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The effect of physically realizable wall potentials �soft walls� on the dynamics of two interacting particles in
a one-dimensional �1D� billiard is examined numerically. The 1D walls are modeled by the error function and
the transition from hard to soft walls can be analyzed continuously by varying the softness parameter �. For
�→0 the 1D hard wall limit is obtained and the corresponding wall force on the particles is the � function. In
this limit the interacting particle dynamics agrees with previous results obtained for the 1D hard walls. We
show that the two interacting particles in the 1D soft walls model is equivalent to one particle inside a soft right
triangular billiard. Very small values of � substantiously change the dynamics inside the billiard and the mean
finite-time Lyapunov exponent decreases significantly as the consequence of regular islands which appear due
to the low-energy double collisions �simultaneous particle-particle-1D wall collisions�. The rise of regular
islands and sticky trajectories induced by the 1D wall softness is quantified by the number of occurrences of
the most probable finite-time Lyapunov exponent. On the other hand, chaotic motion in the system appears due
to the high-energy double collisions. In general we observe that the mean finite-time Lyapunov exponent
decreases when � increases, but the number of occurrences of the most probable finite-time Lyapunov expo-
nent increases, meaning that the phase-space dynamics tends to be more ergodiclike. Our results suggest that
the transport efficiency of interacting particles and heat conduction in periodic structures modeled by billiards
will strongly be affected by the smoothness of physically realizable walls.
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I. INTRODUCTION

Although physically realizable potentials are inherently
soft, most billiard models used in the literature have hard
walls. For example, the Sinai billiard �1�, the Bunimovich
stadium �2�, or the Annular billiard �3�, among others, have
hard walls and were used successfully to study the funda-
mental properties of classical and quantum chaotic systems.
In such models the chaotic motion of the single particle dy-
namics arises as the consequence of the spatial billiard ge-
ometry. The question now is about the effect and importance
of physically realizable potentials on the particles dynamics
inside the billiards. Some works in this direction have shown
that introducing soft walls do not destroy trajectories found
in the hard-wall limit �4� and may induce the appearance of
regular islands in phase space �5–7�. Such regular islands
inside the chaotic sea induce a “sticky” �or trapped� motion,
which is a common phenomenum in conservative systems
�8�. They arise from broken Kolmogorov-Arnold-Moser
�KAM� �9� curves and generate a rich dynamics in quasi-
integrable systems �8�. In the context of soft walls, the sticky
motion has been observed theoretically and experimentally
in the one particle atom-optic billiard �10,11� and has shown
to affect the quantum conductance in the soft wall micro-
wave billiard �12�.

Interacting many-particles systems in soft wall billiards is
the next step to be studied. Such billiards are interesting not
only from the fundamental point of view in nonlinear sys-
tems �13� but also in many applications. Two recent ex-
amples can be mentioned: The effect of wall roughness in
granular Poiseuille flow �14� and how the confinement of the

equilibrium hard-sphere fluid to restrictive one- and two-
dimensional channels with soft interacting walls modifies its
structure, dynamics, and entropy �15,16�. It has been shown
recently �17� that the origin of chaotic motion of two inter-
acting particles in a one-dimensional box is due double col-
lisions which occur very close to the hard walls. These
double collisions occur when one particle is colliding with
the one-dimensional �1D� wall and almost simultaneously
collides with the other particle. As a consequence, the kind
of motion generated close to the 1D walls is essential for the
whole dynamics inside the billiard. Therefore we expect that
the softness of the 1D walls will strongly affect the dynamics
of the interacting particles.

In this contribution we generalize previous results �17,18�
to the case of 1D soft walls. The equivalence between the
two interacting particles in the 1D soft walls model with the
motion of one particle inside a soft right triangular billiard is
shown. In this right triangular description the role of all im-
portant parameters from the problem becomes clear. The in-
teracting particles dynamics is studied by varying the mass
ratio �=m2 /m1 of the particles and the smoothness of the 1D
wall potential. The reason to use the mass ratio as a dynami-
cal parameter is related to the generation of new materials in
the field of nanotechnology, where electrons may be confined
inside a disk and can be affected by the surrounding material
which composes the semiconductor �19�. The composition of
the surrounding material changes the effective mass between
particles �20,21�. We show here that a small “degree of soft-
ness ���” of the 1D walls, strongly decreases the mean val-
ues of the finite-time Lyapunov exponents �FTLEs�. The sta-
tistics of the distributions from the FTLEs has been studied
in a number of physical situations ranging from turbulent
flows �22� to Hamiltonian dynamics �in many-particle sys-
tem �23�, and conservative mappings �24,25��. In this work
we use the FTLEs distribution over initial conditions, and the*mbeims@fisica.ufpr.br
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number of occurrences of the most probable FTLE, which
has been proposed �17� as an efficient quantity to detect
small islands �dynamical traps� in phase space, to describe
the qualitative and quantitative appearance of regular and
sticky motion as a function of �.

The paper is organized as follows. In Sec. II the model
with soft 1D walls used in this contribution is presented. The
description of this model in the right triangular is given in
Sec. III. Section IV shows a systematic numerical study for
the FTLEs, i.e., the number of occurrences of the most prob-
able FTLEs as a function of the mass ratios and of the soft-
ness parameter. Poincaré surfaces of section �PSS� are used
to show �a� the dynamics in the limit of hard 1D walls and
�b� the rise of sticky trajectories. We end with the conclu-
sions in Sec. V.

II. THE 1D SOFT WALLS MODEL

In this section we introduce the model used for the inves-
tigation of two interacting particles inside the 1D billiard
with soft walls. This model exhibit a continuous transition
between soft and hard walls. The Hamiltonian considered is

H = �
i=1

2

�Ti + Vi�qi�� + Vint = E , �1�

where Ti=
pi

2

2mi
�i=1,2� is the kinetic energy of particle i,

Vint=V0 /r is the Coulomb repulsion between particles with
r= �q1−q2�, and Vi�qi� is the potential energy from the 1D
soft walls, given by

Vi�qi� =
F0

2 �erf�qi − dw

�	2

 − erf�qi + dw

�	2

� + F0. �2�

The first term on the right-hand side of Eq. �2� represents the
soft 1D wall located at q=dw, while the second term repre-
sents the 1D soft wall located at q=−dw. Here � is the pa-
rameter which quantifies the “softness” of the walls and F0 is
the 1D walls intensity. F0 is added such that the total energy
is positive. Figure 1 shows the potential �2� for different
values of the softness parameter: �=5.0�10−3 �filled line�,

�=5.0�10−2 �cross points�, �=9.0�10−2 �dotted line�. The
1D soft walls are located at qw= �1. As the softness param-
eter increases the walls become soft. An example of the 1D
soft wall is shown by the dotted line in Fig. 1 for �=9.0
�10−2. As � approaches zero �see the filled line for �=5.0
�10−3� the walls look very similar to the 1D hard walls. This
limit will be called here as the 1D quasihard wall limit.

The corresponding left and right force of the walls on
particle i is

Fi =
1

	2��2
e−�qi + dw�2/2�2

−
1

	2��2
e−�qi − dw�2/2�2

. �3�

The force of the walls has the Gaussian form, which in the
limit �→0 approaches the � function. In this limit the cor-
responding potentials Vi�qi� approach the hard walls. Rescal-
ing the time by d� /dt=	2E, the effective Hamiltonian of the
1D soft walls model is

H̃ =
H

2
= �

i=1

2

�T̃i + Ṽi�qi�� + Ṽint, �4�

where Ṽint= Ṽ0 /r and Ṽi�qi� is given by Eq. �2� by using F̃0

instead F0. The scaled potential intensities are Ṽ0=
V0

2E and

F̃0=
F0

2E . These scaled intensities show the role of the total
energy on the dynamics. Results of the present work, given
for a combination of the scaled parameters, are valid for
other energies keeping the scaled parameters constant.

The model with smooth walls presented here differs, to
our knowledge, from all models used in the literature. In our
case, we assume the � function �in the limit �→0� for the
force instead for the potential, as usual. The reason to do this
is simple: when we use the � function for the potential, then
the corresponding force is not well defined. Our model
makes it possible to study the classical dynamics continu-
ously in the transition from smooth to hard walls. Beside
that, hard walls discontinuities in numerical simulations may
introduce errors at each wall collision.

III. THE 1D SOFT MODEL AND THE SOFT
TRIANGULAR BILLIARD

It is well know �26–28� that the motion of three particles
on a frictionless ring with pointlike interactions is equivalent
to one particle moving freely inside the billiard, colliding
elastically with the sides of the triangle. Let us start with the
Hamiltonian of the three particles on a ring, given by HB

=
p1

2

2m1
+

p2
2

2m2
+

p3
2

2m3
. We assume that the elastic collisions take

place at q1=q2, q2=q3, and q3=q1+1. These collision points
define the hard-wall sides of the triangle. Using the orthogo-
nal transformation �26� �M =m1+m2+m3�:

q1 = −	 m3

�m1 + m2�M
x −

1

m1
	 m1m2

�m1 + m2�
y +

z
	M

,

q2 = −	 m3

�m1 + m2�M
x +

1

m2
	 m1m2

�m1 + m2�
y +

z
	M

,

0
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FIG. 1. Potential energy and corresponding forces for F0=10.0
and �=5.0�10−3 �filled line�, �=5.0�10−2 �cross points�, �
=9.0�10−2 �dotted line�.
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q3 =	�m1 + m2�
m3M

x +
z

	M
, �5�

for the three particles on a ring, the resulting Hamiltonian is
HB= 1

2 ẋ2+ 1
2 ẏ2+ 1

2 ż2. This is equivalent to the motion of one
particle inside a triangular billiard with angles

tan � =	m2M

m1m3
, tan 	 =	m1M

m2m3
, tan 
 =	m3M

m1m2
.

The pointlike collision between particles 1 and 2 defines one
side of the triangle at q1−q2=0, and the collision of these
particles with particle 3 defines the other two sides of the
same triangle. For m3→� �
=� /2� we obtain the right tri-
angular billiard which corresponds to the motion of two par-
ticles m1 and m2 moving inside the 1D box with hard walls.
In this case the interaction between particles 1 and 2 is the
pointlike collision and the fixed particle 3 plays the role of
the 1D hard wall, kept fixed at q3. These collisions with the
1D fixed hard wall can be represented by � functions. How-
ever, the corresponding equations of motion are not well de-
fined. Therefore, to describe analytically such problems we
include in HB the soft interactions between particles which,
in a given limit, are expected to describe the pointlike colli-
sions and the 1D box hard walls.

First we assume that the interaction between particles
1 and 2 is the Coulomb repulsion V12=Vint=V0 / �q1−q2�.
In order to give an idea of the transition to hard walls
in the triangle, we use the Yukawa potential V12
=V0e�−�q1−q2�/�� / �q1−q2�. The interaction between particles 1
and 2 depends only on the relative positions of both particles
and �0 is a parameter which allows to change the interac-
tion range from the smooth potential. For �→0 the limit of
short interactions �pointlike collision� can be approached.
Using the orthogonal transformation �5� the above interac-
tion is written as V12��y��=	�12V0e�−�y�/�	�12� / ��y��, where
�12=m1m2 / �m1+m2� is the reduced mass between particles 1
and 2. Using V12��y��, the one side of the triangle located at
y=0 is now soft, as will be shown numerically later.

Second, we assume that particles 1 and 2 interact
smoothly with particle 3. In order to study the 1D box case,
the location of particle 3 is kept fixed at q3= �dw and m3
→�. In this way particle 3 will play the role of the 1D soft
walls. Here we consider the soft interactions Vi3�x ,y�
=Vi�qi� given by Eq. �2�. Due to the soft interaction with
particle 3, particles 1 and 2 can, in the ring description, in-
teract with particle 3 on both sides, left �q3=−dw� and right
�q3= +dw�. In the limit m3→� the orthogonal transformation
�5� is then reduced to the �x ,y� plane

q1 = −
	�12

m1
�y +

m1

	m1m2

x
 ,

q2 =
	�12

m2
�y −

m2

	m1m2

x
 . �6�

Rescaling the time by d� /dt=	2E and using the reduced
orthogonal transformation �6� we obtain, after straight-
forward calculation, the final scaled Hamiltonian

H̃B=HB / �2E�=1 /2 in the right triangular description �using
�x̃ , ỹ�→ �x ,y��

H̃B =
ẋ2

2
+

ẏ2

2
+ Ṽ12��y�� + �

i=1

2

Ṽi3�x,y� , �7�

where

Ṽ12��y�� = Ṽ0
e�−�y�/	�12��

�y�
,

Ṽi3�x,y� = F̃0 +
F̃0

2 �erf�	2�12

2mi�
�y +

�− 1�i+1mi

	m1m2

x
 −
	2dw

2�
�

− erf�	2�12

2mi�
�y +

�− 1�i+1mi

	m1m2

x
 +
	2dw

2�
� .

The total energy of the scaled problem is H̃B=1 /2 and the
effect of the real energy can be seen in the scaled potential

intensities Ṽ0=
V0	�12

2E and F̃0=
F0

2E . In the above Hamiltonian
we observe the role of the crucial quantities of the problem,
i.e., masses m1 ,m2, the softness ��� of the interaction be-
tween particles 1 and 2, the softness ��� of the 1D soft walls,
and the size dw of the 1D soft walls billiard.

Figure 2 shows the potential energy from Eq. �7� for two
values of the smoothness �, and for two values of the masses

m1 and m2. We assume that Ṽ12= Ṽ0 / �y�. First observation is
that in the �x ,y� plane the potential energy has a right tri-
angle form, as expected. The left side of the triangle �y=0�
has a smooth form due to V12��y��, which is the long Cou-
lomb repulsion between particles 1 and 2. The other two
sides of the triangle �with internal angle 
=� /2� can be soft
or not, depending on �. These two sides are equivalent to the
1D soft walls. For �=5�10−3 and m1=m2=1 we nicely see
in Fig. 2�a� that these two sides approach to hard walls, while
for �=0.2 these two sides are very soft, as can be seen in
Fig. 2�b�. Figures 2�c� and 2�d� show the potential energy for
the right triangle when the masses are changed �m1=3 and
m2=1�. Figure 2�c� for �=5�10−3 and Fig. 2�d� for �=0.2.
Above results show us that the motion of two particle inside
the 1D soft walls is equivalent to the motion of one particle
inside the right triangle with soft walls.

Some limiting situations can promptly be seen from
Hamiltonian �7�: �a� When F0=0 �no 1D walls� the two sides
with internal angle 
=� /2 of the triangle disappear and just

the soft wall Ṽ12��y�� remains. The Hamiltonian is separable
and integrable since the x dependence in the potential energy
disappears. This means that for two interacting particle
�through relative coordinates� which are not bounded inside
walls, the problem is regular, as expected. �b� The kind of
coupling between coordinates x and y depends on the form

of the interaction used for Ṽi3�x ,y�. Therefore, these two
sides �or the 1D soft walls� determine if the dynamics inside
the right triangle �or inside the 1D box� is chaotic and/or
regular. �c� When m2→� �or m1→�� the x dependence in

the argument of the error function �in Ṽi3�x ,y�� can be ne-
glected when compared to the y dependence, and the Hamil-
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tonian �7� is separable again. This is also an expected result,
since when particle 2 �or 1� is too heavy, the motion should
be regular again. �d� Increasing the billiard size dw, the 1D
soft walls come apart. The same effect is obtained by de-
creasing the softness �. �d� The last limit which we would
like to mention, and the most interesting one, is the hard-wall

billiard case, where �→0 and �→0 �and Ṽ0→��. In this
limit the whole dynamics can be explained in terms of ratio-
nal and/or irrational values of � /� �28,29�. Using the
Yukawa interaction in the 1D hard walls billiard, we ap-
proached this limit numerically ��=0.1� in a previous work
�17�, where it was also shown analytically the influence of
the interaction between particles 1 and 2 to generate positive
Lyapunov exponents. The softness of this interaction is es-
sential to generate positive Lyapunov exponents, and it is
possible to see that for the pointlike collisions the probability
to obtain positive Lyapunov exponents goes to zero. To study
this limit analytically, the interaction potentials between all
particles must be chosen appropriately, and it is the subject
of a future work. In this context it would be interesting to use
the methodologies developed in �4–7� to study the limit �
→0.

We finish this section by mentioning that the Hamiltonian
�7� corresponds to the motion of one particle inside the right
triangle suffering soft collisions at the walls. Although this is
not, strictly speaking, a billiard motion as in the original
sense �free particle inside a table�, we will refer to it as the
particle inside a soft right triangular billiard, due to the anal-
ogy shown in this section.

IV. RESULTS

We investigate the nonlinear behavior inside the 1D soft
billiard by determining the distribution P��t ,�� of the finite-
time largest Lyapunov exponents �t as a function of the mass

ratio between particles �=m2 /m1. This investigation was
done previously for the 1D hard-wall case �17,18� and the
whole dynamics depends strongly on �. The FTLE is ob-
tained by integrating two closed trajectories, computing the
local LE after a time �=0.1 and making an average over all
the local LEs. The time � is chosen for the better conver-
gence of the LE. We used the fourth-order Runge Kutta
method with variable steps. The energy is conserved in all
simulations by around 10−6. For quasi-integrable system, the
presence of broken KAM curves inside the chaotic sea in
phase space, leads to trapping and “sticky” trajectories �8�,
affecting the convergence in the determination of the FTLEs,
which depend now on the initial conditions. On the other
hand, it implies that the distribution P��t ,��, calculated over
many initial conditions, contains information about the
amount of regular motion �and trapped trajectories� in phase
space �17,30–34�. For ergodic system and for infinite times,
the Lyapunov exponents do not depend on initial conditions
�35�.

A. The 1D quasihard limit (�=5Ã10−3)

Figure 3 shows �dashed line� the mean FTLE ��t� as a
function of the mass ratio � for �=5�10−3. This is the case
of very small values of � �1D quasihard wall limit� and the
1D soft walls look very similar to the 1D hard-wall potential
�see Fig. 1�. The mean FTLE decreases from roughly
�1.15 to 0.54 in the whole mass ratio interval. This means
that the dynamics is becoming more and more regular, as
expected, since �→� constitutes an integrable limit with the
heavy particle at rest. However, at ��1.0 the mean FTLE
increases, showing that the symmetry for equal masses in-
creases the amount of irregular motion. Figure 3 also shows
�full line� results for the case of hard 1D walls, published
previously �18�. In that case, and therefore in the case ob-
served here, the peak at �=1.0 is the consequence of the
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FIG. 2. �Color online� Scaled triangular potential energy �Vtri� from the Hamiltonian �7� with F̃0=10.0, Ṽ0=0.5, and �=5.0�10−3 in �a�
and �c�, and �=2.0�10−1 in �b� and �d�. For �a� and �b� we have m1=m2=1, and for �c� and �d� we have m1=3 and m2=1.
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resonance observed in the limit of hard-point collisions be-
tween particles. The qualitative behavior of the FTLEs could
be explained in �18� with the help of some special periodic
orbits from the Gauss map. For the purpose of this work we
can observe that both curves in Fig. 3 are in good agreement.
This confirms that the model of 1D soft walls presented here
reproduces correctly, in the limit �→0, the 1D hard wall
case. However, small differences can be observed in Fig. 3
for ��0.4, ��0.96, and ��3.0. These differences will be
explained later, where we also show some Poincaré surfaces
of section �PSS� and discuss more details of the whole dy-
namics for different values of the mass ratio.

To analyze deeper the effect of the smooth potential on
the particles dynamics, Fig. 4 shows the finite-time distribu-
tion of the largest Lyapunov exponent, P��t ,��, for the �a�
1D quasihard wall limit �=5�10−3 and �b� the 1D hard wall
case from �18�. The gray points below the main curve are
related to chaotic trajectories which were trapped for a while
close to regular islands. Since both figures are quite similar,
the 1D quasihard limit also represents adequately the 1D
hard wall case concerning trapped trajectories. An interesting
feature in Fig. 4 is the change of the width of P��t ,��
around the number of occurrences of the most probable �t

p

defined through �17�

� �P��t,��
��t

�
�t=�t

p
= 0. �8�

For mass ratios close to ��1.0, for example, many initial
condition lead to different values of �t. In this region, �t

p has
a minimum as a function of �, which is a clear demonstration
of the presence of “sticky” trajectories.

To determine the amount of “sticky” and regular trajecto-
ries in phase space we follow �t

p as a function of the mass

ratio �. In fact, we follow P��t
p�, which is the normalized

number of occurrences of the most probable LE, or the prob-
ability to obtain �t

p. This is shown in Fig. 5. When P��t
p� is

large, a large fraction of initial conditions lead to the same �t
and trapped trajectories are rare. For example, the maximum
of P��t

p� in Fig. 5�a� �and Fig. 5�b�� close to ��1.8, is the
region in Fig. 4�a� where gray points below the main curve
are rare. On the other hand, close to ��0.96 we have a
minimum in Fig. 5�a� �and Fig. 5�b��, which is the conse-
quence of the large dispersion around ��0.96 in Fig. 4�a�.
Again the quasihard limit �Fig. 5�a�� and hard wall �Fig.
5�b�� agree very well. The fast variation of P��t

p� is due to
statistical fluctuations in its determination over initial condi-
tions.

Figure 6 shows the PSS for �=1.0,1.8 and compares the
1D quasihard limit �Figs. 6�a� and 6�b�� with the 1D hard
wall case �Figs. 6�c� and 6�d��. Both cases are alike. The PSS
is constructed in the following way: each time particle 2 is
located at the origin, and p20.0, then the point �q1 , p1� is
recorded. Since this work is focused on the dynamics inside
the realistic 1D box problem, we have chosen to present
results of the PSS in the 1D box coordinates, instead in the
right triangular coordinates �x ,y�. In fact, we have checked
some PSS in the �x ,y� coordinates and no additional relevant
informations for the present work were obtained. It can be
observed in Fig. 6 that for �=1.8 the PSS is almost filled
with the chaotic trajectory, while for �=1.0 some regular
islands and forbidden trajectories appear which induce the
trapping trajectories �these trapped trajectories cannot be
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FIG. 3. Mean values of the finite-time largest Lyapunov expo-
nent calculated over 200 trajectories up to time t=104 and at scaled

energy Ẽ=0.5, Ṽ0=1.0, F̃0=10.0, for �=5�10−3 �dashed line�.
This is the 1D quasihard wall limit. For comparison, the full line
shows results obtained for the 1D hard walls �18�. For each trajec-
tory the largest FTLE is evaluated over 105 samples.

FIG. 4. �Color online� Finite-time distribution of the largest
Lyapunov exponent P��t ,�� calculated over 200 trajectories up to
time t=104, for �a� 1D quasihard wall limit �=5�10−3, and �b� 1D
hard wall limit from �18�. With increasing P��t ,�� the color
changes from light to dark �white over yellow and blue to black�.
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seen in the resolution used in Fig. 6�. Therefore, in addition
to the mean FTLE and the number of occurrences of the
FTLE, also in the PSSs the quasihard limit and the hard 1D
wall case are almost identical, showing that our soft model
correctly describes the hard 1D wall limit �→0. This will
change drastically next, when the softness parameter in-
creases.

B. The 1D soft case �=5Ã10−2

Finally we discuss the case of 1D soft walls. The form of
the 1D wall potential is shown in Fig. 1 �see cross points for
�=5�10−2�. Although the value of � is small, the effect on
the particles dynamics is astonishing. Figure 7 shows the
mean values of the finite-time largest Lyapunov exponents
for �=5�10−2 �full line� compared with the quasihard 1D
wall limit �dashed line� from Fig. 3. The effect of the small
soft potential is remarkable. The mean FTLEs decrease
around 50% and the peak observed close to �=1.0 �full line�
is now a minimum. A minimum also appears close to
��0.40.

To understand better what happens, Fig. 8�a� shows the
finite-time distribution of the largest Lyapunov exponent for
this case. Clearly we see that, although the peak close to �
=1.0 still exist, the dispersion around the most probable
FTLE is very large. This large dispersion affects the mean
Lyapunov exponents from Fig. 3 and a minimum occurs at
�=1.0. This strong dispersion around �=1.0 is also con-
firmed by the accentuated minimum of the number of occur-
rences of the most probable FTLE plotted in Fig. 8�b�. A
similar effect, but with smaller intensity occurs for ��0.4.
The mean FTLEs increase as � decreases, the amount of gray
points below the main curve increases and the number of
occurrences of the most probable FTLE also decreases.

Many other values of the mass ratio � could be discussed
to analyze the appearance of island in phase space. Instead of
doing so we would like to show some PSS in order to discuss
the dynamics of the interacting particles in the 1D soft walls.
We start by showing the case of �=1.0, for which many
trapped trajectories and islands are expected. Figure
9�a�–9�c� shows the corresponding PSS. Since for the PSS
we used the condition p20.0, particle 2 is always moving
to the right at q2=0. Because the interaction between par-
ticles is repulsive, we expect that particle 1 crosses the PSS a
distinct number of times for p1�0.0 than for p10.0. This
physical effect is the origin of the asymmetry in Fig. 9�a�
observed in p1. Additionally, due to p20.0, trajectories on
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wall case from �18�.

(b)(a)

-4.0

-2.0

0.0

2.0

4.0

-1.0 -0.8 -0.6 -0.4 -0.2

p1

q1

-4.0

-2.0

0.0

2.0

4.0

-1.0 -0.8 -0.6 -0.4 -0.2

p1

q1(d)(c)

FIG. 6. Poincaré surfaces of section for particle 1 and �a�, �b�
1D quasihard limit and �c�, �d� 1D hard wall case. �a�, �c� �=1.0,
and �b�, �d� �=1.8.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

0.0 1.0 2.0 3.0 4.0

<
Λ

t>

γ

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

0.0 1.0 2.0 3.0 4.0

<
Λ

t>

γ

FIG. 7. Mean values of the finite-time largest Lyapunov expo-
nent calculated over 400 trajectories up to time t=104 and at scaled
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the PSS with negative momentum �p1�0.0� are less affected
by particle 2 than trajectories with p10.0. Since the chaotic
motion results from the simultaneous effect of the 1D walls
and the mutual interactions, we conclude that trajectories
with
p1�0.0 should be more regular. Therefore we expect more
island for p1�0.0 than for p10.0 �see Fig. 9�a��. Observe
that for p1�0.0 the islands extend themselves from
q1�−1.0 until q1�−0.1, which is very close to particle 2,
located at q2=0. For p10 the interval of islands goes from
q1�−1.0 until q1�−0.4, very far from particle 2. Close to
the left 1D wall �q1�−1.0�, the momentum of particle 1
remains in the interval −1.0� p1�1.0, while close to particle
2 �q1�−0.1� we have chaotic trajectories with essentially
only positive momenta �0.0� p1�1.0� due the repulsion of
particle 2. For −1.0� p1�0.0 we have essentially regular

trajectories since both particles are moving apart. The main
island in Fig. 9�a� is related to the following regular trajec-
tory: particle 1 is moving to the left with a small momentum
which does not allow it to “penetrate” very much the 1D soft
wall. It “collides” with the 1D soft wall and simultaneously
is affected by the interaction force with magnitude compa-
rable to the magnitude of the 1D wall force. This is called
here as the low-energy double collision, which in this ex-
ample occurs between particle 1 �low momentum�, particle
2, and the 1D soft wall. After colliding with the left 1D wall,
particle 1 moves to the right with a small momentum and
cannot approach particle 2 very much due to the long Cou-
lomb repulsion. Subsequently it changes its direction and
goes back to the left 1D wall.

Another interesting property occurs very close to the “top
of the 1D soft wall potential.” We call the readers attention to
the fact that “top of the 1D soft wall potential” in our one-
dimensional billiard is the closest point that particles ap-
proach the turning point. In other words, it is the point where
the “penetration” into the soft 1D wall is maximal. When
particle 1 has enough momentum �p1=−4.0� to “climb”
�“penetrate”� the left 1D wall until the “top,” it reaches the
turning point on the left �around q1�−1.1� with zero mo-
menta �see Fig. 9�a��. After that, particle 1 returns to move to
the right, accelerates �p1= +4.0� and travels until the other
extremum at q1�−0.2. This is a nonperiodic chaotic trajec-
tory with a behavior similar to the regular trajectory dis-
cussed above. The main difference is that the regular trajec-
tory has not enough momentum to “climb” �“penetrate”� the
1D wall potential until the “top.” In this example of the
chaotic trajectory, the high-energy double collision occurs
between particle 1 �high momentum�, particle 2, and the soft
1D wall. It is worth it to mention that in the triangle descrip-
tion the above high- and low-energy double collisions corre-
spond to the high- and low-energy particle collisions with the
corners of the triangle which are located at y=0.

Figures 9�b� and 9�c� show a magnification of some regu-
lar regions from Fig. 9�a�, revealing the existence of the
regular islands. Figure 9�d� shows the PSS for �=0.8, which
compared to �=1.0 presents a small number of islands. This
is in agreement with results from Fig. 8�b�, where the num-
ber of occurrences of the most probable FTLE has not a
minimum for ��0.8, and a small number of trapped trajec-
tories is expected.

We conclude this section by saying that the softness of the
1D wall decreases the mean FTLE. This effect is so strong
that it is responsible for the small differences observed for
��0.4, ��0.96, and ��3.0 between the quasihard limit

FIG. 8. �Color online� �a� Finite-time distribution of the largest
Lyapunov exponent P��t ,�� calculated over 400 trajectories up to
time t=104, �=5�10−2. With increasing P��t ,�� the color
changes from light to dark �white over yellow and blue to black�;
�b� corresponding normalized number of occurrences of the most
probable Lyapunov exponent �t

p.

(b)(a) (c) (d)

FIG. 9. Poincaré surfaces of section for �=5�10−2 and for �a� �=1.0, and their magnification �b� and �c�. Figure �d� is for �=0.8.
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and the hard wall case �see Fig. 3�. For these values of � the
number of occurrences of the FTLE from Fig. 5 has a mini-
mum, and a larger amount of sticky trajectories is expected.
This means that the softness of the 1D wall has a stronger
influence on space phases with sticky trajectories. In addition
we note that the above differences are stronger for ��3.0
�see Fig. 3�. This can be nicely explained using properties of
the particle-particle frontal collision case. When a frontal
collision of the particles occurs, then for �=m2 /m13.0 the
momentum of particle 2 is large enough and, after one col-
lision, it continuous to move in the same direction as before
the collision. Obviously this depends on the particles
energy, but in average, more frontal collisions are necessary
to change the direction of movement of particle 2 when
�3.0. This property increases the amount of double colli-
sions close to the 1D wall, and consequently, the effect of the
1D soft wall is more pronounced when �3.0, and the dy-
namics becomes more regular when compared to the 1D hard
wall case.

C. Dependence on the softness parameter �

In this section we analyze the mean FTLEs, ��t�, and the
number of occurrences of the most probable FTLEs
as a function of the parameter �. All simulations were
realized over 400 initial conditions and for the mass ratios
�=0.8,1.0,1.8,2.2. Figure 10 shows ��t� for ten different
values of � in the interval 5�10−3���5�10−2. This is
exactly the transition region between the 1D quasihard limit
and the 1D soft wall. We observe that the main behavior for
all mass ratios is that the mean FTLEs decrease as � in-
creases. This means that the degree of chaoticity decreases
when the softness of the 1D wall increases.

Figure 11 shows the number of occurrences of the most
probable FTLE as a function of � for the values of � shown
in Fig. 10. For all mass ratios, but one �see filled circles
�=1.0�, P��t

p� increases with �. This means that the disper-
sion around the most probable FTLE decreases when � in-
creases, i.e., many initial conditions converge to the same
Lyapunov exponent, and a more ergodiclike motion is ex-

pected when compared with other mass ratios. This is inter-
esting seeing that for higher values of � the degree of chao-
ticity decreases but the dynamics becomes more ergodiclike.
Compare for example the values of P��t

p� in Fig. 11 for �
=5�10−2 and �=0.8,1.0. For �=0.8 we have P��t

p��0.2,
and for �=1.0 we have P��t

p��0.1. So we expect that the
dynamics is more ergodiclike for �=0.8. This really happens
and can be confirmed visually comparing Figs. 9�a� and 9�d�.
Clearly the amount of regular island inside the chaotic sea is
smaller for �=0.8 �Fig. 9�d�� than for �=1.0 �Fig. 9�a��.

V. CONCLUSIONS

To conclude, we discuss the effect of physical realizable
potentials �soft potentials� on the dynamics of interacting
particles inside 1D billiards. This contribution generalizes
previous results �17,18� to the case of 1D soft walls. The 1D
soft walls are modeled by the error function with the softness
parameter �. In the limit �→0 the 1D wall force on the
particle is given by the � function. This allows us to study
continuously the dynamics of interacting particles in the
transition from soft to hard walls. The equivalence between
the two interacting particles in the 1D soft walls model with
the motion of one particle inside a soft right triangular bil-
liard is shown. The role of all parameters from the model
becomes clear in the right triangular description. Since the
chaotic motion of interacting particles inside 1D billiards is
generated by double collisions which occurs close to the 1D
walls �17�, we expect the influence of the soft 1D walls on
the particles dynamics to be very strong. Using the mean
FTLE and the number of occurrences of the most probable
FTLE, we analyze the dynamics of the interacting particles
when the softness parameter changes from the 1D quasihard
limit ��=5�10−3� to the 1D soft wall case ��=5�10−2�.
We show that the 1D quasihard wall limit agrees very well
with results from the 1D hard wall case, analyzed previously
�18�. When the softness parameter increases to �=5�10−2,
the mean FTLEs decreases substantiously �around 50%�
when compared to the FTLEs from �=5�10−3. Although
both 1D walls are visually very similar, the dynamics of the
interacting particles changes considerably. While regular is-
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lands and trapped trajectories are induced by the low-energy
double collisions, the chaotic motion is produced by the
high-energy double collisions. Double collisions are charac-
terized by the simultaneous particle-particle-1D wall colli-
sions. The rise of trapped trajectories is shown by using the
number of occurrences of the most probable FTLE and the
corresponding PSS.

Results from the present paper strongly suggest that the
transport of interacting particles and heat conduction in
physical devices �10–12,36–40�, which can be described by
open billiard models, will substantiously be affected by
physically realizable wall potentials �soft walls�. In such
models, particles �heat� are injected at one open end of the

billiard, and the efficiency of the transport depends on how
long �among other properties� particles �heat� will need to
reach the other open end of the billiard. Therefore, trapped
trajectories induced by the soft walls and interacting par-
ticles, as shown in this paper, may substantiously increase
the time spend by the particles �heat� inside the soft billiard,
affecting the transport efficiency.
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