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We have numerically investigated Rayleigh-Bénard convection in binary mixtures assuming a thermal dif-
fusion ratio that depends on the local temperature and changes its sign within the cell. The stationary instability
has been found to precede the oscillatory one for a wide range of negative mean � values. The bifurcation
diagram for stationary rolls turns out to be qualitatively different from that for constant Soret effect. Never-
theless, it can be mapped onto this special case by using a scaling argument, taking into account the fact that
for small convection amplitudes the rolls are restricted to parts of the cell where the sign of the Soret
coefficient favors instability.
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I. INTRODUCTION

The Rayleigh-Bénard system �1,2�, consisting of a hori-
zontal fluid layer heated from below, is one of the classical
setups to study pattern formation in hydrodynamics. Espe-
cially rich bifurcation scenarios emerge when the convection
in binary fluids is considered �3–5�, where the concentration
enters the basic equations as an additional dynamic entity.
The concentration field couples into the Navier-Stokes equa-
tion via the concentration-dependent density in the buoyancy
force term. Since advection and diffusion alone would lead
to an equilibration of the concentration field, leaving an ef-
fectively one-component system, a back coupling is also nec-
essary. This back coupling is provided by the Soret effect,
the driving of concentration currents by thermal gradients.

Rayleigh-Bénard convection is typically studied within
the Oberbeck-Boussinesq �OB� approximation �4,6�, where
the relevant material constants are assumed to be indepen-
dent of the thermodynamic variables. The exception is the
density, which must necessarily be temperature dependent to
allow for a convective instability. In the case of binary mix-
tures it must also be concentration dependent as explained
above. Non-Oberbeck-Boussinesq effects in mixtures are
less well studied �7� although they lead to qualitative
changes by breaking the up-down symmetry of the system,
which is known to affect the pattern selection at onset in pure
fluids �8�.

In the nondimensionalized OB equations, the three dimen-
sionless system parameters �in addition to the control param-
eter, the Rayleigh number R� are the Prandtl number �, the
Lewis number L, and the separation ratio � to be defined
further below. Only the last, being proportional to the
strength and direction of the Soret effect, can be both posi-
tive and negative. In the case of a positive separation ratio,
the lighter component is driven into the direction of higher
temperatures, thus further enhancing the density gradient.
For negative �, the opposite is the case.

The sign of � greatly affects the bifurcation behavior.
Qualitative changes that happen at or close to �=0 are, for
example, the appearance of a bifurcation threshold for heat-
ing from above when ��0, the appearance of a Hopf bifur-
cation threshold, also when ��0, and the change of the

stationary bifurcation for R�0 from a forward type �for �
�0� to a backward type �for ��0�. As a consequence of
these changes, convection at small Rayleigh numbers is
dominated by stationary structures like roll and square pat-
terns for positive � �9–15�, whereas for ��0 oscillatory
structures like traveling and standing waves bifurcate first
�16–23�.

It is thus of particular interest to consider a system where
� changes its sign with temperature, since it should exhibit
not only quantitative differences to systems with globally
constant �. Investigation of the bifurcation properties of such
a system is the goal of this paper. These systems can be
experimentally realized. An example of a mixture in which
the Soret coefficient ST�� depends strongly on temperature
and changes its sign is a solution of poly�N-
isopropylacrylamide� in ethanol �PNiPAM-ethanol� �24�.
Polymer solutions typically possess larger separation ratios
than molecular mixtures, which has been explained by the
large particle size �25�. In the case of PNiPAM-ethanol, ST
changes by about 0.2 K−1 over a temperature interval of
35 K for the concentrations investigated in �24�. For com-
parison, in a typical molecular mixture like ethanol-water,
the change over the same temperature interval is about 5
�10−4 K−1, and the sign of ST is virtually independent of
temperature �26�. Strong dependence on temperature allows
the study of convection in cells with large differences in �
while keeping the temperature differences and thus the tem-
perature deviations of the other parameters small.

Our paper is organized as follows. In Sec. II we present
the basic equations of the system under consideration, calcu-
late their conductive solution, and reformulate them into a
dimensionless form. In the following section we briefly out-
line the Galerkin method we used and discuss some technical
details. In Sec. IV we investigate the linear stability of the
ground state in the three important cases of stationary insta-
bility for heating from below, stationary instability for heat-
ing from above, and oscillatory instability for heating from
below. In Sec. V we extend the investigation to an important
type of nonlinear solution, namely, stationary convection
rolls for heating from below. Nonlinear oscillatory convec-
tion is discussed in Sec. VI. We summarize our findings in
Sec. VII.
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II. SYSTEM AND BASIC EQUATIONS

A. Basic equations

We consider a layer of a binary fluid, confined between
two impermeable, parallel plates at distance d and perpen-
dicular to the direction of gravity g=−gez, kept at constant
temperatures. The basic equations to describe this problem
read �4�

�t� + � · ��u� � = 0, �2.1a�

��t + u� · ����u� � = − �p� + � · �J − �gez, �2.1b�

��t + u� · ���CpT� � = � · �� � T� � , �2.1c�

��t + u� · ��C� = � · �D��C� +
kT

T�
� T��� . �2.1d�

To distinguish the dimensional fields from the dimensionless
counterparts introduced below, we have underlined them. u� ,
T� , C� , and p� are respectively the velocity, temperature, con-
centration, and pressure of the fluid. The four equations are
from top to bottom the balance equations for mass, momen-
tum �the Navier-Stokes equation�, heat, and concentration.

The first equation simply describes the conservation of
mass. The relevant force densities on the right-hand side of
the Navier-Stokes equation are pressure gradients, friction
represented by the viscous tensor �J, and gravity. On the right
hand sides of �2.1c� and �2.1d� there are altogether three
diffusion terms, two diagonal ones and one off diagonal in
�2.1d�, coupling the temperature to the dynamics of the con-
centration and thus representing the Soret effect. The thermal
diffusion ratio kT is related to the Soret coefficient ST via the
equation kT=TC� �1−C� �ST.

Within the OB approximation, all the material constants
appearing here are assumed to be indeed constant. The same
holds for the density, except in the gravity term, because
buoyancy effects are necessary for the back coupling of tem-
perature and concentration into the dynamics. The density
term here is assumed to depend linearly on T� and C� via the
thermal and solutal expansion coefficients 	 and 
. We ex-
pand around mean values T0� and C0� :

� = �0�1 − 	�T� − T0� − 
�C� − C0�� . �2.2�

C� is chosen to be the concentration of the lighter fluid com-
ponent such that 
 is positive. Deviating from the OB ap-
proximation, we also assume a dependence of the term em-
bodying the Soret effect on the local temperature, writing

kT

T�
=

kT,0

T0
�1 + ��T� − T0�� . �2.3�

It is

� =
1

kT,0
� �kT

�T�
�

T� =T0

−
1

T0
. �2.4�

The term 1 /T0� stems from the linear expansion of 1 /T� . It has
been included for reasons of completeness but is negligible.

Applying this modified OB approximation to the basic
equations, one obtains

� · u� = 0, �2.5a�

��t + u� · ��u� = −
1

�0
� p� + ��2u� + �	T� + 
C� �gez,

�2.5b�

��t + u� · ��T� = 
�2T� , �2.5c�

��t + u� · ��C� = D�2C� + D
kT,0

T0
�2T� + D�

kT,0

T0
��T� − T0��2T�

+ �T� · �T� � . �2.5d�

The mass balance equation reduces to an incompressibility
condition �2.5a�, allowing us to write the friction term simply
as ��2u� for a Newtonian fluid, with the kinematic viscosity
�. We have redefined the pressure, including some constant
terms. 
=� /Cp is the thermal diffusivity.

B. The conductive state

We will now consider the conductive state in the
Rayleigh-Bénard cell. When the fluid is at rest �u� =0�, a lin-
ear temperature profile will be established as stationary state
in accordance with �2.5c�. Placing the upper and lower plates
at z= �d /2, this profile is given by

T� cond�z� = T0 −
�T�

d
z , �2.6�

with the temperatures at the lower and upper plates being
T� lower=T0� +�T� /2 and T� upper=T0� −�T� /2, respectively.

To determine C� cond we rewrite �2.5d� in the form ��t
+u� ·��C� =D� · j�c with the concentration current

j�c = ��C� +
kT,0

T0
�1 + ��T� − T0�� � T�� , �2.7�

which has to vanish in the conductive state for impermeable
plates. Using �2.6� and integrating yields

C� cond�z� = C0
* +

kT,0

T0

�T�

d
z −

1

2

kT,0

T0
���T�

d
z�2

. �2.8�

The concentration profile is parabolic, not linear as for a
temperature-independent Soret effect. The integration con-
stant C

0
*

� is equal to the mean concentration C0� only for �
=0.

C� cond�z� has an extremum inside the cell if

�d

�T�
� 	
 −

1

2
,
1

2
	
 , �2.9�

in which case 1+��T� −T0� � and thus according to �2.3� kT also
changes sign inside the cell. When one starts with a homo-
geneous concentration field, one component will then move
away from both the upper and the lower plates and accumu-
late somewhere in between.
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The pressure in the conductive state can be derived from
�2.5b� but the exact form is not relevant. We note that it is
given by a third-order polynomial of z instead of a second-
order polynomial as for a temperature-independent Soret ef-
fect.

C. Dimensionless equations

Switching from the fields to their deviations from the
ground state,

P� = p� − p� cond, c� = C� − C� cond, �� = T� − T� cond, �2.10�

we arrive at a new set of basic equations:

� · u� = 0, �2.11a�

��t + u� · ��u� = − �
P�

�0
+ ��2u� + g�	�� + 
c��ez,

�2.11b�

��t + u� · ���� = w�
�T�

d
+ 
�2�� , �2.11c�

��t + u� · ��c� = − w�
kT,0

T0

�T�

d
+ w�

kT,0

T0
���T�

d
�2

z + D�2c�

+ D
kT,0

T0
�2�� +

DkT,0�

T0
	��� −

�T�

d
z��2��

+ ��� · ��� − 2
�T�

d
�z��
 . �2.11d�

w� is the z component of u� .
To put them into a dimensionless form we use d as length

scale, d2 /
 as time scale, and thus 
 /d as velocity scale.
Pressure, temperature, and concentration are nondimension-
alized with �0
2 /d2, �
 /	gd3, and �
 /
gd3, respectively.
The dimensionless quantities are written without an under-
line:

� · u = 0, �2.12a�

��t + u · ��u = − �P + ���� + c�ez + �2u� , �2.12b�

��t + u · ��� = Rw + �2� , �2.12c�

��t + u · ��c = R��̄ + Az�w + L	�2c − ��̄ + Az −
A

R
���2�


+ LA� 1

R
� � · �� − 2�z�� . �2.12d�

Five parameters appear in these equations, four of which are
well known. The Rayleigh number R= �	gd3 /�
��T� is the
dimensionless temperature difference between upper and

lower plates. The separation ratio �̄=−kT,0
 /T0	 measures
the mean Soret effect in the conductive state. The Prandtl
number �=� /
 and the Lewis number L=D /
 are the di-

mensionless time scales of momentum and concentration dif-
fusion, respectively, i.e., relative to the chosen basic time
scale of thermal diffusion. The fifth parameter A is new and
describes the temperature dependence of the Soret effect.
Defining ��T�=−kT�T� �
 /T� 	, one sees that

A = ��T�
kT,0


T0	
= ��T� upper� − ��T� lower� . �2.13�

By setting A=0 one does of course regain the basic equa-
tions for a temperature-independent Soret effect as they can
be found, e.g., in �4�. Some of the modifications in �2.12d�
can be easily understood. In the second term on the right-

hand side, �̄ is for A�0 replaced by the local, temperature-
dependent separation ratio

��T� = ��z,�� = �̄ + Az −
A

R
� . �2.14�

Note that �̄ is in general not the average of ��T� over the
convection cell, since the average of � need not be zero,
generally. The first term describes the advective transport of
the conductive state contribution to C for the space-
dependent separation ratio

− u · �Ccond�z� = R��z,� = 0�w = R��̄ + Az�w . �2.15�

Only the physical meaning of the third term on the right-
hand side of �2.12d� is less intuitive; it stems from the appli-
cation of the gradient operator to kT /T in �2.1d�.

III. BOUNDARY CONDITIONS
AND NUMERICAL DETAILS

We have used the Galerkin method to simulate convection
structures in this modified Rayleigh-Bénard system. To in-
vestigate �2� /k�-periodic, two-dimensional patterns all fields
X are expanded into a sum

X�x,z;t� = �
mn

Xmn�t�eimkxfn
X�z� + c.c. �3.1�

The fn
X�z� form a complete set of orthogonal functions that

satisfy the boundary conditions at the plates. A truncated
ansatz is inserted into the basic equations, and the basic
equations are then projected onto the functions they were
expanded into. For stationary patterns an algebraic system of
equations remains, with a finite subset of the amplitudes Xmn
as unknowns. It is solved using a multidimensional Newton-
Raphson method.

Application of the Galerkin ansatz to the linearized equa-
tions leads to a system of first-order differential equations in
time, reducing the problem of linear stability to an eigen-
value problem whose results we will discuss in Sec. IV.

We will consider the realistic no-slip impermeable bound-
ary conditions, i.e., the complete boundary conditions read

u = � = jc,z = 0 at z = � 1/2, �3.2�

where jc,z is the z component of the concentration current
�2.7�. In dimensionless form and taken at the plates where
�=0, it can be written as

THERMAL CONVECTION IN MIXTURES WITH AN… PHYSICAL REVIEW E 78, 046315 �2008�

046315-3



jc,z = �zc − ��̄ + Az��z� = �z�c − ��̄ + Az��� for z = � 1/2.

�3.3�

To apply the Galerkin method it is useful to replace the con-
centration field c by a new field � defined as

� = c − ��̄ + Az�� , �3.4�

such that we can write the impermeability condition as �z�
=0.

Rewriting the basic equations leads to

� · u = 0, �3.5a�

��t + u · ��u = − �P + �„��1 + ��̄ + Az��� + �
ez + �2u… ,

�3.5b�

��t + u · ��� = Rw + �2� , �3.5c�

��t + u · ��� = − A�w − ��̄ + Az��2� + L�2�

+ L
A

R
���2� + �� · ��� . �3.5d�

Now we define two fields � and � via

u = � � � � � 0

0

�
� + � � � 0

0

�
� , �3.6�

which is the most general ansatz for u that satisfies �3.5a�
identically �27�. Taking the third component of the curl and
curl curl of �3.5b�, we can eliminate the pressure field and
arrive at

�t�2� = ��2�2� + �� � �u · ��u�z, �3.7a�

�t�
2�2� = ���4�2� − �2���1 + ��̄ + Az��� + ��
�

− �� � � � �u · ��u�z, �3.7b�

��t + u · ��� = − R�2� + �2� , �3.7c�

��t + u · ��� = A��2� − ��̄ + Az��2� + L�2�

+ L
A

R
� · �� � �� , �3.7d�

with �2= ��xx+�yy�.
To investigate stationary roll solutions as we will do in

Sec. V, the amplitudes Xmn can be chosen to be real, i.e., the
fields �, �, and � can be expanded laterally into cos�mkx�.
The amplitudes are furthermore time independent. � is not
needed for two-dimensional structures. The boundary condi-
tions for the new fields are, including � for completeness,

� = �z� = � = � = �z� = 0 at z = � 1/2. �3.8�

All fields except � can thus be expanded vertically into
trigonometric functions. We expanded � into Chandrasekhar
functions �28�.

Travelling waves �TWs� will be studied in Sec. VI. In this
case the amplitudes Xmn are generally complex and have a
time dependence Xmn�e�im�t where the plus �minus� sign
holds for left- �right-�traveling waves. TWs exhibit an
x-independent mean flow uMF�z�ex in the velocity field which
is not captured by the ansatz �3.6� if one wants to stick to an
expansion of the form �3.1�. For TWs, we separated the
mean flow component from the remaining velocity field and
used �3.6� only for the latter. An additional equation for the
mean flow is obtained by laterally averaging the x compo-
nent of the Navier-Stokes equation. It is

�tuMF = − ��u · ��ux�x + ��2uMF, �3.9�

assuming there is no nonvanishing average lateral pressure
gradient. �¯�x denotes the lateral averaging procedure. uMF
was expanded as in �3.1� with m�0. We chose again Fourier
modes for the expansion in the z direction.

For A=0 the basic equations satisfy an up-down mirror
symmetry. When X�x ,z ; t� is a solution, so is �X�x ,−z ; t�,
where the plus sign holds for � and uMF. It turns out that the
structures that first bifurcate out of the ground state are even
mapped onto themselves by this operation, when additionally
translated by half a period �mirror-glide symmetry� �15�. As
a numerical consequence, half of the amplitudes Xmn that
belong to modes that would break this symmetry are not
needed when calculating the fixed points.

For A�0 the mirror symmetry no longer hold, and all
amplitudes are needed to calculate the fixed points. The op-
eration z→−z, X→ �X, and A→−A, however, is still a
symmetry operation, and the investigation of the model can
thus be restricted to positive A. So the structures that first
bifurcate out of the ground state break the mirror-glide sym-
metry, but performing this operation yields corresponding
solutions for −A. In particular, the stability threshold of the
ground state is independent of the sign of A.

In the truncation procedure we used, all amplitudes in
�3.1� with m+n�NX were set to zero, where for the cutoffs
NX for the different fields X the relationships N�=N�=2N�

=2NuMF
hold. We used models up to N�=40 although in most

cases models with N�=20 already gave quantitatively good
results. In the plots presented in this paper the differences
between these two models were as small as or smaller than
the line thickness.

IV. LINEAR STABILITY

When w�−�2� is reintroduced, the linearized equations
read

�−1�t�
2w = �4w + �2��1 + ��̄ + Az��� + �
 , �4.1a�

�t� = Rw + �2� , �4.1b�

�t� = − ��̄ + Az��2� + L�2� . �4.1c�

The equation of motion for � is not needed since it de-
couples and shows only decay to zero. Note that the Prandtl
number enters only on the left-hand side of �4.1a�. The value
of � is thus at the stability threshold important only for os-
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cillatory perturbations. The new parameter A changes the

equations only insofar as �̄ is replaced by �̄+Az, which is
the z-dependent separation ratio ��Tcond�z�� of the ground
state.

When the linear stability of the ground state for A=0 is
discussed, three different cases have to be considered,
namely, stationary and oscillatory instabilities for heating
from below, and stationary instabilities for heating from
above. We will discuss these three cases and the changes that
happen for A�0 separately. We take A=1 as an example. We
also investigated other values of A but did not find any quali-
tative differences. Quantitatively, the deviations from the
case A=0 seem to grow monotonically with A. For the case
A=0, see �29�.

A. Stationary instabilities for R�0

The first instability for pure fluids appearing at a critical
Rayleigh number of Rc

0=1707.762 is a stationary one. The
critical perturbations have a wave number of kc

0=3.116 �30�.
The location of the critical point �rc ,kc� as a function of �̄

is compared in Fig. 1 for A=0 �thin lines� and 1 �thick lines�
and four values of L. For liquid mixtures typically L�1,
since the concentration diffusion is slow compared to the
thermal diffusion. This is especially true for colloids, due to

their large particle size. The range −0.5��̄�0.5 is the most
interesting one, since for A=1� then changes its sign within
the cell. rc is the reduced Rayleigh number Rc /Rc

0.
Let us first discuss the constant Soret effect. A positive

Soret effect increases the density gradient and thus destabi-
lizes the layer. The convective threshold lies always below
Rc

0, especially when the concentration diffusion is slow such
that concentration perturbations have time to grow before

they are diffused away. For negative �̄, on the other hand, the
critical Rayleigh number is always larger than Rc

0 and even

diverges quickly when ��̄� grows. For small L the divergence

happens virtually directly at �̄=0 on the scales we are dis-
cussing here.

This is different when a temperature-dependent Soret ef-
fect is considered. For A=1 bifurcation thresholds exist at

r�1 in a wide range of negative �̄. For positive �̄, on the
other hand, the threshold becomes quickly identical to that
for A=0.

Changes for the critical wave number kc are also apparent.
For A=0 and L�1, kc drops quickly from the value kc

0 of the
pure fluid to zero. This also happens for A=1, but the value

kc=0 is reached somewhat later. For negative �̄, where no
bifurcation threshold exists any longer for A=0, kc assumes
for A=1 values larger than kc

0.
The qualitative changes that occur when the temperature-

dependent Soret effect is introduced can be understood by
taking a look at the streamlines of the critical perturbation.

For the temperature-independent Soret effect, A=0, the
velocity field can be well represented by the leading mode
�11 alone in a wide range of parameters, at the critical point
and also for finite convection at not too high amplitudes. An
example of a structure where the leading mode dominates
can be found in the streamline plot 12 in Fig. 9 below.

Looking at the example in Fig. 2 for a roll structure at the
critical point for A=1, however, one observes a crucial dif-
ference: The convection does not take place in the whole
cell. A bifurcation threshold still exists for ��T� that is nega-

tive on average ��̄=−0.15� because convection is mainly re-
stricted to the upper part of the cell where ��T� is still posi-
tive and where thus the buoyancy is sufficiently large.

The width of the convection rolls is smaller than the
height of the cell, thus kc���kc

0. But compared to the ac-

−0.5 −0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5
ψ

0

1

2

3

4

k c

10
−4

10
−3

10
−2

10
−1

10
0

r c

L=0.1
L=0.01
L=0.001
L=0.0001

FIG. 1. �Color online� Values �rc ,kc� for heating from below and

stationary convection as a function of �̄ for four different L and
A=1 �thick black lines� compared to A=0 �thin blue lines�. The two
dots denote the location of the structure in Fig. 2 in parameter
space. The curves of kc for L=0.001 and 0.0001 would lie almost
on top of each other for both values of A. kc is thus not plotted for
L=0.0001.

x

z

ψ<0
ψ>0

FIG. 2. Streamlines of the critical perturbation at L=0.001, �̄
=−0.15, and A=1, the point denoted in Fig. 1. The vertical line is
where ��T� changes sign in the ground state.
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tual height of the rolls their width is larger, as it is for posi-
tive � and A=0, where kc�kc

0.

When �̄ becomes positive for A=1 the rolls soon extend
over the whole height of the convection cell. The average of
��T� over the convection rolls becomes equal to the average

�̄ over the whole cell, and the values for rc and kc approach
the values for a constant Soret effect.

B. Stationary instabilities for R�0

When heated from above, a convective instability in the

Bénard cell is still possible when �̄ is negative, such that the
heavier component reaches the highest concentration at the
top of the cell. In Fig. 3 the critical point �rc ,kc� is now
plotted for this situation, for the same values of �, L, and A
as in the last section.

The upper plot for rc looks qualitatively like a mirror
version of the corresponding plot in Fig. 1. For A=0, rc

diverges at some �̄�0, but for L�1 this point lies again

virtually at �̄=0 on the � scale displayed in Fig. 3. For A

=1, however, bifurcation thresholds also exist for positive �̄
where an instability does not occur when � is temperature
independent.

The behavior of rc is easy to understand, having the re-
sults for R�0 in mind. Looking again at an example for the

streamlines in the case A=1 for parameters where no bifur-
cation threshold exists for A=0 �Fig. 4�, one again observes
that convection takes place mainly in the region where ��T�
has the right sign, i.e., ��0, which is again the upper part of
the cell, where the fluid is now warmer.

Again, we found the convection rolls to penetrate the

whole cell when �̄ becomes small enough, and here the bi-
furcation threshold no longer differs between the cases A

=0 and 1; in other words, it depends only on the average �̄.
The behavior of kc, on the other hand, cannot be explained

so easily. For constant � and heating from below, one has

kc�0 when �̄ is not too large, and the point where kc be-
comes zero merely shifts for A�0. But for heating from
above we observe a qualitative change. While kc always van-
ishes when A=0, kc�0 is possible for A�0. The very large
values of kc are again reduced when compared to the actual
height of the convection rolls, instead of the whole cell.

C. Oscillatory instabilities

While for A=0 and negative �̄ the stationary bifurcation
threshold for R�0 quickly diverges, the ground state instead
becomes unstable at a Hopf bifurcation where the solutions
of traveling and standing waves bifurcate �22�. This Hopf

bifurcation exists only for negative �̄ and vanishes at very

small ��̄ �=O�10−4� when L is not too large �31�.
A comparison of the locations of the critical point for A

=0 and 1 can be found in Fig. 5. For oscillatory instabilities
the value of � is of importance; we chose �=10, a typical
value for liquids. For A=0, the �11 mode alone sufficiently
describes the critical perturbation in the velocity field again.
That is, the critical streamlines will again look similar to
those displayed in plot 12 in Fig. 9 below. Streamlines for
example parameters at A=1 are shown in Fig. 6 for the case
of a left-traveling wave. The additional tilt in the convection
roles stems from the breaking of the up-down symmetry of
the system; similar structures can be found in the paper of
Knobloch and Moore �29� �Fig. 9 in that paper�. In that case
the symmetry breaking is due to the choice of different ther-
mal boundary conditions at the top and bottom plates.
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FIG. 3. �Color online� The values �rc ,kc� for heating from above

as a function of �̄ for four different L and A=1 �thick black lines�
compared to A=0 �thin blue lines�. The two dots denote the location
of the structure in Fig. 4 in parameter space. kc for L=0.0001 is
again not plotted for the same reasons as in Fig. 1. For A=0 it is
kc�0 and therefore only the curves for A=1 are shown in the lower
plot.
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=0.25, and A=1, the point denoted in Fig. 3.
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The location of the bifurcation point depends only weakly
on L and thus only two cases L=0.01 and 0.0001 are plotted
in Fig. 5. The differences between the cases A=0 and 1 are

also small except near �̄=0, where for temperature-
dependent � the value of kc drops and rc seems to diverge.
So the � region of existence of oscillatory structures is not
extended beyond �=0 when the Soret effect becomes tem-
perature dependent, as is the case for stationary structures.
The streamline plot Fig. 6 also shows no signs of retraction
of the structure into the lower region where ��T��0. This
latter feature might be due to the fact that, in contrast to the
two cases of stationary instability discussed before, convec-
tion is not hampered per se in the region of the cell with the
“wrong” sign of �; the opposite is the case.

Comparing Figs. 1 and 5 it becomes apparent that for A
=1 the threshold of stationary structures lies typically well
below the oscillatory threshold. The TWs will be the primary

convection structures only when A is small and �̄ large
enough such that the temperature variation of � is small in
any case.

V. STATIONARY NONLINEAR CONVECTION

Using the Galerkin method we calculated and compared
the fixed points for stationary, roll-like convection for heat-

ing from below, for different �̄ and again for the constant
Soret effect A=0 as well as for A=1. The other parameters
�=10, L=0.01, and k=5 are kept fixed in this section. The
last value was chosen to reflect the fact that kc�A=1� as-
sumes a somewhat higher values than kc

0=3.116 in the inter-

esting region �̄�0.

A. Bifurcation diagrams

In Fig. 7 bifurcation diagrams are shown for both positive

and negative mean �̄. For large convection amplitudes, the

value of �̄ has a very weak influence on the convection am-
plitude as can be seen in the upper plot. Here, the advective
mixing is efficient enough to equilibrate the concentration

such that a fluid with a temperature-independent �̄�0 be-
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FIG. 5. �Color online� The values �rc ,kc� for heating from below

and oscillatory convection as a function of �̄ for �=10, two differ-
ent L, and A=1 �thick black lines� compared to A=0 �thin blue
lines�. The two dots denote the location of the structure in Fig. 6 in
parameter space.
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FIG. 6. Streamlines at L=0.001, �̄=−0.025, �=10, and A=1,
the point denoted in Fig. 5, in the laboratory frame.

0 2 4
r

0

0.005

0.01

0.015

co
nv

ec
tio

n
am

pl
itu

de
(a

rb
.u

ni
ts

)

0

0.05

0.1

0.15

co
nv

ec
tio

n
am

pl
itu

de
(a

rb
.u

nt
is

) ψ=−0.1
ψ=0.0
ψ=0.1
ψ=0.2

advectively

well mixed

concentration variations

1−5 6

7

8

9

9
10

11

12

FIG. 7. �Color online� Bifurcation diagram for convection rolls
at �=10, k=5, L=0.01, A=1 �thick, black� and A=0 �thin, blue�
and several values of �̄. The lower plot is a magnified version of the
small-amplitude region in upper plot. The numbered dots refer to
Fig. 9.

THERMAL CONVECTION IN MIXTURES WITH AN… PHYSICAL REVIEW E 78, 046315 �2008�

046315-7



haves like a pure fluid ��̄=0�. It is thus not surprising that a
temperature dependence of � shows no effect either.

This changes, however, when the convection amplitude
becomes smaller and the advective mixing thus less effec-
tive. This region is shown again in the magnified lower plot
in Fig. 7.

Let us first discuss the case A=0. Before reaching the

stability threshold r�k=5��1.5 of a pure fluid �A=0, �̄=0�,
the bifurcation curves for �̄�0 bend toward smaller r until

they reach their bifurcation point at r�1. For �̄=−0.1 on the
other hand the curve turns around at a saddle node, and never
reaches the abscissa because rc has already diverged for this

value of �̄.
For A=1 the situation looks much different. Only the

curve for �̄=0.2 still qualitatively agrees with its counterpart
for A=0. All other curves now posses two saddle nodes,
allowing up to three different solutions for a given r. The
Rayleigh number of the first saddle node becomes rapidly

larger when �̄ gets smaller. We also calculated a bifurcation
diagram for �=−0.2, but here the lower and middle branches
already extend to such large r that our mode truncation be-
came unreliable to determine if the saddle node still exists or
diverges to leave the two branches disconnected.

Before we propose an explanation for this behavior in the
next section we would like to make a remark concerning A.
According to its definition in �2.13�, A will grow linearly
with the applied temperature difference. To compare to re-

sults of an actual experiment fixing a parameter Ã=A /r in-
stead of A would be necessary. However, since the interest-

ing range of heating rates between the onset rc�1 for �̄

�0 and r=O�1� is large, fixing Ã is not possible without A
becoming either unrealistically large for r=1 or insignifi-
cantly small at rc. That is why we chose to keep A fixed

instead. Nevertheless, for fixed Ã the bifurcation structure
remains qualitatively the same and up to three different

branches will still be observable. If, e.g., Ã is fixed at 0.5 for

�̄=0, three different convective solutions will exist at r=2

since it is Ãr=A=1 here and the existence of three solutions
for this parameter combination is already known from Fig. 7.

B. Rescaling and the virtual cell

We have shown in Sec. IV C that at the onset of convec-

tion the stationary structures still exist for R�0 and �̄�0
when A=1 because they retract into the upper part of the
convection cell where ��0 is still true on average. On the
other hand, inspection of the case of strong convection
shows that here the convection rolls spread out over the
whole cell as the concentration field becomes advectively
homogenized. These two cases have to be compared with
care.

In a simple model we will now assume that the convec-
tion cell is indeed less high in the case of small amplitude
convection, ignoring the lower part where the fluid is still
approximately at rest. Let d� be the height of the virtual cell
and �=d� /d.

The parameters and fields thus have to be rescaled. The
Rayleigh number R is proportional to d3�T or d4 if we take
into account only the temperature difference �T across the
virtual cell in the ground state. We therefore define a rescaled
Rayleigh number R�=�4R. Likewise, k�=k�. � and L do not

depend on the cell height. Finally, we define �̄� as the mean

of ��Tcond� but taken over the virtual cell only, such that �̄�

can be positive when �̄ is negative.
Assuming that � is known, we can calculate the fixed

point for a constant Soret effect using the five parameters R�,

k�, �̄�, �, and L. Let u� be the calculated velocity field for

constant �̄�. On the other hand, a velocity field can also be
gained directly via rescaling: With 
 /d being the velocity
scale it is u*�=u�. Now, by comparing u*� and u�, a self-
consistent value for � can be found. To be exact, we chose �,
such that w

11
*�=w11� , where w11 is the amplitude of the leading

mode

w11 cos�kx�C1�z� �5.1�

of the w field. C1�z� is the first Chandrasekhar function. We
also tried to compare the Nusselt numbers instead, with
qualitatively the same results.

The results for the reduced virtual cell height � for �̄=0
and A=1 are plotted in Fig. 8 versus the convection ampli-
tude. For large amplitudes where the results for A=0 and 1
hardly differ, only a slight rescaling is needed; therefore �
�1 here. � then shrinks as the flow becomes smaller, dis-
playing retraction of the convection rolls from the lower part
of the cell where ��T��0. At even smaller amplitudes, how-
ever, � becomes larger again, which seems counterintuitive
at first.

But, comparing the values of � �that we found from the
bifurcation diagram� with the actual streamlines as we do in
Fig. 9, we see that the height of the virtual cell is actually
predicted well by our scaling analysis. In particular, the fact
that the virtual cell grows again for the smallest convection
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amplitudes can actually be observed. Compare, e.g., plots 3
and 7 right next to each other. We conclude that the retrac-
tion of the rolls alone already explains the significant
changes in the bifurcation curves for A=1 compared to
A=0.

Note that the initial shrinking of the virtual cell stops
between the points 6 and 7 in Fig. 8, and that also the Ray-
leigh number lies between this points where the pure fluid
with ��T��0 becomes unstable against perturbations with
k=5. We therefore explain the initial shrinking like this. Be-
tween points 1 and 6 the fluid layer is stable as long as only
thermally caused density gradients are considered. From
point 1 to point 6 the fluid layer becomes more and more
stabilized in the lower region where ��0, because the sta-
bilizing concentration gradient increases with increasing

temperature difference. The convection rolls are therefore
pushed out of the lower half of the cell. Only when point 7 is
reached has the layer also become thermally unstable, and
the stabilizing effect of the negative � in the lower region
becomes less and less effective, especially since the convec-
tion amplitudes begin to grow quickly now, leading to a bet-
ter advective mixing.

As a technical remark, we would like to point out that for
strongly retracted rolls and smaller k than k=5 the Newton
routine we used to calculate the fixed points exhibited in-
creasing convergence problems for strongly retracted rolls. A
closer inspection showed that the roll fixed point competes
with another structure here, in which the most important
mode in the velocity field has the wave number 2k. This is a
feature familiar to us from the ordinary system with constant
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FIG. 9. Convection stream-
lines at the points denoted in Figs.
7 and 8. The horizontal line marks
the lower end of the virtual cell.
The last row shows selected con-
centration fields.
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�, where similar convergence problems sometimes arise for
k�1.5 or smaller. This may be interpreted as a hint that the
system generally prefers structures with large k for strong
retraction, as the larger values for kc already suggest.

A last feature we want to point out is that the streamlines
in the middle of the cell are pushed together, best visible in
the streamline plot 7 in Fig. 9. The velocity here is thus
larger than at the left and right boundaries of the plot. The
fluid is streaming down in the middle of the plot, as is ap-
parent in the concentration plots in the bottom row of Fig. 9.
The fluid is streaming down faster than streaming up because
for streaming down concentration and temperature gradient
work together. A fluid packet traveling down will both be
colder than the environment and contain more of the heavier
component. When traveling up it will be warmer, but its
composition will not be much different since it starts its way
up in an environment with ��0 in the middle of the cell.

VI. OSCILLATORY NONLINEAR CONVECTION

We also calculated the TW fixed points for the same pa-
rameters �=10, L=0.01, and k=5 as in Sec. V which we will
again compare for a temperature-independent Soret effect,
A=0, and a temperature-dependent � with A=1.

Figure 10 shows the bifurcation diagrams of stationary
rolls and traveling waves for these two cases and for a mean

separation ratio of �̄=−0.1. For A=1 the lower forward roll
branch at very small amplitudes is not shown. The mean
qualitative difference is that for A=1 the oscillatory branch
crosses the roll branch near the second saddle and finally
meets it coming from above. A temperature-dependent Soret
effect delays the oscillatory instability somewhat, but since
we did not find any retraction of the traveling waves into the
region of negative � we made no attempt to express this shift
of the TW branch quantitatively in terms of a virtual cell
height �.

The locations of the TW branches do not contradict the
virtual cell model though. Assuming that � is small and thus
leaving k and �̄ unrescaled, we can calculate � at the onset of
convection from the two critical Rayleigh numbers of the
TW branches in Fig. 10 alone. Thus rosc�A=1��1.77 and
rosc� �A=1��rosc�A=0��1.59, yielding ��0.97, which a
posteriori justifies ignoring the rescaling of k and �̄. How-
ever, this � is too close to 1 to allow a meaningful compari-
son with the actual streamline plots. � becomes even closer
to 1 at higher amplitudes, where the separation of the two
branches is smaller.

The dots on the TW branches denote structures with fre-
quencies �=0,1 , . . . ,11. Despite the different positions of
the branches, the frequencies for A=0 and 1 at the same
amplitudes are very similar. In particular, the branches end at
approximately the same amplitude at the respective roll
branches, and the Hopf frequencies differ by only about a
few percent.

Figure 11 shows bifurcation diagrams for A=1 and three
different �̄. Additionally to the leading amplitudes of the �
field, the frequencies are also plotted. Comparing to the case
of temperature-independent �, we found the TW branches
for A=0 and 1 to become more and more similar to each

other with growing ��̄�. In particular, the additional crossing

of the roll branch does not happen any longer for larger ��̄�.
For �̄=−0.2 and −0.3 we again found that the TW frequen-
cies at a given amplitude depend only weakly on A.

The main qualitative feature of the convection for A�0 is
the tilt of the convection rolls already seen in Fig. 6. We

1.4 1.5 1.6 1.7 1.8
r

0

0.02

0.04

0.06

0.08

Φ
11

rolls
TWs

FIG. 10. �Color online� Bifurcation diagrams for stationary rolls
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found qualitatively the same pattern everywhere along the
investigated TW branches with different tilt angles. The tilt is

less pronounced for larger ��̄�, and the angle decreases mono-
tonically with growing amplitude and shrinking frequency
along the TW branch.

It is more instructive to discuss this feature in the frame
comoving with the pattern. As long as the phase velocity is
large compared to the convection velocity, the streamlines
will have an approximately harmonic form, described by the
expression

z = z0 + A�z0�cos�kx + �� . �6.1�

The phase � depends linearly on z in the presence of a tilt.
For the left-traveling wave in Fig. 6, �� /�z is negative. Near
the center of the cell, where the convection velocities are
largest, the streamlines on which test particles move from
left to right are pushed together for upflow and pulled apart
for downflow. This is shown schematically in Fig. 12. In
other words, in the presence of this tilt, upward movement is
faster than downward movement. This is to be expected for
positive A where the lighter fluid is concentrated near the

center of the cell as long as ��̄� is small. For larger ��̄� the
concentration maximum wanders toward the upper plate,
away from the region of strongest convection in the middle
of the cell. The concentration profile becomes more linear
here, and the preference for upward movement less pro-
nounced. Advective mixing also destroys this effect, which
explains the decrease of the tilt angle with growing ampli-
tude.

Actual streamline plots along the TW branch for �̄
=−0.1 in the comoving frame are shown in Fig. 13, together
with corresponding concentration plots. Note that the stream-
lines agree qualitatively well with isolines of the concentra-
tion, a feature that is already known from the case of
temperature-independent � �32�. The effect of the tilt on the
streamlines as shown schematically in Fig. 12 is best visible
for �=3 �left, second plot from the top�.

VII. CONCLUSION

In this paper we have theoretically investigated Rayleigh-
Bénard convection in binary fluids with a Soret effect that
varies with the local temperature in the fluid. Study of this
temperature variation of the Soret effect is of interest be-
cause, contrary to the other material parameters, it can un-
dergo a change of sign, and bifurcation diagrams for positive
and negative � are qualitatively significantly different. Poly-

mer solutions exist in which the separation ratio varies sig-
nificantly within a small temperature interval and also under-
goes a sign change.

A T dependence of the Soret effect leads to a nonconstant
density gradient in the ground state, and therefore to an un-
equally strong destabilization of the upper and lower parts of
the fluid layer. This leads to a lower convective threshold in
both cases of heating from above and below. At first, con-
vection structures appear only in the regions of maximal de-
stabilization. In contrast to the case of a constant separation
ratio, a finite stationary convection threshold exists for heat-
ing from below �above� and significantly negative �positive�
mean �. The critical structures then appear in the region of
the cell where ��T� is still positive �negative� on average.
The critical wave number assumes high values in these cases,
making the convection structures first appearing also nar-
rower, thus retaining the approximate square shape of the
convection rolls.

For �̄�0 the stationary instability generally precedes the
Hopf bifurcation of the traveling wave branch, which is for
this reason less important than for constant �.

FIG. 12. Schematic picture of the streamlines in the comoving
frame in the presence of a tilt in the convection rolls. The stream-
lines go from left to right.

FIG. 13. Streamlines in the comoving frame �left� and the cor-
responding concentration field �right� for TWs at �=10, L=0.01,

�̄=−0.1, k=5, and A=1 at frequencies �=11,9 ,7 ,5 ,3 ,1 �from top
to bottom�.
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The bifurcation diagrams for stationary structures look
similar to those for constant � only if the sign of � changes
near the plates or not at all. When a sign change happens
near the center of the fluid layer, the diagram is qualitatively
different. Two saddle points appear, dividing the bifurcation
diagram into two forward branches at small and large ampli-
tudes and one backward branch in between.

These qualitative differences between the cases of con-
stant and nonconstant � can be captured, however, by rescal-
ing them according to a simple model. This model assumes a
virtual cell of lesser height in which the convection takes
place for a constant �� that is the average over this virtual
cell only. The height of the virtual cell can be calculated
self-consistently and agrees well with the height of the con-

vection rolls actually observed in full numerical calculations.
The TW branches are less affected by a temperature-

dependent Soret effect. An oscillatory threshold still exists at

negative mean �̄ only. The TW branches are shifted toward
higher Rayleigh numbers. A retraction of the patterns into the
region of negative � was not found, which is consistent with
the fact that the estimated heights of the virtual cells are
close to the actual cell height.
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