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Onset of wavy vortices in Taylor-Couette flow with imperfect reflection symmetry
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We reveal experimentally a mechanism that alters the critical behavior of a Hopf bifurcation substantially
due to the presence of imperfections of the reflection symmetry in a hydrodynamic system. The onset of
rotating waves in Taylor vortex flow, which is widely considered as a “classical” example for a Hopf bifurca-
tion in hydrodynamics, is investigated primarily by transient response experiments. While wavy vortex flow is
not influenced by such (unavoidable) experimental imperfections, the critical behavior of the axially subhar-
monic rotating wave with wavy outflow boundaries, also called the small-jet mode, is qualitatively altered.
Experimental evidence is provided that the modified critical behavior at the Hopf bifurcation is associated with
imperfections of the reflection symmetry of the Taylor-Couette setup. The experimental results on Hopf bifur-
cation are discussed in the context of a cusp-Hopf bifurcation model recently proposed by Harlim and Lang-
ford [Int. J. Bifurcation Chaos Appl. Sci. Eng. 17, 2547 (2007)] and compared to experimental results on

imperfect pitchfork bifurcation in small-aspect ratio Taylor-Couette flow.
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I. INTRODUCTION

Bifurcations play an important role in the organization of
complex dynamics and pattern formation in many nonlinear
systems [1,2]. An in-depth knowledge of the relevant sym-
metries is of crucial importance for the understanding of a
bifurcation event [3]. Since experimental systems are never
perfectly symmetric, as assumed generally in models of the
physical system, a realistic description of a bifurcation event
in a physical system has to cope with the influence of imper-
fections which break these symmetries. Imperfection theory
has successfully been applied in order to model bifurcation
events in physical systems, e.g., with imperfect reflection
symmetry, such as pitchfork [4] or gluing bifurcations [5,6].

Modern ideas from bifurcation theory have been very suc-
cesful in the interpretation of behavior close to hydrody-
namic instabilities in many fluid flows [2,7], such as in the
Taylor-Couette system [8]. Taylor-Couette flow is the flow of
a viscous liquid in the gap between two concentric, rotating
cylinders. The “classical” experimental system with rotating
inner and nonrotating outer cylinder as well as nonrotating
rigid end plates is invariant under azimuthal rotations and
has an axial reflection symmetry. The onset of rotating waves
in axisymmetric Taylor vortex flow, the so-called “wavy vor-
tex flow” or more generally “wavy Taylor vortex flow,”
serves as one of the classical example for a Hopf bifurcation
in hydrodynamics (see, e.g., [2,3,7,8]). Rotating waves break
the azimuthal rotational invariance, but keep a (spatial or
spatiotemporal) reflection symmetry in the absence of ex-
perimental imperfections.

Hopf bifurcations often provide an appropriate description
for the onset of time dependence and the appearance of os-
cillatory patterns in systems with symmetries (see, e.g.,
[2,3]). Though imperfections can alter the structure of a Hopf
bifurcation with symmetry [9,10] in principle, a simple re-
flection symmetry like in the Taylor-Couette system and the
corresponding imperfections generally do not influence the
behavior of a Hopf bifurcation [3].

In this work experimental results are presented which
show that the behavior near a Hopf bifurcation can substan-
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tially be influenced by the presence of imperfections of the
reflection symmetry.

The experimental results suggest a coupling of the Hopf
bifurcation towards wavy Taylor vortices to reflection sym-
metry breaking. Although no bifurcation point of higher
codimension is observed, the presence of (damped) symme-
try breaking is found to have a crucial influence on the Hopf
bifurcation. A recently proposed cusp-Hopf bifurcation
model by Harlim and Langford [11] suggest that such a cou-
pling of a Hopf bifurcation to symmetry breaking is a con-
sequence of imperfection of the reflection symmetry and
would be absent in a perfectly symmetric system. Examples
for Hopf bifurcations coupled to additional slow modes arise
in various systems, such as in chemical systems [12], from
advected fields [13], from conservation laws [14], and from
Goldstone modes due to broken translational invariance [15].

II. WAVY TAYLOR VORTICES

Axisymmetric Taylor vortices have the form of axial pairs
of counterrotating, toroidal vortices and thus leave the flow
invariant under azimuthal rotation and, also, in a classical
Taylor-Couette system, symmetric with respect to axial re-
flections [8]. They appear smoothly in the laminar flow of
the Taylor-Couette system for Reynolds numbers close to the
centrifugal instability of the mathematical system, and their
number as well as the exchange process depends strongly on
the aspect ratio [16]. The aspect ratio—i.e., the axial length
normalized by the gap width—as well as the radius ratio and
the Reynolds number serve as control parameters of Taylor-
Couette flow.

At higher Reynolds numbers axisymmetric Taylor vorti-
ces can become unstable via a Hopf bifurcation towards
time-dependent flows which have the form of a rotating
wave [17-20]. The rotating waves have an azimuthal wave
number m >0 and wave speed c, and they break the rota-
tional invariance of the system; i.e., the flow becomes non-
axisymmetric. Rotating waves appear as a steady flow in a
certain corotating frame. The classical wavy vortex flow—
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i.e., the collective axial motion at any azimuthal position
with azimuthal periodicity—is predominant in small-gap
Taylor-Couette flow, but depending on the aspect ratio and
the radius ratio, rotating waves of different wave speed, azi-
muthal wave number, and axial periodicity can occur [17].
The predominant rotating waves in Taylor-Couette flow with
a radius ratio of 0.5 are, additionally to the wavy mode, the
so-called small-jet mode [18]. This mode has also been
labled as “wavy outflow boundary” [19] and “subharmonic
mode” [20] since the oscillation amplitude is localized in the
outward jets and adjacent outward jets oscillate in antiphase;
i.e., the flow is axially subharmonic with respect to the pe-
riod of Taylor vortices. The wavy mode and the small-jet
mode both have a reflection symmetry which is either spa-
tiotemporal or purely spatial as for the small-jet mode in the
case of an even number of Taylor vortex pairs. The small-jet
flow state can break the reflection symmetry well beyond the
critical point in a symmetry-breaking pitchfork bifurcation
[21]. Such bifurcation behavior is not observed for the wavy
mode.

III. EXPERIMENTAL SETUP

The measurements are performed in a Taylor-Couette
setup with a rotating inner and a nonrotating outer cylinder.
The rotating inner cylinder is machined from stainless steel
having a radius of r,=(12.50*=0.01) mm, while the station-
ary outer cylinder is made from optically polished glass with
a radius of r,=(25.00%£0.01) mm. At top and bottom the
fluid is confined by metal end plates, which are held fixed in
the laboratory frame. The distance between these plates de-
fines the axial height L of the flow, which is adjustable
within an accuracy of 0.01 mm up to a maximal height of
250.00 mm. Geometric parameters of Taylor-Couette flow
are the aspect ratio I'=L/d, with gap width d=r,—r;, and the
radius ratio n=r;/r, which is held fixed to =0.5 for all
measurements. The control parameter serves as the Reynolds
number, which is Re=2#fdr;/ v, with f denoting the rotation
frequency of the inner cylinder. With a (PLL) phase-locked
loop control an accuracy of Af/fe107* in the short-term and
Af/ 107" in the long-term average is achieved. As a work-
ing fluid within the gap between the two concentric cylin-
ders, a silicone oil with a kinematic viscosity (v
=11.9%0.1) ¢St is used. The uncertainty of 0.1 ¢St refers
to the measurement of the absolute value of kinematic vis-
cosity. The accuracy of v during a measurement is primarily
determinated by the temperature variation of the fluid that is
thermostatically controlled to (21.00=0.01)° C. This yields
a Av= 77|51 000 ¢ AT~0.0025 cSt. Although the uncertainty
in the absolute value of v introduces an uncertainty of
ARe,,,/Re 1072 in the absolute value of Re, the variation in
Reynolds number with time is within ARe/Re o 10~ during
a measurement. This variation determinates the resolution in
Re that is achieved in the experiment. We utilize laser-
Doppler velocimetry (LDV) for contact-free measurements
of the axial component v, of the local flow velocity.

IV. BIFURCATIONS WITH IMPERFECT REFLECTION
SYMMETRY
A. Critical slowing down

An investigation of transient dynamics close to a bifurca-
tion provides important information about the properties of a

PHYSICAL REVIEW E 78, 046206 (2008)

bifurcation event. In particular, it may give insight into the
departure from a bifurcation model (see [22,23] for transient
dynamics at the onset of Taylor vortices).

The critical slowing down—i.e., the divergence of time
constants as the control parameter approaches the critical
point—is a typical dynamical phenomenon that occurs close
to local bifurcations, such as pitchfork and Hopf bifurca-
tions. Critical slowing down at Hopf bifurcations in fluid-
flow experiments has been observed, e.g., at the onset of
wavy vortex flow by Pfister and Gerdts [24] and at the onset
of oscillations in magnetoconvection by Hof and Mullin
[25].

The transient dynamics of a Hopf bifurcation is deter-
mined by the slow temporal variations of the oscillation am-
plitude A=0, which is governed by the Landau amplitude
equation

dA A?
T =8A-—

. 1
dt A] W)

The same equation governs the critical dynamics at a
pitchfork bifurcation in systems with reflection symmetry (in
this case A represents symmetry breaking and can therefore
also be negative). The relative distance from the critical Rey-
nolds number Re, is represented by e=(Re—Re,)/Re,, while
7y and A, are scaling factors for time and amplitude, respec-
tively. A Landau time constant can be defined as 7;:=7y/¢€, a
final amplitude as A;:=A, Ve (for £=0), and an initial am-
plitude as A,=A(t=0). For supercritical £=0 as considered
in the following experiments the solution of Eq. (1) is given
by

ty
All)= 5= 2 2|
Ve M+ (AJA)" 1

2)

An amplitude governed by Landau theory has properties
which can be tested experimentally: (i) the square-root-law,
i.e., the final amplitude scales with Ao Ve; (ii) the critical
slowing down, i.e., the time constant scales with 7;oc1/¢;
and (iii) the time constant 7; depends only on & and is inde-
pendent of the initial amplitude A;.

The latter point has not been paid much attention to in
experiments until recently when a significant difference be-
tween time constants for onset and decay of Taylor vortices
was revealed [23]. It has become apparent from those inves-
tigations that the dependence of the time constant from initial
conditions may be important to characterize a departure from
a bifurcation model. Note that generally the time evolution
described by Eq. (2) can significantly differ with A;, although
7; may be the same.

In order to obtain an estimate 7 for the Landau time con-
stant 7; from an amplitude relaxation processes, the solution
(2) of Landau equation (1) is fitted to experimental time
series. The response experiments are performed by a sudden,
but small change in Reynolds number close to the onset of
nonaxisymmetric waves in steady Taylor vortex flow. As ini-
tial conditions serve steady and time-dependent flow states
which have been relaxated to their final state at the respective
initial Reynolds number Re;. After a sudden change of the
Reynolds number to Re, the axial velocity in axial middle of
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FIG. 1. (a) Transient dynamics of measured amplitude A at the
onset (Re;=344.8) and decay (Re;=410.6) of wavy vortex flow to-
wards the supercritical final amplitude A ¢ (dashed line) at Re,
=384.7 in a flow with 16 Taylor cells at I'/N=1.3.

the cylinder at a distance of 3 mm from the inner cylinder is
recorded as a measure of the transient response of the flow.
The time series are recorded until the flow has relaxated to
the final state at the final Reynolds number Re,. A LDV
measurement volume in the axial middle of the cylinder en-
sures a linear and symmetric measure of the oscillations due
to a linear profile of the axial velocity [21].

Since the slow relaxation of the wave amplitude repre-
sents the interesting dynamical quantity close to a Hopf bi-
furcation, the fast oscillations are not considered in the fol-

lowing. The estimate A of the amplitude A is determined
from the extrema of the oscillations. Two new time series are

generated from both the maxima Zmﬂ(ti)=max(A(t)) and the
minima gmin(tj)=|min(A(t))|. The mean of the two (interpo-
lated) time series A,,;,,..(f) yields the estimated amplitude

A(t). Typical time series of the estimated amplitude A ob-
tained from transient response experiments at the onset
(Re;<Re.<Rey) and the decay (Re.<Re;<Re,;) of wavy
vortices are shown in Fig. 1.

B. Dynamics at imperfect pitchfork bifurcation

The behavior of a pitchfork bifurcation can also be de-
scribed by a Landau amplitude equation (1) in case of a
perfect reflection symmetry. While imperfections in the re-
flection symmetry generally do not influence the behavior
close to a Hopf bifurcation, such imperfections have a sig-
nificant influence on the structure of a pitchfork bifurcation.
One of the stable branches is decoupled in a fold bifurcation,
while the other stable branch changes smoothly from sub-to
supercritical values without passing a critical point on the
solution curve. This behavior is described appropriately by
an additional term reflecting the symmetry-breaking imper-
fections in the Landau amplitude equation (see, e.g., [1]):

dA A3
T =8A——5+0. (3)
dt Ap
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FIG. 2. Continuous branch of an imperfect symmetry-breaking
pitchfork bifurcation from symmetric two-cell to asymmetric one-
cell flow measured in an experimental system with I'=1 by the
square of the axial velocity, vf, in the axial midplane z=L/2 at a
radial position r=r;+1.55 mm. The linear fit corresponds to square-
root behavior.

In Fig. 2 the smooth onset of an asymmetric steady one-
cell flow from a symmetric steady two-cell flow in an experi-
mental system with I'=1 is shown. In a perfectly symmetric
system, as represented by a numerical model of the Navier-
Stokes equation with appropriate boundary conditions, this
onset is governed by a symmetry-breaking pitchfork bifurca-
tion, but in experimental systems this bifurcation is decou-
pled due to (unavoidable) imperfections [26]. Although a
square-root behavior provides approximately a reasonable
description over a wide range of Reynolds numbers, as indi-
cated by the linear fit in Fig. 2, a departure from this scaling
law can be seen in particular very close to onset due to im-
perfections.

Since this departure appears to be small, it might consid-
ered as appropriate to apply the fitting procedure described in
Sec. IV A in order to extract time constants. In Fig. 3(a) the
results of transient response measurements close to symme-
try breaking are shown. It can be seen that the time constants
significantly depart from the 7 1/& scaling behavior, which
would be expected for critical slowing down. The departure
increases closer to the critical point, and the onset (@) is
significantly more affected than the decay (O). This behavior
can be reproduced in numerical simulations of the Landau
amplitude equation with imperfection term—i.e., Eq. (3)—as
shown in Fig. 3(b).

The significant departure from critical slowing down in
experiment (and model) reflects the change in structure of
the pitchfork bifurcation due to imperfections. While in the
case of perfect reflection symmetric the flow becomes critical
as the Reynolds number is changed from sub-to supercritical
values, a critical point does not exist on the continuous
branch in an imperfectly symmetric system; i.e., no critical
slowing down occurs.

C. Hopf bifurcation and imperfect reflection symmetry

Hopf bifurcations in systems with a simple reflection
symmetry, such as in Taylor-Couette flow with nonrotating
end plates, are structurally stable [3], and therefore imperfec-
tions do generally not alter the critical dynamics close to
Hopf bifurcation. This is in contrast to the behavior of a

046206-3



J. ABSHAGEN AND G. PFISTER

107

€

FIG. 3. Time constants 7 (onset, @; decay, O) determined by
fitting procedure (Sec. IV A) from (a) measurements on symmetry-
breaking pitchfork bifurcation from symmetric two-cell to asym-
metric one cell flow at I'=1 and (b) from numerical simulations of
Landau amplitude equation [Eq. (3) with 7p=A,=1] with a small
imperfection term 6=0.005.

symmetry-breaking pitchfork bifurcation that is structurally
unstable [3] and therefore the critical divergence of time
constants—i.e., critical slowing down—disappears in the
presence of imperfections.

However, in the presence of higher symmetries, such as
O(2) symmetry [10], or of mode coupling, imperfections in
the reflection symmetry can have an influence on a Hopf
bifurcation. Harlim and Langford [11] recently investigated
the cusp-Hopf bifurcation. The truncated normal form reads

[11]

i=er+r(ay? + asz®) + azr, (4)

2= az+2(b32> + byr?) + byr* + B, (5)

where r represents the amplitude of the oscillatory mode,
while z the symmetry breaking. For a;=b;=£=0 the system
reduces to a pitchfork-Hopf bifurcation which is appropriate
to describe mode coupling in systems with perfect reflection
symmetry [27]. For r=0—i.e., no oscillations are present—
the z equation reduces to a simple imperfect pitchfork bifur-
cation. The term g reflects the effect of symmetry-breaking
imperfections which are independent of the oscillation am-
plitude. The coefficients a; and b, correspond to quadratic
terms which describe couplings in a system where the reflec-
tion symmetry is broken. While b, also reflects symmetry-

PHYSICAL REVIEW E 78, 046206 (2008)

breaking imperfections on the pitchfork bifurcation which
depend on the oscillation amplitude, the coefficient a; re-
flects variations in the control parameter £ depending on
symmetry breaking. Therefore, in a system governed by a
cusp-Hopf normal form the presence of symmetry-breaking
imperfections can in principle influence the behavior of a
Hopf bifurcation due to nonlinear coupling even if symmetry
breaking is linearly damped; i.e., «<<0. This coupling is ab-
sent in a perfectly symmetric system.

In order to illustrate this behavior of nonlinear asymmet-
ric coupling in the case of linearly damped symmetry break-
ing, numerical simulations of Egs. (4) and (5) are performed.
It is focused only on the nonlinear asymmetric coupling a;
(=0.5) and b, (=1.0) while the constant term in the z equa-
tion 8=0 is set to zero. For simplicity, the nonlinear damping
in the z equation is also set to zero (b;=b,=0), since z is
assumed to be linearly damped (a=-0.5), as well as nonlin-
ear damping in the r equation; i.e., a;=0. Furthermore, the
nonlinear damping in the r equation is set to a,=1. Scaling
behavior is investigated in the interval € € [0.05:0.4] in steps
of Ae=0.025. This choice of parameters results in a simple
scaling behavior of the final solutions r; and zj; i.e., the am-
plitude of the oscillation still obeys a square-root law ry
g, while the symmetry breaking scales linearly z,e.

An example of transient dynamics in given in Fig. 4(a).
While the onset and decay of the oscillation amplitude r(z)
are similar to Landau dynamics in principle, as shown, e.g.,
in Fig. 1, a significant difference can be seen from Fig. 4(a).
An overshooting occurs in the time series for the onset and
decay, which is in contrast to purely relaxating dynamics
governed by the Landau amplitude equation. The symmetry
breaking follows the dynamics of the oscillation amplitude
due to the nonlinear coupling.

Although a qualitative difference to the purely relaxating
Landau dynamics can be found in the coupled system, the
scaling behavior of the onset is only slightly affected. In Fig.
4(b) time constants are shown which are obtained from tran-
sients, as shown, e.g., in Fig. 4(a), by applying the fitting
procedure in described in Sec. IV A. The scaling behavior
for the onset (@) is similar to the critical behavior of the
symmetric system—i.e., to 7=1/¢&. While the decay (O) also
reveals a critical slowing down, the time scale 7, is underes-
timated by the fitting procedure; i.e., the straight line is lo-
cated significantly below the theoretical one in Fig. 4(b).

V. ONSET OF ROTATING WAVES
A. Wavy vortex flow

Pfister and Gerdts [24] have studied the transient response
at the onset of wavy vortex flow in a Taylor-Couette flow
with 7=0.5. They have found experimental evidence for the
square-root law of the final amplitude A, \e as well as a
critical slowing down with a scaling of the time constants
T 1/e.

We have extended their study on wavy vortex flow by an
investigation of the dependence of the time constants from
the initial amplitude. The measurements were performed in a
Taylor-Couette flow with 16 cells at a normalized aspect ra-

tio I'/N=1.3. The scaling of the final amplitude ZJ% with Re
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FIG. 4. (a) Examples for transients r(¢) (solid line) and z(r)
(dashed line) at onset and decay [here only r(¢) is shown]. The time
series are obtained from numerical simulations of the truncated nor-
mal form [(4) and (5)]. (b) Scaling of Landau time constants esti-
mated from time series r(), such as those shown in (a), for onset
(roce™'95, @) and decay (7oc£792, O) (theory: —1, solid line).

is shown in Fig. 5(a). Excellent agreement with the theoreti-
cally proposed square-root law (A, ) is found in the ex-
periments. The critical Reynolds number Re,.. could be deter-
mined from a linear fit to Re,=378.07.

The scaling laws of the estimated time constant 7 are rep-
resented in Fig. 5(b) for one particular onset (Re;=344.8)
and decay (Re;=410.6). A linear fit reveals a scaling of 7
o £71907 for the onset and 7 £~%% for the decay. Both scal-
ing laws are in agreement with the theoretically predicted
critical slowing down 7 1/€.

It can be seen from Fig. 5(b) that the estimated time con-
stants 7 for onset and decay from these particular values of
the initial amplitude are equal within the errors for any value
of e. A typical distribution of estimated time constants 7 for
onset and decay towards a fixed Re; is shown in Fig. 6. The
final Reynolds numbers Re;=389.8 are the same for all mea-
surements, but the initial Reynolds numbers Re; differ. It is
apparent that within the measurement errors the estimated
time constant 7 of the wavy mode does not depend on the
initial Reynolds number Re; for a fixed Re. This is in agree-
ment with predictions from Landau theory.

Our results are in agreement with the measurements of
Pfister and Gerdts [24], but demonstrate further the indepen-
dence of the time constants 7 from the initial amplitude A;.
Therefore our extended experimental study confirms that a
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FIG. 5. (a) Scaling of measured final amplitude gf with Rey-
nolds number and (b) of estimated time constants 7 with & of a
wavy vortex flow with 16 Taylor cells at I'/N=1.3. The linear fit
(dashed line) verifies (a) the square-root law of amplitude A« e
and (b) for onset (@) and decay (O) the 7 1/e law of critical
slowing down at a Hopf bifurcation.

Hopf bifurcation can be considered as the appropriate theo-
retical model for the transition to wavy vortex flow.

B. Subharmonic small-jet mode

1. Oscillation amplitude

The small-jet mode differs in wave speed, axial periodic-
ity, and depending on # also in the azimuthal wave number
from the wavy mode, but the onset of both types to rotating
waves has been modeled theoretically by a simple Hopf bi-
furcation. While this has been confirmed experimentally
(partly among others) in Sec. V A for the wavy mode, our
investigation of the onset of the small-jet mode reveals sig-
nificant departures from the simple model.

In Fig. 7 a typical time series of the A of the onset and
decay towards a supercritical ,Kf is shown. In contrast to the

purly relaxating Landau dynamics of A at the onset and de-
cay of wavy vortices as depicted in Fig. 1, an overshooting
for both the onset and the decay at the onset of a small-jet
mode can be observed. For principle reasons such an ampli-
tude dynamics cannot be governed by a one-dimensional
Landau equation (1). The response of the amplitude has an
oscillatory character, and this indicates that the amplitude of
the small-jet mode is coupled to a further slow mode at least
for this particular Rey.
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FIG. 6. Distribution of time constants 7 estimated from transient
dynamics towards wavy vortex flow at Re;=389.8 from different
initial Reynolds numbers Re; in a flow with 16 Taylor cells at
I'/N=1.3.

The overshooting which is clearly visible in the experi-
mental time series of the transients can be observed if the

final amplitude Zf is sufficiently “large;” i.e., the final Rey-
nolds number has a sufficiently large distance from the criti-
cal Reynolds number. However, even for smaller Reynolds
numbers where the relaxation process appears again to be
relaxating, a difference between the onset and decay of the
small-jet mode can be found which is absent for wavy vor-
tices. In Fig. 8 the distribution of estimated time constants 7
for Re;=427.6 is shown. The departure from Landau theory
can be clearly seen. The time constants estimated for the
decay are significantly smaller than the ones for the onset,
although they are equal within the fitting errors for each
single process. This would not be the case if Landau theory
would provide a sufficient description as it is the case for for
the wavy mode (see Fig. 6).

Estimating Landau time constants 7 by fitting Eq. (2) to
experimental time series which are obviously not completely
governed by Landau theory can be justified by two reasons:

40
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FIG. 7. (a) Transient dynamics of measured amplitude A at the
onset (Re;=406.9) and decay (Re;=468.6) of the subharmonic
small-jet mode towards the supercritical final amplitude g s (dashed
line) at Re;=443.9 in a flow with ten Taylor cells at I'/N=0.9

PHYSICAL REVIEW E 78, 046206 (2008)

30 P
390 400 410 420 430 440 450 460
Re

FIG. 8. Distribution of time constants 7 estimated from transient
dynamics towards the subharmonic small-jet mode at Re=427.6
from different initial Reynolds numbers Re; in a flow with ten Tay-
lor cells at I'/N=0.9.

First, the departure from Landau theory appears to be small
in the time series (although it is significant) and becomes
even smaller for decreasing A, at least in the visual appear-
ance from the measured response time series. Thus the suc-
cess of a reasonable fit to more complicated models with
more parameters seems questionable in particular also due to
noise. Second, for the relevance of the departure for the bi-
furcation event it would be essential that this departure occur
directly at the critical point and not only in a finite distance
from it. The difference between onset and decay as shown in
Fig. 8 for a finite distance from Re, provides a qualitative
measure for the departure from Landau theory. This measure
gives also accurate information about the validity of Landau
theory even very close to the critical Reynolds number as
demonstrated in the case of the wavy mode.

The experimental scaling behavior at the onset of a small-
jet mode in a ten-cell flow at I'/N=0.9 is depicted in Fig. 9.
Excellent agreement with the theoretically proposed square-
root law of the final amplitude A, e can be seen in Fig.
9(a). The critical Reynolds number could be determined to
Re,=420.27 from a linear fit.

Critical slowing down could also be found at the onset of
a small-jet mode with scaling laws for onset (7
= Tonser® 0%) and decay (7=17,,.,,e7""°%) being very close to
the predicted 7 1/& from Landau theory. But the difference
between the scaling factor 7,,,, and 7,,.,, for onset and de-
cay, respectively, remains within experimental accuracy even
directly at the critical Reynolds number. The results are
shown in Fig. 9(b). The initial Reynolds number was chosen
to Re;=394.6 for the onset and Re;=448.4 for the decay.
Note that only a single initial Reynolds number is sufficient
for each process as can be seen from Fig. 8.

Similar experiments have been performed at the onset of a
small-jet mode in flows having 6 and 16 cells at I'/N=0.9. In
each case a critical slowing down has been found, in agree-

ment with Landau theory for both the onset with 760%51036

and 7'1606(9]61'()36 and for the decay with (760<8g0‘923 and 74
xg,0"%). However, the scaling factor for onset and decay

differ in the same qualitative way as found in the ten-cell
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FIG. 9. (a) Scaling of the measured final amplitude Zf with
Reynolds number Re and (b) of estimated time constants 7 with & of
a subharmonic small-jet mode in a flow with ten Taylor cells at
I'/N=0.9. The linear fit (_dashed line) verifies (a) the square-root
law of the amplitude A « Ve and (b) for onset (@) and decay (O) the
T 1/¢e law of critical slowing down at a Hopf bifurcation. Note the
offset between onset and decay in (b).

flow. In particular, the difference also remains for each I’
even at the critical Reynolds number. This difference indi-
cates the influence of a further slow mode at the onset of a
small-jet mode.

2. Imperfect reflection symmetry

The measured amplitude A at the onset of a small-jet
mode depicted in Fig. 7 is calculated from the mean of the

(interpolated) time series A, min(1) Of oscillation maxima
and minima. The corresponding time series of the difference

X=A,,.(1)=A,,;,(7) between these two time series is shown in
Fig. 10. A deterministic part in the dynamics of x can be seen
which shows a qualitatively similar behavior to the transient
oscillatory response of the amplitude of the onset in Fig. 7.
For the wavy mode such a difference could not be found in
our experiments.

Due to the linear velocity profile of steady Taylor vortex
flow in the axial middle of the system [21], the difference y
corresponds to a (small) shift of the oscillating outflow
boundary towards the (in this case) lower-end boundary. This
indicates that the upper half of the cells grows in size, while
the lower half shrinks. Thus the flow becomes dynamically
asymmetric with respect to the reflection symmetry as oscil-
lations of the small-jet mode appear in the flow. The asym-
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FIG. 10. (a) Transient dynamics of a measure y for the asym-
metry at the onset of a small-jet mode corresponding to the time
series depicted in Fig. 7. A spline fit (solid line) is drawn to guide
the eye.

metry remains for this supercritical Reynolds number even
when the oscillation amplitude reaches its final value.

The asymmetry at a (supercritical) final Reynolds number
can be measured quantitatively from a distribution of the size
\ of cells pairs. In Fig. 11(a) such a distribution is depicted
for a 12-cell flow at I'/N=0.93. In order to stress the influ-
ence of the small-jet mode, only the departure AN from the
cell pair sizes of steady Taylor vortices directly before onset
is shown.

The sizes of cell pairs are determined from the axial po-
sition of the inflow boundaries. A mean of the radial position
of the streamline with a zero-axial-velocity component pro-
vides an accurate measure for an inflow boundary. It is
measured at  seven  different radial = positions
(r=1,2,3,9,10,11,12 mm) from the inner cylinder by a
comparison of measured frequencies and frequency shift of
the LDV.

The sizes of cell pairs of Taylor vortex flow at
Re=537.2—i.e., directly before onset—are \;=24.79 mm,
Ny=22.42 mm, N3=22.42 mm, N4=22.43 mm, N5
=22.46 mm, and Ag=24.83 mm (cell pairs are numbered
from bottom to top). Generally the sizes of steady Taylor
vortices do not depend strongly on Reynolds number in this
regime. For example, at a Reynolds number of 454.5 the
sizes of each cell just differ by a maximum of 0.02 mm from
the values given above. An asymmetry can already be found
in steady Taylor vortices at Re=537.2, but with A\
=0.09 mm it is very small. It can be seen from Fig. 11(a) that
above the onset of a small-jet mode the sizes of the two end
pairs (\; and \¢) decrease, while those of the bulk pairs
(N2345) increase with Reynolds number. Qualitatively the
same behavior has been observed for the wavy mode [28].

The corresponding cell pairs in the bulk with respect to
the reflection symmetry—i.e., A\, and ANs as well as A\,
and AN,—increase in size each by the same amount within
the measurement accuracy. The end pairs, on the other hand,
do not decrease by the same amount, but the pair at the
bottom (AN\,) shrinks more than that at the top (ANg). Thus
the flow increases the asymmetry which can be measured by
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FIG. 11. (a) Departure AN from the size of steady Taylor cell
pairs due to the onset of a subharmonic small-jet mode in a flow
with 12 Taylor cells at I'/N=0.93. Sizes of end cell pairs reduce,
while sizes of bulk cell pairs increase to higher Re. (b) Asymmetry
{ increased from the critical point almost linearly with Re as indi-
cated by the linear fit (dashed line). This corresponds to an increas-
ing difference in end pair sizes.

the difference in size between the upper and lower cell pairs;
ie., (=32 (AN;,;—ANg_,). The dependence of the asymme-
try ¢ of the Reynolds number is shown in Fig. 11(b). Al-
though the absolute values of { are quite small a systematic
increase of the asymmetry with Reynolds number can be
found at the onset of the small-jet mode. The linear fit
(dashed line) in Fig. 11(b) indicates a linear growth of asym-
metry { with Re and thus a scaling law {xe&.

VI. CONCLUSION

In this work we report on an experimental investigation
on the onset of rotating waves in steady Taylor vortex flow.
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From our experimental results it can be concluded that im-
perfections which break the axial reflection symmetry of the
flow can substantially alter the Hopf bifurcation towards
wavy Taylor vortices.

Measurements of the nonlinear transient response and of
the scaling behavior at the onset of two different kinds of
rotating waves—i.e., the classical wavy mode and the axially
subharmonic small-jet mode—are performed. While the
wavy mode is found to be in excellent agreement with pre-
dictions from Landau theory, we reveal significant departures
for the onset of the small-jet mode. We observe an oscillatory
transient response of the slow amplitude at the Hopf bifur-
cation instead of relaxating Landau dynamics and an asym-
metric response with respect to reflections about the axial
midplane that is systematically connected to the oscillation
amplitude.

Qualitatively similar behavior can be found in numerical
simulations of a cusp-Hopf bifurcation model recently pro-
posed by Harlim and Langford [11]. There, a nonlinear mode
coupling between the oscillation amplitude and a slow but
damped symmetry-breaking mode alters qualitatively the
Hopf bifurcation. Such a coupling is a consequence of the
imperfect reflection symmetry and would be absent in a sys-
tem with perfect reflection symmetry .

In contrast to a pitchfork bifurcation, where the critical
slowing down disappears, the critical dynamics of the Hopf
bifurcation is only modified by imperfections. The similarity
of numerical results with experimental observations suggests
a similar mechanism acting in both systems; i.e., a coupling
might occur due to (unavoidable experimental) imperfections
of the axial reflection symmetry which modifies the critical
dynamics and the scaling behavior of the Hopf bifurcation in
Taylor-Couette flow.

Imperfections represent an important part of a realistic
description of a bifurcation event in a physical system. They
can cause new kinds of dynamical properties that do not
occur in a symmetric model of the system as is found here
for the classical onset of wavy Taylor vortices.
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