a slow
decay. In these cases, the low conductivity region is linearly
unstable at early times. However, the instability growth rate
is slow relative to Taylor dispersion which acts to decrease
the overall conductivity gradients. The maximum magnitude
of the instability is thus too small to be observed in the
simulated conductivity fields. A similar effect was noted in
Lin et al. [15], however in their case it was molecular diffu-
sion of the initial conductivity gradient that could stall the
instability. At high fields, we start to see that the instability
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FIG. 5. (Color online) Maximum dimensionless vertical velocity
along the channel centerline as a function of time with (upper
curve) and without (lower curve) the body force term in the equa-
tions. The inset snapshots of the conductivity field are taken where
the dot is located, r=75. Parameters in both cases are: Ra=880,
R,=0.0311, Re=0.88, y=10, and 6=0.1.

grows quickly relative to the overall rate of sample disper-
sion. In these cases the velocity increases until a maximum is
hit when the instability grows to the size of the system. This
behavior is clearly seen in the curve associated with E
=25000 V/m. Note that the initial growth rates in dimen-
sionless form collapse to a single curve under the electrovis-
cous scaling as was observed by Lin et al. [15]. In all cases,
the instability will decay as time progresses and dispersion
eventually alleviates the conductivity gradients that drive the
flow.

At high electric fields, the maximum vertical velocity at
the centerline shows some small scale fluctuations in addi-
tion to the longer term growth and decay. Given the highly
nonuniform flows that are apparent in the conductivity im-
ages of Fig. 2, it is not surprising that there should be some
fluctuating component on top of the long time scale growth
and decay. We emphasize that we can attribute the small
scale fluctuations to unsteady “eddies” within the low con-
ductivity region that are well resolved by our direct numeri-
cal simulation.

In Fig. 4(b) we show the maximum dimensionless center-
line vertical velocity reached at any time during the entire
simulation as a function of electric field. This view allows us
to identify a critical electric field for a given set of param-
eters by extrapolating the computed points to the intercept
where max(V)=0. In the case of Fig. 4, we estimate the
critical field to be 16 000 V/m.

That the stability is due to electric body forces in the fluid
bulk is easy to confirm by “turning off” this term in the
simulation. In Fig. 5, we show the dimensionless vertical
velocity and conductivity field snapshots for a case with and
without the electric body force; all parameters are otherwise
the same in the two cases. It is clear that the centerline ver-
tical velocity grows exponentially in the presence of the
body force and the snapshot clearly shows an unstable flow.
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FIG. 6. (Color online) Maximum dimensionless vertical velocity
along the channel centerline as a function of time for the case with
no electro-osmotic flow. Parameters are the same as Fig. 2 only the
electric field is reduced to E,=10000 V/m. The inset snapshots
show the conductivity field (top) and vertical velocity field (bottom)
at r=75.

Without the body force, we see the conductivity field is
highly nonlinear. The sharp “shocklike” structure still exists
at the wall where we have very high gradients in the electri-
cal conductivity. While the conductivity field is highly de-
formed, the flow remains symmetric about the center line.
The centerline vertical velocity never grows in magnitude
beyond numerical roundoff error. We note that the case with
no body force shows centerline vertical velocities on the or-
der of 107!? (relative to significant vertical velocities at the
wall) and therefore the trend should be considered as effec-
tively zero; the flow is symmetric about the center line.
While we demonstrate only one case here, we checked dif-
ferent parameters and never observed instability without the
electric body force active.

That the flow is dramatically influenced by electro-
osmotic flow can be demonstrated by running the simulation
with zero {-potential and thus no electro-osmotic slip. In this
case, there is still a potential electrohydrodynamic instability
[26], however the nature is very different. In Fig. 6, we show
the maximum centerline velocity as a function of time and
associated snapshots of the conductivity field and the vertical
velocity field. It is hard to observe much effect by only look-
ing at the conductivity field, however the velocity field
clearly shows an unstable flow. In this case with no electro-
osmosis, there is only a single unsteady “eddy” inside the
low conductivity sample. The unstable flow in the sample is
qualitatively different than the cases with electro-osmosis.

The single eddy inside the sample results in the appear-
ance of more unsteadiness in the flow. For example, the time
history of the maximum vertical velocity along the centerline
in Fig. 6 shows more fluctuation than seen in Fig. 4(a). This
difference is simply due to the fact that our measure, the
maximum vertical velocity along the centerline, has both lo-
cal and average properties. We would expect to see that a
local measurement of the velocity would be highly unsteady,
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FIG. 7. (Color online) Snapshots of the conductivity field with a 3D simulation in a square channel. The parameters are E,
=35000 V/m, H=50 pum, {=0.07 V, D=5X 10719, y=10, and 6=0.1. In time, the snapshots move from left to right, then down.

whereas an average measure (such as the total kinetic energy
in the flow) would evolve more gradually. When there are
many eddies in the sample region [as in Fig. 4(a)], a maxi-
mum value taken over the entire centerline in a sense aver-
ages over many eddies and thus the temporal changes are
more gradual. When there is a single eddy in the sample
region (as in Fig. 6), our stability measure is essentially a
measurement of the maximum vertical velocity for that eddy;
similar to a local measurement. The apparent difference in
unsteadiness between Fig. 6 and Fig. 4(a) is simply due to
the fact that there is a single eddy in the case with no electro-
osmotic flow.

It is important to note that all parameters are the same as
in Fig. 4(a) for the electric field of E=10000 V/m. In Fig.
4(a) we see very early that the initial conductivity field is
unstable, as we find in Fig. 6. However, in Fig. 4(a) where
we have electro-osmotic flow, dispersion of the sample re-
gion quickly quenches the instability by reducing the magni-
tude of the conductivity gradients. The dispersive effect of
heterogeneous electro-osmosis reduces the susceptibility of
the sample to instability by reducing the bulk conductivity
gradients. It is clear that instability in the presence of electro-
osmotic flow is fundamentally different.

B. 3D flows

Previous studies on electrokinetic instabilities have noted
large differences between 2D and 3D instabilities in micro-
channels [7,15,26,27]. In those studies, the focus was on 3D
flows in channels with high aspect ratio. Nevertheless, we
must use caution when using 2D simulations to make predic-
tions of what may occur in a real 3D channel. In Fig. 7 we
show snapshots of the conductivity field at different in-
stances in time for a 3D geometry. The details of the 3D
simulation method can be found in Ref. [26]. The channel is
taken to have a square cross section rather than being con-
sidered infinite in extent into the page.

These simulations are much more time consuming than
their 2D counterparts, therefore extensive numerical param-
eter studies are currently not practical. While we cannot run
extensive tests with the 3D simulation we can use this single
simulation to show that the instability is not an artifact of
assuming a 2D geometry. Based on this initial result we find
that the basic instability mechanism is the same as in the 2D
flows. Consistent with previous work, it appears that the
threshold for stability is higher in the 3D simulations than in
the 2D approximation; note that the applied electric field in
Fig. 7 is much higher than in Fig. 2. Further, we note that the

time scale for the instability to develop relative to the
electro-osmotic time is much greater in the 3D than 2D
simulations.

In addition to the quantitative differences, there are some
qualitative differences in the conductivity field between the
2D and 3D simulations when we compare the current figure
to 3 at the applied field of £,=35000 V/m. We see a more
regular “vortex street” in the 3D simulation similar to what
was observed experimentally by Posner and Santiago [17].
Due to the computational expense of 3D simulations, a thor-
ough study of the difference between 2D and 3D flows is not
currently feasible. Our only point in presenting this single
result is that the prediction of instability is robust to 3D and
the basic mechanism appears unchanged. We would, how-
ever, expect to find quantitative differences between the pre-
dicted critical electric field based on 2D or 3D simulations.

C. Stability criteria

It does not seem that a simple and rigorous stability cri-
teria can be derived analytically for these flows. In the ab-
sence of instability, the two-dimensional conductivity field is
unsteady and there is no steady base state about which to
perform a linear stability analysis. Even in the absence of
instability, our simulations show the flow is very nonlinear
due to the heterogeneous boundary conditions at high elec-
tric fields. Since analytical progress seems unlikely, we use
the 2D simulation to test system stability over a range of
parameters.

We vary different parameters of the system including
channel height, diffusivity of the electrolyte, conductivity ra-
tio, and {-potential. For a given set of parameters we can
then vary the electric field to determine (coarsely) a critical
electric field. The final stability depends on six dimension-
less groups, however some guidance toward a simple criteria
for stability is found in the experimental work by Posner and
Santiago [17]. Tt has been found that typically an electric
Rayleigh number can be defined which is the most dominant
stability parameter when the base state is steady [13,15-17].

We find that for our system, the parameter Ra(y—1) is
most useful for collapsing the data. This is the same critical
parameter as used by Baygents and Baldessari [13] who ana-
lytically studied instability in the context of isoelectric focus-
ing where the conductivity gradients and electric field are
aligned (as in this work). Note that the factor y—1=(0y;g
— Olow)/ Tlow accounts for the magnitude of the initial conduc-
tivity gradient in the flow [17]. In Fig. 8(a) we plot the maxi-
mum vertical velocity along the center line over the course
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FIG. 8. (Color online) (a) Maximum vertical velocity along the
channel centerline during the entire run as a function of Ra(y-1).
The dots correspond to 80 different runs with different parameters
except all runs have {=0.07 V. The different runs varied the elec-
tric field, channel height, conductivity ratio, and diffusivity of the
electrolyte. The inset shows the same data as a function of the
dimensional electric field. (b) Phase diagram showing stable points
as blue dots [defined as max(V)< 1073] and unstable points as red
circles. There are 110 runs included in this figure.

of the run as a function of Ra(y—1). These cases all have
{r=0.07 V, but we vary the electric field, channel height,
conductivity ratio, and the diffusivity. We see under this scal-
ing that these points collapse relatively well. In the inset of
Fig. 8(a) we show the data in dimensional form to demon-
strate the collapse of the data using the dimensionless param-
eter, Ra(y—1). We note that Baygents and Baldessari found a
critical Rayleigh number of Ra=3540 (the factor of 4 differ-
ence from their result is due to the domain defined from O to
H instead of —H to H as we have). Our result shows a critical
Rayleigh number of the same order of magnitude, despite a
completely different geometry.

If we vary the {-potential we find different critical Ray-
leigh numbers, with higher (-potentials corresponding to
more stable systems. The reason for this behavior is that as
the {-potential increases, there is a greater difference be-
tween the electro-osmotic slip velocity in the high and low
conductivity regions. The internally generated axial pressure
gradient increases linearly with the difference in the electro-
osmotic velocity of the two regions [11]. Thus, at higher
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{-potentials there is more Taylor dispersion and the instabil-
ity threshold is pushed higher. While the Rayleigh number
characterizes the body forces in the bulk, the second most
dominant parameter should clearly be related to the strength
of the electro-osmotic flow.

In Fig. 8(b) we show a phase diagram using R? Ra as a
second parameter to characterize the dominant stability be-
havior. The particular scaling is chosen such that the second
parameter has no dependence on the applied electric field.
The utility of this scaling is seen in Fig. 8(b) where we show
110 runs separated into stable and unstable regions. Of
course since the stability depends upon the other dimension-
less groups, the stability boundary is not rigorous and is
somewhat “fuzzy.” However, the data indicate that these two
parameters are capable of capturing the dominant stability
behavior. While we cannot test over all parameters, we cap-
ture a range typical of FASS application from H
=50-100 um, D=5X10"19-2x 102 m?%/s, l
=0.035-0.14 V, and y=2-20.

Using the definitions of Ra and R,

2
R2Ra= <. (16)
wD

Recalling the definition of the Rayleigh number earlier in
this paper, the above parameter is a Rayleigh number using
the {-potential rather than the applied potential. This param-
eter only depends upon the fluid properties and the
{-potential. The map in Fig. 8(b) is convenient because the
choice of electrolyte and the {-potential of the system fixes
the value of Ri Ra and thus the location on the y axis. Once
the electrolyte system is chosen, one only needs to compute
the Ra(y—1) to estimate the critical electric field.

Finally, we emphasize that the two parameters we have
selected for our phase diagram are not unique and our choice
can only be considered heuristic. Posner and Santiago [17]
review different Rayleigh number scalings as applied by dif-
ferent researchers in previous studies. We can select another
of these Rayleigh numbers to separate our data equally into
stable and unstable regimes. We proposed Fig. 8 because of
the idea that one of the parameters Ri Ra is only dependent
upon the electrolyte system chosen, not the geometry, elec-
tric field, or buffer conductivity. As an example of an alter-
nate, we show a phase diagram with the Rayleigh number
scaling proposed by Posner and Santiago [17], namely
Ra(y—1)/+, in Fig. 9. This figure works equally as well to
separate the data. One can construct a number of different
alternative scalings and phase diagrams, but at this time we
do not have any strong reason to select one choice over an-
other. Therefore, we propose Fig. 8 due to its apparent prac-
tical utility.

The striking feature of Fig. 9 is that we see reasonable
agreement with Posner and Santiago’s experimentally mea-
sured critical Rayleigh number of Ra=205, shown as the
dashed line. Stability of our system is complicated by the
fact that the conductivity field is set by an electro-osmotic
flow and therefore depends on other factors than the Ray-
leigh number. We therefore cannot define a single critical
Rayleigh number for our system. However, we have already
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FIG. 9. (Color online) Phase diagram showing stable points as
blue dots [defined as max(V)<1073] and unstable points as red
circles. The data are the same as in Fig. 8, only with different
parameters selected for the x and y axis. The experimentally mea-
sured critical Rayleigh number of 205 as determined by Posner and
Santiago is shown as the dashed line [17].

noted the qualitative similarity between our computed flow
structures and the experiments of Posner and Santiago. It
appears that using the Posner and Santiago Rayleigh number
criteria serves as a reasonable lower bound estimate for in-
stability in our system. That their criteria would serve as a
lower bound is reasonable since dispersion can tend to sta-
bilize our system.

D. Conclusions

We have shown that electrohydrodynamic instabilities can
occur in microchannels where the fluid conductivity varies in
the streamwise direction. Such configurations are common in
applications such as field amplified sample stacking which
have been developed to increase sample concentration in mi-
crofluidics.

We have shown clearly that the resulting unstable flow is
due to a complex interaction of the heterogeneous electro-
osmotic flow at the channel walls and an electrohydrody-
namic instability which occurs in the fluid bulk. While simi-
larities exist between previous work in microfluidic systems,
our current work is unique in the strong role that the hetero-
geneous electro-osmotic flow plays in setting up the condi-
tions for instability. This work extends previous simulations
of a similar geometry which did not consider whether the
basic flow was stable or not. Due to the unsteady and two-
dimensional conductivity field, an analytical determination
of system stability should not be expected. Therefore, we use
direct numerical simulations of the full nonlinear system to
analyze stability. We find that for a given geometry a critical
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electric field for stability can be found based on whether
symmetry is maintained across the channel centerline.

Following previous work on EHD instabilities in micro-
fluidic geometries, we developed a simple two parameter sta-
bility map to approximately determine stability. While such a
map cannot be exact as the system really depends upon six
dimensionless parameters, the two parameter approach is
found to work reasonably well.

As we have stated previously, in practice FASS is often
conducted with a single interface with semi-infinite plugs of
low and high conductivity [4,11]. We can speculate that a
similar instability as we observe here would likely occur in
the single interface problem if a low conductivity plug is
driven into a high conductivity region. However, if a high
conductivity plug is driven into a low conductivity region as
in the experiments of Refs. [4,11], it is not clear that insta-
bility would occur and if it did what the mechanism might
be. Going back to Fig. 2 and looking at the trailing edge of
the sample region we see that there are no instabilities gen-
erated at this location. The instability always occurs at the
leading edge where high conductivity fluid is pumped into
the center of the sample. Our current numerical scheme as-
sumes our sample traveling in a periodic ring and therefore
study of stability of the single interface problem is beyond
the current scope. Study of the stability of the single inter-
face problem should provide a rich problem for future study.

In this work we have only considered the motion of the
background electrolyte and ignored the behavior of the
sample ions. Future work in this area could incorporate the
transport of the sample ions to explore how the instability
effects the maximum possible stacking concentration.
Throughout this work we have also made the assumption that
sample ions do not effect the electrical conductivity of the
background fluid. In cases where high stacking concentra-
tions are achieved, the concentration of the sample ions may
dominate the conductivity of the background electrolyte, fur-
ther modifying (and complicating) the stability behavior.

Finally, future work should include experimental valida-
tion of the numerical predictions presented in this paper. In
the absence of such experimental data, we propose the
method presented in this paper as an approximate method for
determining hydrodynamic stability in two-interface FASS
applications. These instabilities should be considered when
studying sample transport and dispersion in electrokinetic
applications with axial conductivity gradients.
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