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Several experimental and numerical studies have shown that turbulent motions in circular pipe flow near
transitional Reynolds numbers may not persist forever, but may decay. We study the properties of these
decaying states within direct numerical simulations for Reynolds numbers up to 2200 and in pipes with lengths
equal to 5, 9, and 15 times the diameter. We show that the choice of the ensemble of initial conditions affects
the short time parts of lifetime distributions, but does not change the characteristic decay rate for long times.
Comparing lifetimes for pipes of different length we notice a linear increase in the characteristic lifetime with
length, which reproduces the experimental results when extrapolated to 30 diameters, the length of an equi-
librium turbulent puff at these Reynolds numbers.
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I. INTRODUCTION

In several shear flows such as plane Poiseuille, plane Cou-
ette �1,2�, and also pipe flow �3–7� turbulent dynamics is
observed for flow speeds where the laminar profile is still
stable against infinitesimal perturbations. In such a situation
a finite amplitude perturbation is required to drive the system
from laminar to turbulent flow �3,8�, and one might expect
that also for the converse process, returning from the turbu-
lent dynamics to the laminar one, a sufficiently large pertur-
bation on top of the turbulent dynamics should be required.
Several observations in direct numerical simulations and ex-
periments show, however, that turbulent motion returns to
the laminar flow suddenly and without any noticeable pre-
cursor or perturbation �9–12�. From the point of view of
nonlinear dynamics such a behavior suggests that the turbu-
lent state does not correspond to a closed off turbulent attrac-
tor but rather to an open turbulent chaotic saddle �9,11,13�.
One can then assign to each initial flow state a lifetime, i.e.,
the time it takes for this state to return to the laminar profile.
The lifetime is a valuable observable that has also been used
to extract information about states on the border between
laminar flow and turbulence �14,15�. We will here use it to
extract information about the turbulent dynamics itself,
thereby extending the work reported in Ref. �11�.

Experiment and simulations show that neighboring trajec-
tories can have vastly different lifetimes, so that the lifetime
is rather unpredictable and depends sensitively on the initial
perturbation, see, e.g., Refs. �10,11,16�. This strong sensitiv-
ity on initial conditions is consistent with observations on
other transiently chaotic systems and suggests that rather
than looking for the unpredictable behavior of individual tra-
jectories, it is better to look for more reliable and stable
properties derived by averaging over ensembles of initial
conditions. Prominent among such properties is the distribu-
tion of lifetimes, obtained from many runs with similar but
not identical initial conditions. The theoretical prediction for
a hyperbolic saddle is that the probability of decay is con-

stant in time and independent of when the flow was started,
giving for the distribution of lifetimes an exponential, as in
radioactive decay �17–19�. Other functional forms are pos-
sible as well �see, e.g., Refs. �20,21��, but for the most part
observations in transitional shear flows are compatible with
an exponential �1,11,22–25�.

An exponential distribution is characterized by a charac-
teristic decay rate or a characteristic lifetime � which is the
time interval over which the survival probability drops by
1 /e. How this lifetime varies with Reynolds number is cur-
rently under debate �22,26,27�. If � diverges at a finite Rey-
nolds number, there is a critical value Rec above which tur-
bulent flow does not relaminarize but persists forever. Such a
divergence would imply that the system undergoes a transi-
tion from a transient chaotic saddle to a permanently living
chaotic attractor in some form of “inverse boundary crisis”
�28�. However, if � does not diverge, turbulence in a pipe
remains transient for all Re. The chaotic saddle does not
close to form an attractor and the turbulent “state” stays dy-
namically connected to the laminar profile even at Reynolds
numbers higher than the ones where “natural transitions” are
reported to occur. This might open up new avenues for con-
trolling turbulent motion.

The prediction of an exponential distribution of lifetimes
is an asymptotic one, valid for long times. On short times the
distributions may follow a different functional form, as evi-
denced by the nonexponential parts in almost all distribu-
tions published so far. Moreover, the results may depend on
additional parameters, such as an aspect ratio or the length of
the pipe. The dependence on these parameters has not been
studied so far. It is our purpose here to discuss some of these
effects for transitional pipe flow.

We begin in Sec. II with a survey of previous experimen-
tal and numerical results. Section III then is devoted to an
analysis of three effects: the dependence on the ensemble of
initial conditions in Sec. III B, the variation of the character-
istic lifetime with Re in Sec. III C, and the variation with the
length of the pipe in Sec. III D. We conclude with a summary
and outlook in Sec. IV.

II. SURVEY OF RESULTS

As usual, the mean downstream velocity �u�, the diameter
D of the pipe and the viscosity � of the fluid can be com-
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bined into the dimensionless Reynolds number

Re =
�u�D

�
. �1�

The pipe diameter D and the velocity �u� then define a unit
of time D / �u�. Since the flow moves downstream with the
mean velocity �u�, time can be translated into distance trav-
eled, so that the distance in units of the diameter equals the
time t in units of D / �u�. Because of this relation between
length and time, it is crucial to work with very long pipes so
that the observation times become as large as possible.

When the flow becomes turbulent, the friction factor in-
creases. Therefore, either the forcing �pressure drop� has to
increase so as to maintain the mean flow speed, or the mean
flow speed will decrease, perhaps reducing the Reynolds
number so much that the flow relaminarizes �29�. Thus,
many modern experiments work with a constant flow rate
�10�, or with very long pipes �22�, in which the change in
Reynolds number becomes negligible as long as the turbu-
lence remains confined to a small section of the pipe: In the
range of Reynolds numbers studied here, the turbulence is
localized in a region of about 30D length �30�. To measure
lifetime statistics one can either follow a puff on its journey
down the pipe and determine the downstream position where
it decays; or one can choose a fixed downstream position,
which corresponds to a fixed lifetime, and measures the
probability that puffs survive up to this chosen point.

The first approach was chosen by Mullin in a recent series
of experiments �23,24,26,31� inspired by the numerical stud-
ies in Ref. �11�. In a first group of experiments �31� the decay
of the perturbation could be detected with a camera that trav-
eled with the perturbation downstream. The length of the
pipe allowed for a maximal observation time of 500 units.
The flow was perturbed by injecting six jets of different am-
plitudes, and 40 to 100 independent repetitions were taken
for each Reynolds number. The asymptotic regime of the
distributions of lifetimes was found to follow a law

P�t� � exp� t − t0

��Re�	 , �2�

with a characteristic lifetime ��Re� depending on Re and an
initial offset t0
100–150 before which no decay was ob-
served. The strong increase of the characteristic lifetime with
Re lead to the conclusion that it diverges at a finite critical
Reynolds number. For the critical Reynolds number they
give in Ref. �31� the values Rec=1710�10 and Rec
=1830�10, and in Ref. �23� the values Rec=1695�20 and
Rec=1820�20, for two different kinds of perturbations, de-
scribed as “strong” and “weak” types of perturbation, respec-
tively. In an effort to address the dependence on the type of
initial perturbations, they performed a second experiment
with a slightly different perturbation protocol �26�: In order
to obtain more generic initial conditions the system was
started at a higher flow speed, a perturbation that triggered
turbulence was introduced and then the Reynolds number
was reduced to the one for which lifetime statistics were
collected. This gives another sample of initial conditions but
limits the remaining observation time to less than 450. With

such a perturbation the characteristic lifetimes were compat-
ible with

��Re� � �Rec − Re�−1�0.02, �3�

but now with a different critical Reynolds number of Rec
=1750�10.

It is difficult to model the perturbations induced by jets in
numerical simulations �29� but it is relatively straightforward
though time-consuming to imitate the second protocol of
Mullin, where the initial conditions are taken from a turbu-
lent flow at higher Reynolds numbers. Willis and Kerswell
�27� did just that for five different Reynolds numbers and
concluded that Rec=1870, as suggested by some experi-
ments. However, when the analysis of their data points is
corrected as suggested in Ref. �32�, the demonstration of a
divergence is less convincing and the data become compat-
ible with the results of Hof et al. �22�.

The experiments by Hof et al. �22� just mentioned use a
different approach. In a pressure driven flow through a thin
pipe of only 4 mm diameter but 30 m length they realized
dimensionless observation times of up to 7500 units. Since
the flow could not be visualized, the time and position of
decay could not be determined directly. However, a laminar
and a turbulent patch in the flow can easily be distinguished
once they leave the pipe, so that it is relatively easy and
straightforward to determine whether the flow has stayed tur-
bulent until it exits the pipe. Therefore, they could determine
the probability to be turbulent after a time period given by
the distance between the perturbation and the outlet, as a
function of flow rate. This gives P�t ,Re� as a function of Re
for t fixed. Collecting data for different t then gives the pa-
rameters in the lifetime distribution including the Reynolds
number dependence. For short times, the data are within the
error bars of Ref. �26�, but for longer times they deviate from
the divergent behavior implied by Eq. �3�. Instead, it was
found that the lifetimes are well represented by an exponen-
tial variation

�−1�Re� � exp�a + b Re� �4�

with a=55.3 and b=−0.032.

III. LIFETIME DISTRIBUTIONS
AND THEIR PROPERTIES

In this section we study lifetime distributions in pipe flow
within direct numerical simulations. Since the calculations
are extremely time consuming, we will not aim to repeat the
puff simulations of Ref. �27�, but rather focus on short, pe-
riodically continued pipe sections, and then discuss how
these results scale up to turbulence in regions of the length of
turbulent puffs. In the next subsection we first discuss fea-
tures of individual turbulent trajectories, before turning to the
ensemble dependence of lifetime distributions, the variations
with Reynolds number and the length dependence.

Individual trajectories were generated using the pseu-
dospectral DNS code developed in Ref. �33� and already
used in our previous studies �6,15,22,34�. Simulations of
elongated puffs with the determination of their travel veloc-
ity, envelope and internal dynamics are given in Ref. �35�.
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The code uses Fourier modes in downstream and azimuthal
direction and Chebyshev polynomials in the radial direction,
and a projection method to eliminate the pressure. The simu-
lations on pipe segments presented in this section are carried
out with n Fourier modes in azimuthal and m Fourier modes
in downstream direction, where �n� /Nmax+ �m� /Zmax�1 with
Nmax=16 and Zmax increasing from 14 for the “short” pipe of
length 5D to Zmax=25 and Zmax=45 for the “medium” �L
=9D� and “long” �L=15D� pipes, respectively. Conse-
quently, we consider up to 33 Fourier modes in azimuthal
direction. In downstream direction up to 31 modes are con-
sidered for the short, 51 for the medium, and 91 for the
longest pipe. We use 49 Chebyshev polynomials for the ex-
pansion in the radial direction. This moderate resolution re-
sults from a compromise of accurate representation of the
dynamics and maximum simulation speed, required for good
statistics. The statistical data presented in this work is based
on following approximately 3500 trajectories which required
more than 60 CPU years on a 2.4 Ghz AMD Opteron pro-
cessor based Linux cluster.

A. Features of individual trajectories

Consider a perturbation of the laminar Hagen-Poiseuille
flow applied at time t=0. The evolution of the initial condi-
tion u��t=0� can be followed in time until it decays or reaches
the maximum integration time in a simulation or leaves the
pipe in an experimental setup. Figure 1 shows the evolutions
of two sets of five different but similar initial conditions
each. As an indicator for the turbulent intensity, we take the
energy of the three-dimensional structures

E3D = � �
m�0



Vol

v�n,m
2 dV	��


Vol
4�1 − r2�2dV	 , �5�

where v�n,m
2 denotes the �n ,m�-Fourier mode if the perturba-

tion field v� =u� −2�1−r2�e�z is decomposed into Fourier modes
in azimuthal �m� and axial �n� direction. The energy content
of the streamwise modulated Fourier modes is normalized by
the kinetic energy of the laminar profile. The energy stored in
the streamwise invariant mode is not taken into account since
without it a decay towards laminar flow can be detected
more reliably. A decay is first initiated by the reduction of
transverse fluctuations captured by the energy in streamwise
modulated Fourier modes. As a result, there are no longer
vortical structures feeding energy into streamwise fluctua-
tions. Consequently, large scale deformations of the laminar
parabolic profile such as those characterized by streamwise
invariant modes are slowly damped out. Thus, since E3D best
captures the initial step of a decay, it is a well suited indica-
tor for the turbulent intensity when studying lifetime statis-
tics.

Since a flow field only asymptotically reaches the laminar
profile exactly, “decay” is defined as reaching a situation
where perturbations of the laminar profile are so small that
the further evolution follows an exponential drop off. Any
perturbation is therefore characterized by a lifetime that
slightly depends on the chosen criterion to detect being close
to the laminar profile. Technically, one introduces a cutoff
threshold either on the kinetic energy stored in the deviation

from the laminar profile ��u� −2�1−r2�e�z�2dV, or on the ki-
netic energy �5� stored in streamwise invariant Fourier
modes only. The threshold on these energies is chosen such
that the further evolution can be described by the linearized
equations, so that the system cannot return to the turbulent
dynamics. The lifetime then is defined as the time it takes to
reach this target region around the laminar profile.

B. Ensemble dependence

Now consider an ensemble of several different but similar
perturbations. The collection of individual lifetimes can be
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FIG. 1. �Color online� Each panel shows the simulated evolution
of five similar but different initial disturbances each at Re=1900 in
a periodic pipe of length L=15D. Plotted is the kinetic energy of the
deviation from the laminar profile that is stored in the streamwise
varying Fourier modes, Eq. �5�. In the top panel �a� initial condi-
tions are constructed from a modulated Zikanov mode discussed in
the main text. The five initial conditions differ by less than 0.5% in
energy content. The perturbations first grow in energy and show an
overshoot before directly decaying towards laminar flow or settling
down to the turbulent state. They then suddenly decay without any
prior indication and the energy of the perturbation decays mono-
tonically. The chosen criterion for decay is based on the energy
threshold E3D�5�10−5. In the bottom panel �b�, initial conditions
are constructed by varying the energy content of a turbulent flow
field shown in Fig. 2 by less than 0.5%. Except for differences in
the short time behavior, the dynamics is quite similar to the one
observed for Zikanov-type initial conditions: the trajectory either
decays directly or settles down to the turbulent state from which it
spontaneously returns to laminar flow.
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used to estimate the probability P�t� to still be turbulent at
some time t. A chaotic saddle should give rise to exponential
asymptotic tails of this distribution that are independent of
the choice of initial conditions but characteristic for the
saddle. To study in detail which features of the lifetime dis-
tribution depend on the chosen set of initial conditions and
thus do not solely encode characteristics of the saddle, we
consider various different ensembles out of which initial con-
ditions are drawn. These ensembles are constructed by
slightly varying initial flow fields of two different types.

One type of perturbations we consider here is a pair of
vortices as in the optimally growing modes identified by Zi-
kanov �36–38�. In order to break translational symmetry they
are modulated in streamwise direction by applying a
z-dependent twist

u�0�r,	,z� = u�Zik�r,	 + 	0 sin�2


L
z	,z� , �6�

where u�Zik is Zikanov’s mode and L is the length of the
computational domain used in our direct numerical simula-
tion. The spatial structure is presented in Fig. 2. Mimicking
experimental protocols, where the spatial structure of the
perturbation is prescribed by the setup, the ensemble of ini-
tial conditions is constructed by varying the amplitude of the
twisted Zikanov mode. A second type of perturbation is a
snapshot from a turbulent run at Re=2150 which is scaled in
energy, i.e., in amplitude. A cross section is shown in Fig. 2.

Figure 3 shows the lifetime of the perturbation as a func-
tion of the initial energy E0. The different symbols corre-
spond to different intervals in E0 an ensemble of initial con-
ditions was chosen from. Regions of small and smoothly
varying lifetime are clearly separated from regions of longer
fluctuating lifetimes. In regions with short lifetimes the flow
relaxes quickly to the laminar profile. Towards the bound-
aries of these regions the lifetimes increase quickly and reach
plateaus at the maximal integration time. Magnifications of
the plateau regions show erratic and unpredictable variations
of lifetimes �11�. The cliff structure in the lifetime is due to
the geometric features of the basin of attraction of the lami-
nar profile and has been seen in pipe flow �34� and low-
dimensional representations of shear flows �14,16,39�.

A first ensemble of initial conditions is constructed by
varying the energy from E0=8.0�10−2 to E0=8.4�10−2 in
100 equidistant steps. Other ensembles are chosen such that
they provide a higher resolution in initial energies for the
regions where high lifetimes are expected.

Figure 4 shows P�t� for fixed Re calculated for the differ-
ent ensembles of initial conditions. Each individual distribu-
tion is characterized by an initial offset t0
75 where no
trajectory decays. Then one observes a middle part that both
in length and functional form differs among the various en-
sembles before asymptotically exponential tails are reached.
Within the limits of statistical uncertainties the decay rates
�i.e., the slopes in a semilogarithmic plot� are independent of
the ensemble of initial conditions and encode a characteristic
feature of the chaotic saddle.

In view of the cliff structure in lifetime the origin of the
nonuniversal middle part becomes obvious: Only trajectories
starting from the regions of fluctuating lifetime reach the

chaotic saddle from which they can decay at a characteristic
rate. Initial conditions from the regions in between directly
decay without having reached the saddle which leads to the
nonuniversal initial parts of P�t� in Fig. 4. The different plots
in Fig. 4 correspond to different ensembles chosen from all
possible initial conditions presented in Fig. 3.

We now focus on the initial offset time t0. It corresponds
to the smallest time it takes for an initial condition from the
chosen ensemble to decay. It evidently depends on the initial
perturbation. In particular, this time scale can in principle be
arbitrarily close to zero for an arbitrarily small perturbation
to the linearly stable laminar profile in the ensemble. How-
ever, “typical” perturbations used both in simulations and lab
experiments are characterized by a typical initial formation
time t0 �with t0
100–150 in experiments�. This can be ra-
tionalized as follows.

We first note that t0 is large compared to the Lyapunov
time measured in the turbulent motion �11�, which gives a
typical timescale for the dynamical separation of neighboring

(b)

(a)

FIG. 2. �Color online� Spatial structure of the types of initial
perturbations considered. Top �a�: In plane velocity components of
Zikanov’s nearly optimal growing mode. Axial velocity components
vanish. The translational symmetry of Zikanov’s mode is broken by
applying a z-dependent twist. Bottom �b�: Cross section of a veloc-
ity field from a turbulent run at Re=2150. The vector plot indicates
the in-plane motion. Color coding is used for the axial velocity
relative to the laminar parabolic profile. The color runs linearly
from −0.6�u� �blue� to 0.6�u� �red�.
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trajectories on the saddle. However, a trajectory does not
necessarily start on the chaotic saddle. Its initial condition is
a flow field that hopefully initiates turbulence, i.e., the tra-
jectory approaches the chaotic saddle, but typically it does
not belong to the saddle itself. In addition a trajectory start-
ing its decay from the saddle has to follow the evolution
through state space until it ends up in the vicinity of the
laminar profile. Consequently the offset t0 contains two
parts: The formation time tfor required to reach the turbulent
“state” and the decay time tdec it takes to finally reach the
neighborhood of the laminar state after the decay has been
initiated. This can also be directly observed in Fig. 1. The
presented energy traces consist of three parts: the initial en-
ergy growth, the chaotic fluctuations indicating turbulent dy-
namics on the saddle, and the decay towards the laminar
state.

As discussed in Sec. II the decay time can be estimated
from experimental observations that a puff decays while
traveling about 50D downstream �12�. This translates into a
time tdec
50. Theoretically it follows from the mechanism
of decay: It starts first with a reduction of transverse modu-
lations leading to a break out of the regeneration cycle sup-
porting turbulent motion �40� and then shows a viscous
damping of streamwise deviations from from the laminar
profile.

The formation time tfor can be estimated from the experi-
mental observation that is takes tfor about 40 for a perturba-
tion �jet injection �12�� to develop into an equilibrium puff. It
is also observed in simulated short periodic pipes: Taking an
initial condition that contains pairs of counter-rotating vorti-

ces in axial direction such as Zikanov’s almost optimally
growing mode, these small perturbations grow in energy by
generating strong streaks in a so called lift-up process driven
by the non-normality of the Navier-Stokes operator �41�. The
generated streaks then become unstable, transverse vortices
appear and the flow turns turbulent. The formation time can
therefore be estimated by the growing period of a Zikanov
mode and originates from the non-normal character of the
Navier-Stokes operator.

The discussed mechanism is also present in experiments
where the flow is perturbed by injecting fluid jets perpen-
dicular to the pipe �42�. These jets give rise to pairs of
counter-rotating vortices that will draw energy from the base
profile and grow by the same mechanism observed in the
dynamics of a streamwise independent Zikanov modes. The
experimental observation agrees with typical formation times
of equilibrium puffs in simulations in a periodic pipe of
length L=50D where a localized form of Zikanov’s mode
was used as an initial condition.

We thus conclude that the specific choice of initial condi-
tions affects the functional form of the lifetime distribution
for small times. Both the initial time offset t0 and the middle
part of the lifetime distribution depend on the chosen en-
semble of initial conditions. Universal properties of the tur-
bulent state are only encoded in the asymptotic tails, which
result from trajectories that actually reach the turbulent state

100 E0

T
8.05 8.23 8.28 8.38

8.48.28.0
0

250

500

750

FIG. 3. �Color online� Lifetime of initial conditions at Re
=1900. The pipe is L=15D long. The initial conditions are con-
structed from a turbulent snapshot of a Re=2150 run �Fig. 2�. It is
scaled in kinetic energy E0. The black crosses belong to an en-
semble constructed by varying the energy form E0=8�10−2 to
E0=8.4�10−2 in 100 equidistant steps. Additional ensembles
�shown in color� with 100 samples each focus on regions of high
probability to observe long turbulent transients. The yellow tri-
angles indicate an ensemble that ranges form E0=8.0�10−2 to E0

=8.05�10−2 in 100 steps. The red squares are located in the range
between E0=8.23�10−2 and E0=8.28�10−2. Finally the cyan
circles reach from E0=8.28�10−2 to E0=8.38�10−2. The corre-
sponding lifetime distributions for all ensembles are shown
in Fig. 4.

t

P
(t

)

5002500

1

0.1

FIG. 4. �Color online� Lifetime distribution for fixed parameters
�Re=1900 and periodic domain of length L=15D� for different en-
sembles of initial conditions. Presented is data obtained from an
ensemble of 200 samples constructed from twisted Zikanov modes
�green down-facing triangles�. The other ensembles result from
scaling a turbulent flow field from a run at Re=2150. The black
crosses indicate an ensemble constructed from scaling the energy of
the field from E0=8�10−2 to E0=8.4�10−2 in 100 equidistant
steps. The lifetime as a function of this energy shows typical folds
�see Fig. 3�. Based on this fold structure remaining ensembles indi-
cated by the yellow triangles, red squares and cyan circles are tai-
lored towards reaching the saddle, i.e., additional runs were chosen
in the “right” energy region. The specific location of ensembles
containing 100 samples each are shown in Fig. 3 where the same
symbols and colors are used. While the initial part of the distribu-
tions depends both in length and functional form on the chosen
ensemble, the slope of exponential tails is universal within the lim-
its of statistical accuracy.
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before their decay. The exponential form of these tails is
compatible with a chaotic saddle in state space and charac-
teristic decay rates can be “measured” by fitting exponentials
to the asymptotic tails of the lifetime distributions.

In order to probe the chaotic saddle, i.e., analyze the uni-
versal asymptotic part of the distribution and minimize the
high computational costs at the same time, it is favorable to
choose an ensemble of initial conditions that is likely to
reach turbulence. Modulated Zikanov modes seem to be a
good choice whereas independent snapshots from a turbulent
run at slightly higher Re tend to decay directly. This can, for
example, be observed by comparing the lifetime distributions
�Fig. 4� of the ensembles constructed by scaling the turbulent
flow field and the Zikanov mode, respectively. Although
snapshots from runs at higher Reynolds number are complex
and appear to be “turbulent” they need not be located close
to the chaotic saddle in the state space of the system at
slightly lower Re. Typical length and time scales of turbulent
motion change with Re so that turbulent snapshots at one
Reynolds number might not “fit” the dynamics at another Re
�48,49�. In contrast, in the case of Zikanov modes the flow
has enough time to adapt to the dynamics of the Navier-
Stokes equations. Moreover, the Zikanov mode shares a
characteristic pair of streamwise vortices with the locally at-
tracting flow field embedded in the stability boundary be-
tween laminar and turbulent dynamics of pipe flow �34,43�.
Since this edge state is located in-between the laminar state
and the chaotic saddle, an initial condition close to the edge
state should be especially efficient in initiating turbulence.

To summarize, the specific form of a lifetime distribution
does not only depend on the system parameters such as Rey-
nolds number and—in the case of a simulation—length of a
periodic domain and resolution of the numerical representa-
tion that completely define the dynamical system. P�t� also
depends on the ensemble of initial conditions. The large ini-
tial offset due to transient growth of initial perturbations and
the initial drop generated by trajectories that decay directly
without reaching the chaotic “state” are not universal. In
view of the cliff structure in lifetime that shifts with Rey-
nolds number even choosing the same ensemble of initial
conditions does not prevent complicated variations of the
nonuniversal parts of P�t� with Re. Only the exponential tails
in the asymptotic regime of the lifetime distribution carry
information about the chaotic saddle and its characteristic
decay rate. Consequently, long observation times reaching
into the asymptotic range and initial conditions that have a
high probability to reach turbulent dynamics are needed in
any study of characteristic lifetimes.

C. Reynolds number dependence �(Re)

Lifetime experiments were performed in periodic domains
of length L=5D, L=9D, and L=15D for various Reynolds
numbers. The ensemble of initial conditions was constructed
from twisted Zikanov modes of varying amplitude �e.g., E0
� �3.2�10−2 ,3.3�10−2��. For each Reynolds number at
least 100 independent trajectories were integrated up to a
maximum integration time of 3000R /Ucl=750D / �u� which
is about twice the observation time available in the Manches-

ter pipe and a tenth of the maximal observation time in the
discussed experiments by Hof �22� . Characteristic lifetimes
were extracted from the slopes of exponentially varying tails
of the measured lifetime distributions.

Figure 5 shows the probability P�t� to still be turbulent at
some time t as a function of this time for the “short” L
=5D pipe. The data points lie on straight lines in a semiloga-
rithmic plot, clearly indicating an exponential variation for
large times. The slopes of the indicated fits which correspond
to 1 /� with � the characteristic timescale of the decay pro-
cess are plotted in Fig. 6 as a function of the Reynolds num-
ber.

The characteristic lifetime � increases rapidly with Re
which, in previous studies �11,26,31�, led to the conclusion
that it diverges at a finite critical Reynolds number Rec as

��Re� �
1

Rec − Re
. �7�

In a linear plot of the inverse lifetime 1 /� as a function of Re
this would correspond to a linear variation that crosses zero
at the critical Reynolds number. Our data do not support this
scaling. Indeed, 1 /� approaches zero as we increase Re but
there is no indication of a divergence. Instead the data is
compatible with an exponential scaling �4�, which corre-
sponds to a straight line in a semilogarithmic representation.
The values for the parameters a and b are listed in Table I.

Consequently, there is no evidence for a transition from a
chaotic saddle to a permanent chaotic attractor, at least not
close to a Reynolds number of order 2000, where critical
values have been reported previously.

Comparing with experimental results �22�, our numerical
studies confirm exponential lifetime distributions and that the
characteristic lifetime does not diverge but grows exponen-
tially with the Reynolds number. However, the parameters of
the exponential scaling law do not match quantitatively. This
shortcoming is addressed in the next section, where we dis-
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(t

)
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1700
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2175
2200

FIG. 5. �Color online� Probability P�t� to still be turbulent after
some time t for the “short” L=5D pipe. For each Reynolds number
�given in the legend� 100 independent initial conditions have been
integrated up to a maximum integration time of 750. Exponential
fits to the tails of the distribution are indicated by straight lines in
the semilogarithmic representation. The measured slopes are shown
in Fig. 6.
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cuss how the length of the periodic domain used in our simu-
lation affects the statistics.

D. Extensitivity of �(Re)

Having found the exponential scaling of characteristic
lifetimes both in experimental works and in numerical simu-
lation, one can quantitatively compare both systems. The
main difference between both considered systems is that in
an experiment one observes a localized turbulent puff trav-
eling through a very long pipe whereas in short simulated

periodic pipes not the full spatiotemporal structure but only
the internal dynamics of a puff is captured. There is no co-
existence of a turbulent region and laminar flow and no dy-
namics of the fronts of a turbulent puff. If the periodic do-
main becomes long compared to all internal scales of a
turbulent puff, including its overall size, features of the ex-
periment should be quantitatively recovered. For shorter
computational domains, however, finite-size effects are to be
expected.

We analyze the dependence on the length L of the com-
putational domain by comparing the results from the short
L=5D pipe with additional simulations for a “medium” L
=9D and a “long” L=15D pipe. The length L=9D �rather
than L=10D� for the medium pipe was chosen such that
periodic structures that might be favored by the periodicity
of the small reference calculation do not exactly “fit” the new
period in downstream direction.

Figure 7 shows lifetime distributions based on 100 indi-
vidual runs at every Reynolds number for the medium pipe.
Exponential fits to the tails are presented as straight lines in
the semilogarithmic plot.

Figure 8 shows the same data also based on the analysis
of 100 runs at each Reynolds number for the long periodic
pipe. In this plot, the different parts of P�t�, i.e., the initial

20001600
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τ

2200200018001600
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FIG. 6. �Color online� Inverse characteristic lifetimes �−1 for the
“short” pipe of length L=5D, as extracted from the exponential fits
of P�t� �see Fig. 5� as a function of Reynolds number both on a
semilogarithmic �main� and a linear scale �inset�. The error bars are
derived from variations in the slope obtained by fitting different
segments of the asymptotic parts of the data. Thus, they reflect both
intrinsic statistical uncertainties of the exponential fits and errors
resulting from estimating the beginning of the asymptotic regime.
They do not take into account statistical uncertainties of the indi-
vidual slopes resulting from the limited number of events or other
sources. The data is compatible with an exponential variation of
��Re� but does not support the linear scaling proposed in the litera-
ture before �cf. inset�. Thus, the data does not support a divergence
of �, i.e., a zero crossing of 1 /� at a finite Reynolds number close to
2000.

TABLE I. Parameters for the exponential law �4�. The top three
rows are from numerical simulations of periodic sections of length
L=5D, 9D and 15D, respectively. The next to last line gives the
value extrapolated for L=30D and the last row gives the experi-
mental data of Ref. �12�.

L /D a 100b

5 11.9 −0.85

9 16.7 −1.11

15 28.0 −1.76

30 �extrap.� 52.1 −3.11

experiment 55.2 −3.23
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FIG. 7. �Color online� Lifetime distributions for the pipe of
“medium” length L=9D pipe. For each Reynolds number �legend�
100 trajectories have been analyzed. The straight lines indicate ex-
ponential fits to the tails of the distributions.
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FIG. 8. �Color online� Same as Fig. 7 but for the “long” pipe of
length L=15D. Note the long offset t0 especially for Re=1900.
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decay followed by asymptotic tails that have to be used for
measuring the characteristic lifetimes, are obvious.

In Fig. 9 the extracted inverse characteristic lifetimes
from Figs. 7 and 8 are presented together with the L=5D
reference data.

All three presented data sets show no evidence for a di-
vergence. Each one is fully compatible with an exponential
scaling of � as a function of Re. However, the slope of the
exponential is not an intensive, system-size-independent
quantity, but varies with the length of the computational do-
main. Large changes in the characteristic lifetime occur in a
smaller interval of Reynolds numbers for a longer pipe. For
Reynolds numbers larger than about 1850 the characteristic
lifetime grows with the length of the computational domain.

Hence, the characteristic lifetime is not a purely intensive
measure. It scales with the size of the system under consid-

eration. Such a scaling is compatible with the reasoning that
has been developed for spatially extended transient chaos,
when the domains considered are larger than the correlation
length �19,21�.

At the Reynolds numbers considered, the flow in the pipe
is correlated in azimuthal, radial, and also axial direction.
The axial autocorrelation functions for the three velocity
components are shown in Fig. 10. The correlation function
for the downstream component falls off more slowly than the
ones for the transverse components. This indicates that the
downstream component is less sensitive to the turbulent fluc-
tuations, but also that it cannot impose its coherence on the
transverse components. Correlations for the transverse com-
ponents become less than 0.1 within �R and for the down-
stream component it drops to 0.5 over the same distance, and
to 0.2 within �5R. The latter may be problematic for the
shortest pipe length studied �5D or 10R�, but it becomes less
significant for the longer ones. The analysis of coherent
structures along a puff in Ref. �35� further shows that ex-
tended streaks underlying the increased axial correlation
length of the downstream component are typically observed
at the edges of the puff only. However, in the center region of
the puff, coherent structures do not persists for more than
about 2R. This suggests that useful information about the
interior dynamics of the flow can be obtained by studying
relatively short domains. For a length of 10R the computa-
tional advantages are enormous and allow for detailed stud-
ies of deterministic �44� and statistical properties �15�.

A turbulent puff, on the other hand, defined via the total
energy content, and averaged over time, is much longer, see
Fig. 11. The intensity falls to about 10−2 of the maximum
over a distance of 30D, the usually quoted length of a puff
�30�. Within the puff the energy density varies considerably.
However, there is a region of about 25D which is dominated
by vortices and streaks very similar to those structures ob-
served in the bulk behavior of a 5D pipe segment �15,35,45�.
If we can assume the segments to be independent, then we
can estimate the length dependence of lifetimes as follows.
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FIG. 9. �Color online� Inverse characteristic lifetimes extracted
from simulations in periodic domains of different length �L=5D
�red squares�, L=9D �green circles�, L=15D �blue triangles�� and
from the experiment by Hof �22� �black crosses� in a linear �top �a�
panel� and semilogarithmic plot �bottom �b� panel�. The straight
lines are exponential fits to the data, indicating that all data sets are
individually compatible with an exponential scaling of lifetime with
Reynolds number. The slope of the exponential grows with the
length of the periodic domain and approaches quantitatively the
experimental results. By extrapolation shown in Fig. 12 one can
speculate that numerical and experimental results should match at
L=30D, which is about the length of an equilibrium puff.
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FIG. 10. �Color online� Autocorrelation functions for the down-
stream �Czz�, azimuthal �C		�, and radial �Crr� velocities along the
pipe axis. The correlations are evaluated in the comoving frame of
reference of a turbulent puff �35� and are normalized to 1 for van-
ishing axial shift �z.
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Let r be the probability for one of them to decay over a time
interval �t. Then the probability for N of them to decay si-
multaneously is rN. It has to be simultaneous, for otherwise a
turbulent cell could maintain turbulence and trigger a spread-
ing along the axis. Since r=1 /�, this implies that the lifetime
�N for the system of N cells is �N=�N.

The individual exponential variation of the lifetime with
Re may be described using Eq. �4� with two parameters a
and b which depend on the length L of the computational
domain. The considered scaling of lifetimes with the number
of cells n implies a linear variation of a and b with length L
which is indeed corroborated by the data in Fig. 12 and Table
I. Linear extrapolation shows that both parameters indepen-
dently approach the experimental values—included as hori-
zontal lines in Fig. 12—at the same length L�30D.

This value is surprisingly close to the experimentally ob-
served length of a turbulent puff and suggests that the as-
sumption of independent segments is reasonable despite the
variations in energy content. Our findings suggests, however,
that the calculations in the short pipe capture internal decay
mechanisms that are also present in the turbulent puff. In
particular, the data together with the observation that turbu-
lent puffs maintain their shape support the idea that the
relaminarization comes from within the puff, and not by a
change in the dynamics of the boundary. Observations by
Peixinho and Mullin �26� and calculations by Kerswell and
Willis �27�, as well as calculations on decaying turbulent
spots in Ref. �46� also support this conclusion.

IV. CONCLUSIONS

The results presented here confirm that lifetime distribu-
tions of turbulent pipe flow asymptotically follow exponen-
tials. While there may be differences for short times, the long
time behavior is robust. This observation supports the idea
that turbulent motion is generated by a chaotic saddle in state
space. Features of the measured probability functions can be
explained in terms of an ensemble of initial conditions that

either directly decay or reach the strange chaotic saddle.
From this saddle, trajectories decay at a constant escape rate,
i.e., independent of the previous state. This situation is analo-
gous to that of a particle moving in a complex box with some
holes through which it can decay �11,47�, or an unstable
nucleus subject to radioactive decay. After escaping from the
saddle trajectories then follow the slow dynamics towards
the linearly stable laminar profile.

A thorough analysis of lifetime distributions from both
experimental and numerical studies of pipe flow as well as
plane Couette flow shows that the characteristic lifetimes
grow with Reynolds number, but that they do not diverge at
a finite value of Reynolds numbers. As a consequence, there
is no evidence that the chaotic saddle in state space turns into
an attractor by some sort of “inverse boundary crisis” �47�.
Even for Reynolds numbers exceeding 2000 turbulent sig-
nals consist of transients that decay finally, though the time
for decay can be very long. As regards much higher Rey-
nolds numbers and in particular the transition from puffs to
slugs which increase in length, the present results suggest
that also the decay time ��Re� may become longer. But this
is insufficient to suggest a transition to a permanent attractor,
so that the question about a global bifurcation that turns the
turbulent dynamics into an attractor remains open. In any
case, the fact that turbulent motion stays dynamically con-
nected with the laminar profile at Reynolds numbers exceed-
ing 2000 suggests that turbulent flow could be intentionally
laminarized at minimal energetic costs.

An unexpected finding of the present study is a depen-
dence of the characteristic lifetimes on the spatial extension
of a turbulent region. The larger it is the less likely it decays.
For the case of puffs, it is possible to extrapolate the present
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FIG. 11. �Color online� Energy content of a turbulent puff, av-
eraged over time in a comoving frame �as discussed in Ref. �35�� in
a logarithmic representation �main panel� and a linear one �inset�.
The spot moves from left to right.
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FIG. 12. �Color online� The variation of inverse lifetime shown
in Fig. 9 may be described as �−1=exp�a+b Re� with two param-
eters a and b. We plot these parameters as a function of the length
L of the computational domain. The red boxes correspond to the
parameter a /10 and the yellow circles to 100b. The experimental
values from Ref. �22� are indicated by the green dashed horizontal
lines. Linear fits to the data points �blue dashed lines� reach the
experimental values at approximately the same length L
30D
which is about the length of an equilibrium puff.

LIFETIME STATISTICS IN TRANSITIONAL PIPE FLOW PHYSICAL REVIEW E 78, 046310 �2008�

046310-9



numerical results to the experimental ones. The results for
pipe flow are consistent with theoretical models for spatially
extended systems. It will be interesting to see to which ex-
tend the extensive scaling of lifetimes seen here in pipe flow
is typical and can be found in other linearly stable flows such
as plane Couette flow.
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