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We extend the concept of generalized synchronization of chaos, a phenomenon that occurs in driven dy-
namical systems, to the context of autonomous spatiotemporal systems. It means a situation where the chaotic
state variables in an autonomous system can be synchronized to each other, but not to a coupling function
defined from them. The form of the coupling function is not crucial; it may not depend on all the state
variables. Nor does it need to be active for all times for achieving generalized synchronization. The procedure
is based on an analogy between a response map subject to an external drive acting with a probability p and an
autonomous system of coupled maps where a global interaction between the maps takes place with this same
probability. It is shown that, under some circumstances, the conditions for stability of generalized synchronized
states are equivalent in both types of systems. Our results reveal the existence of similar minimal conditions for
the emergence of generalized synchronization of chaos in driven and in autonomous spatiotemporal systems.
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Generalized synchronization of chaos is a common phe-
nomenon occurring in unidirectionally coupled systems,
where a distinction can be made between a drive or forcing
subsystem and another driven or response subsystem �1�. It
arises when a functional relation different from the identity is
established between the drive and response subsystems �2�.
This phenomenon has been the subject of many theoretical
and numerical studies �3–7� and has been observed experi-
mentally �8–11�. On the other hand, there has been recent
interest in the investigation of chaotic synchronization and
other collective behaviors emerging in networks of mutually
interacting dynamical elements where no external influences
are present �12,13�. In particular, the phenomenon of com-
plete synchronization, where all the state variables converge
to a single trajectory in phase space, has been widely studied
in these autonomous dynamical systems. In this paper, we
present a procedure that allows us to extend the concept of
generalized synchronization of chaos found in driven sys-
tems to the context of autonomous systems. We mean that,
under some circumstances, the chaotic state variables in an
autonomous dynamical system can be synchronized to each
other, but not to a coupling function containing partial infor-
mation from those variables. This phenomenon can be seen
as a form of collective behavior arising in some specifically
designed dynamical networks. Our procedure is based on the
reported analogy between a single driven map and a system
of globally coupled maps �14�. This analogy provided an
explanation of dynamical clustering �13,15� and of stability
of steady states in systems with delayed interactions �16�.
Here we search for minimal conditions for the occurrence of
generalized synchronization of chaos in both driven and au-
tonomous systems by using models of coupled maps.

We consider a map driven with a probability p,

xt+1 = �w�xt,yt� , with probability p ,

f�xt� , with probability �1 − p� ,
�

yt+1 = g�yt� , �1�

where f�xt� and g�yt� describe the dynamics of the driven and
drive variables, respectively, and the coupling relation be-
tween them is chosen to be

w�xt,yt� = �1 − ��f�xt� + �g�yt� , �2�

where � is the coupling strength. For the driven chaotic dy-
namics we shall choose in most examples f�xt�=b+ln�xt�,
where b is a real parameter and xt� �−� ,��. This logarith-
mic map exhibits robust chaos, with no periodic windows
and no separated chaotic bands, on the interval b� �−1,1�
�17�.

The linear stability condition for generalized synchroniza-
tion is determined by the Lyapunov exponents of the two-
dimensional system, Eq. �1�. These are defined as �x
=limT→� ln Lx and �y =limT→� ln Ly, where Lx and Ly are the
magnitude of the eigenvalues of ��t=0

T−1J�xt ,yt��1/T and
J�xt ,yt� is the Jacobian matrix for the system, Eq. �1�, calcu-
lated along an orbit. A given orbit 	xt ,yt
 from t=0 to t=T
−1 can be separated into two subsets, according to the source
of the xt variable, either coupled or uncoupled, which we,
respectively, denote as A= 		xt ,yt
 :xt=w�xt−1 ,yt−1�
 possess-
ing pT elements and B= 		xt ,yt
 :xt= f�xt−1�
 having �1− p�T
elements. We get

��
t=0

T−1

J�1/T

= �
t:xt�A

wx �
t:xt�B

f��xt� K

0 �
t=0

T−1

g��yt� �
1/T

, �3�

where wx= �w
�x = �1−��f��x� and K is a polynomial whose

terms contain products of wx, �, and g��yt� to be evaluated
along time. Then Lx= ��xt�Awx�xt�Bf��xt��1/T and Ly

= ��t=0
T−1g��yt��1/T. Thus we get
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�x = p ln�1 − �� + lim
T→�

1

T�ln �
xt�A

�f��xt�� + ln �
xt�B

�f��xt��� ,

�4�

�y = lim
T→�

1

T �
t=0

T−1

ln�g��yt�� = �g, �5�

where �g is the Lyapunov exponent of the map g�yt�. Gen-
eralized synchronization occurs if the Lyapunov exponent
corresponding to the driven map is negative �2�; i.e., �x�0.

Figure 1 shows the Lyapunov exponents of the driven
system, Eq. �1�, with g� f , when the probability p is varied.
The exponent �y is constant and positive for the chosen cha-
otic drive g. On the other hand, there is a definite value of the
p at which the exponent �x changes its sign, from positive to
negative, signaling the onset of generalized synchronization
and the appearance of a contracting direction in the dynamics
of the two-dimensional map, Eq. �1�.

Figure 2 shows the orbits of the driven system, Eq. �1�,
for different values of the probability p. Generalized syn-
chronization in this two-dimensional map system is mani-
fested by the appearance of a strange attractor for values of p
above some threshold value.

When g= f , the condition �x�0 implies complete syn-
chronization, where xt=yt. In this case we get

�x = p ln�1 − �� + � f , �6�

where � f is the Lyapunov exponent of the map f . Figure 3
shows the stability boundaries, given by �x=0, for the com-
pletely synchronized states of the system, Eq. �1�, on the
space of parameters �p ,�� for different orbits of a drive g�yt�.
When g= f complete synchronization in a unstable
periodic-m orbit of the map f , defined by f �m��x̄n�= x̄n and
satisfying e�f =�n=1

m �f��x̄n���1, where 	x̄1 , x̄2 , . . . , x̄m
 are the
set of consecutive points on this orbit, can also be achieved
in the system, Eq. �1�, as shown in Fig. 3.

On the other hand, if g� f , the condition �x�0 corre-
sponds to generalized synchronization, characterized by xt
�yt. Consider, for example, the system, Eq. �1�, subject to an
intermittently applied, constant drive g�y�=C, which reduces
to a one-dimensional map with a Lyapunov exponent �x de-
pending on the parameters C, �, and p. The region where
generalized synchronization arises on the plane �C ,�� for a
fixed value of p is shown in Fig. 4.

The dynamics of the single driven map, Eq. �1�, can be
compared with the dynamics of an autonomous system of
maps that share a global interaction with a probability p, ∀i,

xt+1
i = ��1 − ��f�xt

i� + �H�xt
j:j � Qt�, with probability p ,

f�xt
i�, with probability �1 − p� ,

�
�7�

where xt
i �i=1,2 , . . . ,N� gives the state of the ith map at

discrete time t, � is the strength of the coupling to the global
interaction function H, and Qt is a subset having q�N ele-
ments of the system that may be chosen at random at each
time t. Each map receives the same information from the
coupling function H at any t with probability p. When this
autonomous system gets synchronized at some values of pa-
rameters, we have xt

i=xt. Thus for this same set of param-
eters, the single driven map subject to a forcing that satisfies
g�yt�=H�xt

j =xt : j�Qt� for long times should exhibit a syn-
chronized state similar to that of the associated autonomous
system, Eq. �7�. Thus, besides complete synchronization
where xt

i=xt=H, other synchronized states, characterized by
xt

i=xt�H and which we call generalized synchronization,
should also occur in the autonomous system, Eq. �7�, for
appropriate values of parameters.
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FIG. 1. Lyapunov exponents �y and �x for the driven system,
Eq. �1�, as a function of p, for g�yt�=0.5+ln�yt� and f�xt�=−0.7
+ln�xt�, and �=0.7.
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FIG. 2. Orbits of the driven
map, Eq. �1�, for g�yt�=0.5
+ln�yt� and f�xt�=−0.7+ln�xt�, �
=0.7. �a� p=0.3 �unsynchronized�.
�b� p=0.9 �generalized synchroni-
zation�. The inset is a magnifica-
tion of the marked square.
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A synchronized state can be characterized by the
asymptotic time average ��� �after discarding a number of
transients� of the instantaneous standard deviations �t of the
distribution of map variables xt

i, defined as

�t = � 1

N
�
i=1

N

�xt
i − �xt��2�1/2

, �8�

where �xt� is the instantaneous mean of the values xt
i, ∀i.

Stable synchronization corresponds to ���=0. Here we use
the numerical criterion ����10−7.

As an example of complete synchronization, consider a
partial mean-field coupling function

H =
1

q
�
j=1

q

f�xt
j� . �9�

In this case the autonomous system, Eq. �7�, can be ex-
pressed in vector form as

xt+1 = ���1 − ��I +
�

q
Gt�f�xt� , with probability p ,

If�xt� , with probability �1 − p� ,
�
�10�

where the N-dimensional vectors xt and f�xt� have compo-
nents �xt�i=xt

i and �f�xt��i= f�xt
i�, respectively, I is the N	N

identity matrix, and Gt is an N	N matrix that at each time t
possesses q randomly chosen columns that have all their
components equal to 1 while the remaining N−q columns
have all their components equal to 0. The case q=N and p
=1 corresponds to the usual mean-field global coupling �18�.
The linear stability analysis �19� of the complete synchro-
nized state f�xt

i�= f�xt�=H yields

���1 − �� +
�

q

k�p

e�f� � 1, �11�

where 
k=�0kq �k=0,1 . . . ,N−1� are the set of eigenvalues
of the matrix Gt for any t, with the zero eigenvalue having
�N−1�-fold degeneracy. The eigenvector corresponding to
k=0 is homogeneous. Thus only perturbations of xt along the
other eigenvectors may destroy the coherence. Thus, condi-
tion �11� with k�0 becomes

p ln�1 − �� + � f � 0, �12�

which is the same condition for stability of complete syn-
chronized states in the driven map, Eq. �6�, when g= f . Thus
the boundary that separates the region where complete syn-
chronization occurs on the space of parameters �p ,�� for the
autonomous system, Eq. �7�, with H given by Eq. �9� for any
value of q, coincides with the stability boundary �x=0 in
Fig. 3 for the driven system with g= f . However, in contrast
with the driven case, the unstable periodic orbits of the local
map f cannot be synchronized in the autonomous system
because they correspond to unstable synchronized states in
this system.

For other functional forms of the coupling function H it is
possible to find generalized synchronized states in the au-
tonomous system, Eq. �7�. For example, consider the cou-
pling function

H =
� j=1

q f�xt
j�

� j=1
r f�xt

j�
, �13�

where q�N, r�N, and define the instantaneous mean field
of the system as
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FIG. 3. Boundaries �x=0 �Eq. �6�� on the plane �p ,�� for com-
plete synchronization in the driven map, Eq. �1�, with f�xt�=−0.7
+ln�xt�. Dashed line: g�yt�= 	x̄1=−0.855762
. Solid line: g�yt�
=−0.7+ln�yt� �this boundary also corresponds to complete synchro-
nization in the autonomous system Eqs. �7� and �9��. Dotted line:
g�yt�= 	x̄1=0.18049, x̄2=−2.41208
.
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FIG. 4. Region for generalized synchronized states xt�C �sat-
isfying �x�0� for the system, Eq. �1�, subject to a constant drive
g�yt�=C, on the plane �C ,��. Horizontal lines indicate the values
C=2, C=0, and C= 	x̄1=−0.855762
. The synchronization region
for C�0 also comprises the generalized synchronized states ����
�10−7� of the autonomous system, Eq. �7�, with N=104, having a
coupling function given by Eq. �13�. In both cases, f�x�=−0.7
+ln�x� and p=0.5.
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St�N� =
1

N
�
j=1

N

f�xt
j� . �14�

Figure 5 shows the bifurcation diagram of St�N� as well as
��� as functions of the coupling parameter � for the autono-
mous system with the coupling function H given by Eq. �13�.
The mean field St�N� is chaotic for all values of �. For �
�0.54, we obtain ���=0, indicating that the system is syn-
chronized in a chaotic state for that range of the coupling
parameter. Figure 5 also shows the bifurcation diagram of
the function H with values of q and r chosen such that q /r
=2. Note that H=2 in the range where synchronization oc-
curs; otherwise, it is chaotic. This happens independently of
the specific values of q and r, as long as q /r=2. Thus, we
have a situation where dynamical elements in an autonomous
system converge to a chaotic synchronized state xt

i=xt, while
a coupling function that contains partial information about
the system reaches a value different from that state; i.e., H
�xt. This is the analogous to the phenomenon of generalized
synchronization of chaos observed in a driven system, Eq.
�1�, with constant drive g=C=2, as illustrated in Fig. 4. Fur-
thermore, for all given values of q and r the autonomous
system with H described by Eq. �13� exhibits generalized
synchronization that yields H=q /r on the same region of the
plane �C ,�� in Fig. 4 where generalized synchronization is
observed for the map driven with constant g=C=q /r�0.

The equivalence between an external drive and a global
coupling function can be used to predict the emergence of
generalized synchronization in either system from the occur-
rence of this phenomenon in the other. As an illustration,
consider a parametrically, intermittently driven map, Eq. �1�,
with g=0. Figure 6 shows the region where �x�0 on the
plane �p ,�� for this system. The analogous external drive-
global coupling suggests that an autonomous spatiotemporal
system, Eq. �7�, having a coupling function that reached a

value H=0 at synchronization, should possess the same re-
gion of stability for this state on the plane �p ,��. Consider,
for example, the coupling function

H = �1

q
�

j�Qt

q

�f�xt
j� − St�q��2�1/2

, �15�

where St�q� is the partial mean field of q maps randomly
chosen at each time t. This autonomous system reaches gen-
eralized synchronization—i.e., a chaotic synchronized state
with xt

i�H=0 for any value of q—on the same region of the
plane �p ,�� as in the driven map, Eq. �1�, shown in Fig. 6.

Note that H does not need to be a function of all the maps;
nor must it be active for all times. What matters for synchro-
nization is that all elements in the autonomous system share
the same minimal information at any time. Thus, the nature

FIG. 5. Left vertical axis: bifurcation diagrams of St�N� �black
dots� and H �gray dots� vs � for the autonomous system given by
Eqs. �7� and �13� with f�xt

i�=−0.7+ln�xt
i�. Right vertical axis: ��� vs

� �solid line�. Fixed parameters: p=0.5, N=104.
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FIG. 6. Region of generalized synchronization on the plane
�p ,�� for �i� the single driven map, Eq. �1�, with g=0 ��x�0� and
�ii� the autonomous system, Eq. �7�, with N=104 and H given by
Eq. �15� for any value of q �����10−7�. In both cases, b=−0.7.
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FIG. 7. Region for generalized synchronization on the plane
�� ,� for both the autonomous network, Eq. �16�, with H given by
Eq. �13� with q=200, r=500, and the driven network, Eq. �17�, with
constant g=0.4. For both systems, f�x�=4x�1−x�, N=103, and p
=0.5.
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of the common input �external or endogenous� being re-
ceived by the local units is irrelevant for synchronization in
either driven or autonomous systems. In both scenarios, each
unit evolves as a driven map at the local level.

Generalized synchronization may also arise in an autono-
mous network of coupled oscillators that, in addition, share a
global coupling function H with probability p. As an illus-
tration, consider a one-dimensional lattice

xt+1
i = ��1 − � − �f�xt

i� +


2
�f�xt

i+1� + f�xt
i−1�� + �H�xt

j:j � Qt� , with probability p ,

�1 − �f�xt
i� +



2
�f�xt

i+1� + f�xt
i−1�� , with probability �1 − p� ,� �16�

where  is the local coupling parameter. The analogy can be established with a lattice of similar coupled maps subject to a
uniform drive g�yt� with probability p,

xt+1
i = ��1 − � − �f�xt

i� +


2
�f�xt

i+1� + f�xt
i−1�� + �g�yt� , with probability p ,

�1 − �f�xt
i� +



2
�f�xt

i+1� + f�xt
i−1�� , with probability �1 − p� .� �17�

Periodic boundary conditions are assumed for both systems.
Figure 7 shows, for a given example, that the region of gen-
eralized synchronization is the same for both systems on the
plane �� ,�, when g�yt�=H.

In summary, based on the analogy between a single driven
map and a globally coupled system of maps, we have ex-
tended the concept of generalized synchronization of chaos
to the context of autonomous dynamical systems. It means
that there can exist a coupling function H containing some
information about the elements in the autonomous system
that reaches a state different from the state of those elements
when they are chaotically synchronized. The functional form
of H is not crucial for achieving generalized synchronization;
what matters is the sharing of the same information about the
system by its elements. By comparing a single map driven
with a probability p and an autonomous system of maps

sharing a global coupling with this same probability, we have
shown that the minimal conditions for stability of general-
ized synchronized states are equivalent in both types of sys-
tems. The analogy external drive-global coupling allows one
to design a spatiotemporal autonomous system exhibiting
generalized synchronization of chaos from knowledge of the
occurrence of this phenomenon in an associated single
driven map. Extensions of this work include the possibility
of designing global coupling functions in autonomous sys-
tems to achieve specific behaviors or patterns as self-
organizing phenomena.

This work was supported by Grant No. C-1579-08-05-B
from Consejo de Desarrollo Científico, Humanístico y Tec-
nológico, Universidad de Los Andes, Venezuela.

�1� A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A
Universal Concept in Nonlinear Sciences �Cambridge Univer-
sity Press, Cambridge, England, 2002�.

�2� N. F. Rulkov, M. M. Sushchik, L. S. Tsimring, and H. D. I.
Abarbanel, Phys. Rev. E 51, 980 �1995�.

�3� H. D. I. Abarbanel, N. F. Rulkov, and M. M. Sushchik, Phys.
Rev. E 53, 4528 �1996�.

�4� T. Kapitaniak, J. Wojewoda, and J. Brindley, Phys. Lett. A
210, 283 �1996�.

�5� B. R. Hunt, E. Ott, and J. A. Yorke, Phys. Rev. E 55, 4029
�1997�.

�6� U. Parlitz and L. Kokarev, in Handbook of Chaos Control,
edited by H. Schuster �Wiley-VCH, Weinheim, 1999�, p. 271.

�7� B. B. Zhou and R. Roy, Phys. Rev. E 75, 026205 �2007�.

�8� D. W. Peterman, M. Ye, and P. E. Wigen, Phys. Rev. Lett. 74,
1740 �1995�.

�9� D. J. Gauthier and J. C. Bienfang, Phys. Rev. Lett. 77, 1751
�1996�.

�10� N. F. Rulkov and M. M. Sushchik, Phys. Lett. A 214, 145
�1996�.

�11� D. Y. Tang, R. Dykstra, M. W. Hamilton, and N. R. Hecken-
berg, Phys. Rev. E 57, 5247 �1998�.

�12� The Structure and Dynamics of Networks, edited by M. New-
man, A. L. Barabasi, and D. J. Watts �Princeton University
Press, Princeton, 2006�.

�13� S. C. Manrubia, A. S. Mikhailov, and D. H. Zanette, Emer-
gence of Dynamical Order: Synchronization Phenomena in
Complex Systems �World Scientific, Singapore, 2004�.

GENERALIZED SYNCHRONIZATION OF CHAOS IN… PHYSICAL REVIEW E 78, 046216 �2008�

046216-5



�14� A. Parravano and M. G. Cosenza, Phys. Rev. E 58, 1665
�1998�.

�15� M. G. Cosenza and A. Parravano, Phys. Rev. E 64, 036224
�2001�.

�16� A. C. Martí, M. Ponce, and C. Masoller, Phys. Rev. E 72,

066217 �2005�.
�17� T. Kawabe and Y. Kondo, Prog. Theor. Phys. 85, 759 �1991�.
�18� K. Kaneko, Phys. Rev. Lett. 65, 1391 �1990�.
�19� I. Waller and R. Kapral, Phys. Rev. A 30, 2047 �1984�.

O. ALVAREZ-LLAMOZA AND M. G. COSENZA PHYSICAL REVIEW E 78, 046216 �2008�

046216-6


