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Transition to chaotic scattering: Signatures in the differential cross section
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We show that bifurcations in chaotic scattering manifest themselves through the appearance of an infinitely
fine-scale structure of singularities in the cross section. These “rainbow singularities” are created in a cascade,
which is closely related to the bifurcation cascade undergone by the set of trapped orbits (the chaotic saddle).
This cascade provides a signature in the differential cross section of the complex pattern of bifurcations of
orbits underlying the transition to chaotic scattering. We show that there is a power law with a universal
coefficient governing the sequence of births of rainbow singularities and we verify this prediction by numerical

simulations.
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I. INTRODUCTION

Chaotic scattering, present in a large variety of disci-
plines, is an important manifestation of chaos [1]. Examples
are found in classical mechanics [1], fluid dynamics [2],
electronic transport in semiconductors [3], and optics [4], to
name just a few. Scattering can be defined as any dynamical
system with an unbounded phase space, in which the dynam-
ics is nontrivial in a bounded region, called the “scattering
region.” The hallmark of chaotic scattering is the presence of
a Cantor set of singularities in any (nontrivial) scattering
function relating initial conditions to asymptotic variables,
such as the deflection angle of a particle scattered by a clas-
sical potential [5]. These singularities correspond to initial
conditions whose orbits get trapped in the scattering region
for both t— — and r— . These orbits form a very intricate
fractal set in phase space, called the “chaotic saddle.” Even
though the chaotic saddle has zero measure, its presence has
tremendous implications for the dynamics, because initial
conditions close to this set will stay in the scattering region
for a long time before they escape. Furthermore, trajectories
that are initially very close to this set and to each other may
separate rapidly, and reach wildly different asymptotic states.
This results in a very sharp sensitivity to initial conditions,
one of the most important features of chaos.

In experimental situations, it is often impossible to have
access to direct information concerning individual trajecto-
ries. In a typical situation of experimental relevance, a beam
of particles is incident on the scattering region, and the in-
tensity (the flux) of particles that comes out as a function of
the angle is measured. This intensity is measured by the dif-
ferential cross-section function. In this paper, we address the
following fundamental questions, of direct relevance to mea-
surements: How are bifurcations of orbits in the chaotic
saddle reflected on the differential cross section? In particu-
lar, how is the transition from regular to chaotic scattering
manifested in the cross section? We herewith establish that
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the birth of new orbits due to bifurcations gives rise to cas-
cades of singularities in the differential cross section. These
singularities correspond to directions in which the flux of
particles diverges, and they are called rainbow singularities
[6,7]. Moreover, we establish that the manifestation of the
transition from regular to chaotic scattering on the cross sec-
tion is through an infinitely fine sequence of births of singu-
larities in the cross section. As the scattering progresses from
the regular to the chaotic regime, rainbow singularities are
successively created in a series of cascades, which are
closely related to the corresponding bifurcation cascades un-
dergone by the chaotic saddle during the transition. Further-
more, we derive an analytical result showing that the inter-
vals of the bifurcation parameter separating successive births
of rainbow singularities preceding the appearance of a new
periodic orbit in the chaotic saddle decrease following a
power law, with a universal coefficient of —3/2.

The paper is organized as follows. In Sec. II, we define a
simple two-dimensional model used to illustrate our reason-
ing and results, and we discuss the bifurcation scenario lead-
ing to chaotic scattering. In Sec. III, we examine how the
bifurcation cascade undergone by the chaotic saddle is mani-
fested in the differential cross section through rainbow sin-
gularities. In Sec. IV, we uncover a universal power law
describing the successive appearance of rainbow singularities
as the system’s energy is varied. Finally, we summarize our
conclusions in Sec. V.

II. MODEL

We choose to establish our results using a two-
dimensional classical-mechanical point particle system. We
point out, however, that our results apply to a much broader
class of systems (including, for example, optical systems), as
they arise from very general features of the scattering dy-
namics of chaotic systems.

As is conventional in classical scattering systems, we pa-
rametrize the initial conditions by the impact parameter b,
and characterize each scattering trajectory by its scattering
angle ®=®(b) [see Fig. 1(a)]. The differential cross section
do/dQ), corresponding to a given direction 6, is given by
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FIG. 1. (Color online) (a) Two-dimensional model. (b) Deflec-
tion function for two different ¢,,,: Creation of rainbow
singularities.

-1

b , (1)

do i
—(0) = ——r
dQ() Ei:sinﬁ

d®(b)
db

where 0 < #<2a. The sum is over all impact parameter b;
that satisfy the relation ®(b;)+2nm= 6, with n being an inte-
ger number, and it picks the contributions from all trajecto-
ries which scatter in the direction 6. n can be interpreted as
the number of “loops” the particle makes before escaping.
The differential cross section diverges when d®/db=0, that
is, whenever the deflection function ®(b) goes through a
local maximum or minimum (excluding nongeneric cases).
These are the locations of the rainbow singularities. A rain-
bow singularity is the result of an infinite density of scatter-
ing trajectories in a given direction. In optical systems rain-
bow singularities appear as bright, burning spots (caustics).
They are also found in atomic scattering [8], nucleus-nucleus
collisions [9], and many other physical systems [10]. The
other type of singularity that appears in the differential cross
section is the glory singularity, when #=nm with n=0,1,2.
We shall focus only on the rainbow singularities, since glory
singularities are due to kinematic effects, not related to the
scattering dynamics.

The relationship between the rainbow singularities and
chaotic scattering is far from trivial. It was previously
thought that rainbow singularities in the cross section of a
chaotic system mirror directly the fractal set of singularities
in the deflection function [11]. But it is now known that this
is not true in general [6]. In fact, there are systems that have
chaotic scattering but still present a smooth differential cross
section, without any singularities [6]. This phenomenon is
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called the “rainbow transition” and is related to the existence
of a periodic orbit where a particle circles around a potential
well.

The natural approach to study the connection between
rainbow singularities and chaotic scattering, which we fol-
low in this paper, is to investigate the sequence of bifurca-
tions that leads to chaotic scattering by varying some rel-
evant parameter, such as the particle’s energy.

The series of bifurcations leading to chaotic scattering
have been well studied, especially in classical mechanical
systems [12]. During the cascade the system goes repeatedly
through non-hyperbolic chaotic regimes, during which stable
periodic orbits and Kolmogorov-Arnold-Moser (KAM) sur-
faces are present in the phase space. We now investigate how
this complex sequence of bifurcations in the orbits is re-
flected in the differential cross-section. To focus our ideas,
we study a particular case of this phenomenon. We consider
a particle being acted on by a potential consisting of the
superposition of two attractive circularly symmetric potential
wells V(r), as illustrated in Fig. 1(a). The potential of each
well is assumed to be negligible beyond a given distance R
from its center. The centers of the two potentials are sepa-
rated by a distance D satisfying the non-overlapping condi-
tion D>2R. This ensures that the part of the particle’s tra-
jectory outside of the two wells is a straight line. In addition,
this assumption implies that, while the particle is close to one
of the centers, the influence of the other potential well can be
neglected. These conditions allow us to encode the scattering
dynamics into a two-dimensional map, as was originally in-
troduced in [13] and used in [14]. Each iteration of the map
represents the scattering of the particle by one of the poten-
tial wells. The two variables of the map are the scattering
angle 6, and the impact parameter b,, corresponding to one of
the centres. Assuming for simplicity that the two potentials
are identical, let 6,,, be the escaping angle after the particle
is scattered by one of the potentials, and let ¢=¢(b) be the
angle by which the trajectory is deflected by a single scat-
terer. The particle, after being scattered by one of the wells,
reaches the other with an impact parameter b,,, ;. Assuming a
straight-line trajectory between individual scattering events,
we can by simple geometry find the expression for the new
angle and impact parameter, as a function of their previous
values: (see Fig. 1(a))

bn+l = bn -D Sin(q)n+]){Sgn[cos(q)nﬂ)]}s (2)

(I)n+l = q)n - (;b(bn) (3)

The particular form of the scattering angle function ¢(b)
depends on the detailed shape of the potential V(r) and on
the particle’s energy. However, for all attractive circularly
symmetric potential wells of the kind we assume, ¢(b) has
the same qualitative features for a given energy: it is an odd
function, and in particular it is zero for b=0 (due to the
circular symmetry); it approaches zero for b— = ; on each
side of the origin, ¢(b) has a single peak, whose size @ 18
the maximum deflection angle of the potential for that en-
ergy. Since we are interested in the general features of the
phenomenon, we do not choose any particular potential V(r)
from which ¢(b) is computed; instead, we prescribe directly
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a function ¢(b) which has all the required properties de-
scribed above. The results we describe below do not depend
on the details of ¢(b). A convenient (dimensionless) choice
for the scattering function of an individual potential, which
has all the above required features, is

¢(b) = ¢max exp[— 2(b + 1)2] - ¢max CXp[— 2(b - 1)2]
(4)

The parameter ¢,,,, depends on the energy of the particle:
the lower the energy, the greater the maximum deflection is.
This is then the natural bifurcation parameter of our model.
Equation (4), along with Egs. (2) and (3), define the scatter-
ing map. A typical trajectory will eventually escape towards
infinity, when the impact parameter for the next iteration b,
becomes too large. We define a cutoff R, such that if b,
>R, the particle is considered to have escaped. For b
— *+3, ¢~0 [Eq. (4)], therefore we can assume that the
radius of each potential well is R=3. The distance D=7 is
fixed between the two potential centers. All incident particles
have initial velocities parallel to the x axis and come from
outside of the scattering region, see Fig. 1(a). We stress that
our results are largely independent of the precise values of
these parameters.

The transition from regular to chaotic scattering in this
system can be understood as follows. When ¢,,,, is small
(high energy), particles go through the potential with very
little deflection, and escape the interaction region easily. As
their energy is lowered, e.g., ¢, increases, particles are
more and more deflected, and the system goes through dif-
ferent scattering regimes. The scattering is regular if ¢, is
less than ¢.~ 7 (we found ¢,=3.14264478 in our case),
when the particles cannot “make the turn” around the cen-
ters, and thus all escape in finite time. Thus, for ¢, < ¢,
there are no periodic orbits, and therefore no chaos. When
Pmax Teaches ¢,, the orbit with the impact parameter corre-
sponding to ¢,,,, makes a half-turn around the center, reach-
ing the other potential, making then another half-turn, and so
on, thereby giving rise to a periodic orbit. Increasing ¢,
just beyond ¢, the orbit with impact parameter b,,,, corre-
sponding to ¢, is deflected by an angle greater than ¢,; by
the continuity of ¢(b), there are two values b_ and b, of b
such that ¢(b_)=p(b,)=d¢,, with b_<b,, <b,. As argued
above, this means that b_ and b, correspond to two periodic
orbits. These new orbits bifurcated from the original one in a
saddle-center bifurcation, and a hierarchy of KAM islands
immediately appears in phase space. As ¢, is further in-
creased, the system goes through a complex cascade of bi-
furcations, which end up breaking up the KAM tori, leading
to hyperbolic chaotic scattering. At this stage, after the de-
struction of the last torus, only the unstable periodic orbits
remain [12]. An even further increase of ¢,,,, preserves the
topology of the chaotic saddle (no bifurcations) within a
range of ¢, until the next value of ¢,,,, is reached for
which the particles are able to make more turns around the
centers (for example, ¢, = 3¢,.). Then new orbits are born,
new KAM islands appear, and so on. Thus, as ¢, in-
creases, the system goes through a sequence of bifurcation
cascades. We next show how this route to chaotic scattering
is reflected in the differential cross section.
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FIG. 2. The rainbows form an infinite set of singularities in the
differential cross section and are distributed through all directions,
even though there are some better resolved than others. The diver-
gences around #=0, 7, and 27 correspond to glory singularities.

II1. SIGNATURES IN THE DIFFERENTIAL
CROSS SECTION

As discussed before, rainbow singularities are divergences
in the differential cross section. Figure 2 shows the differen-
tial cross section for ¢,,,=5, when the scattering is chaotic
and there are no stable periodic orbits. The rainbows are seen
as sharp peaks, and although there are infinite singularities,
there are some that are better resolved than others.

In order to be able to locate even the very narrow rainbow
peaks, we identify the singularities by finding zeros of
d®/db. We now examine what signatures this bifurcation
process imprints on the differential cross section. We start by
looking closely into the process of creation of the first peri-
odic orbit, at ¢y.c=d.. While ¢, < ¢, orbits are scattered
from one potential well to the other a finite number of times,
before escaping towards infinity. As ¢,.x approaches ¢,
from below, orbits (with the appropriate impact parameter)
are able to hop an increasing number of times between the
two centers before escaping. As argued above, the complete
scattering process can be regarded as the succession of indi-
vidual scattering events by each potential well. Conse-
quently, the maxima and minima of the scattering function
() of the total scattering process arise from the maxima
and minima caused by each individual scattering around one
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FIG. 3. (Color online) Direction fgg of the rainbow singularities
as a function of ¢p,.x-
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of the wells. This means that each time ¢,,,, reaches a value
such that the orbits are able to hop one more time before
escaping, a new maximum (or minimum) appears in ®(b).
This, by continuity, is always accompanied by the appear-
ance of a minimum (or maximum). This process is shown in
Fig. 1(b). The birth of a maximum-minimum pair implies
that two new rainbow singularities appear in the differential
cross section. As ¢« — ¢., this happens more and more
often in a cascade that accumulates at ¢,, when the periodic
orbit is born. Thus, the creation of this first periodic orbit is
preceded by an infinite cascade of newly created pairs of
rainbow singularities.

In order to verify this reasoning, we vary the parameter
Pmax and record the positions (values of the impact param-
eter) of the maxima and minima that appear in the deflection
function, which is numerically calculated with the required
precision for each value of ¢,,,,. Figures 3-5 show the re-
sults. In Fig. 3, where we show the angle of the rainbow
singularities as a function of ¢,,,,, the transition from regular
to chaotic scattering is marked by the drastic multiplication
of rainbow singularities. The first periodic orbit is born at
Gmax= P~ T, as just explained; the corresponding singular-
ity cascade can be seen in the lower branch of the pattern in
Fig. 4. As predicted, a cascade of creations of pairs of rain-
bow singularities precedes it.

As ¢ 18 increased beyond ¢, additional rainbow sin-
gularities are born in similar cascades, always in pairs corre-
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FIG. 5. (Color online) Another view of the cascade of singulari-
ties appearing in the cross section as ¢, increases.
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FIG. 4. (Color online) Impact parameter brg
of the rainbow singularities as a function of ¢y,,y.
The successive magnifications show the fractal
structure of the cascade of births of pairs of
singularities.
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sponding to one maximum and one minimum in the scatter-
ing angle function, as shown in Fig. 1(b) for a particular
case. Those other cascades correspond to further bifurcations
associated with the chaotic saddle, leading to the creation of
more and more periodic orbits. In this way, new orbits give
rise to new rainbow singularities, which are visible in the
differential cross section as high-intensity spots. Figure 4
shows the highly intricate sequence of rainbow singularities
appearing in the cross section, mirroring the fractal structure
of the corresponding bifurcations in the underlying chaotic
set of orbits. The successive magnifications display the frac-
tal structure of the sequence of singularity pair creations.
Figure 5 shows another view of this cascade, which further
demonstrates the complexity of the phenomenon. Hence, we
have uncovered in the experimentally accessible scattering
cross section a clear signature of bifurcations in the chaotic
set of trapped orbits.

We note that the creation of each pair of singularities is
equivalent to a saddle-node bifurcation in a one-dimensional
map. Indeed, a singularity appears when d®/db=0, it is a
maximum if d’®/db*<0 and a minimum if d*®/db*>0.
Defining a one-dimensional mapping M(b) by M=d®/db,
the rainbow singularities correspond to fixed points of M,
and stable fixed points are associated with maxima of ®(b),
whereas unstable fixed points are associated with minima.
Dynamically, the birth of a pair of singularities is a saddle-
node bifurcation in M, where one stable (maximum) and one
unstable (minimum) fixed points are born together.

Each new pair of rainbow singularities that is born has a
contribution to the total cross section o, which is given by
the integral of the differential cross section over all angles.
This contribution obviously depends on the strength of the
new-born singularities. Given the fractal structure of the bi-
furcations, it seems plausible that o changes with the bifur-
cation parameter ¢,,,, similar to a Devil’s staircase, because
of the jumps in o caused by the appearance of new singu-
larities as ¢,,,, changes. This should in principle be detect-
able in experiments, and it would be another signature of the
bifurcations of the chaotic saddle in scattering measure-
ments. In the following, we demonstrate that the bifurcations
of rainbow singularities preceding the appearance of a new
unstable periodic orbit in the chaotic saddle are separated by
intervals of ¢,,,, which decrease as a power law.
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IV. POWER LAW IN BIFURCATION CASCADES
OF RAINBOW SINGULARITIES

When the ¢,,,, of a single potential reaches certain criti-
cal values, cascades in the creation of rainbow singularities
occur which precede the creation of new periodic orbits in
the system. As discussed earlier, the first periodic orbit is
created when ¢.=~ 7, which goes around the two centers.
Another critical value ¢,,,, is related to the figure-eight orbit,
and so on. There are, in fact, infinite critical values of ¢,,,,.

We investigate now the asymptotic behavior of the dy-
namics for ¢,,,, near one of these critical values. As an ex-
ample, we shall focus on the first periodic orbit, at ¢,
=¢,.. We assume that we have ¢,,,, slightly less than ¢,
o~ Prax << 1. Let us denote the small quantity ¢,.— .. by
€. We then have e<1.

If we had ¢,,,,=¢., we would have a periodic orbit at the
corresponding impact parameter b,,,,; so in this case, if we
iterate the scattering map N times we would come back to
the same situation, where N is the orbit’s period. For ¢,
close to ¢,, if we iterate the map N times we will not get
exactly to the same point, but we will get close to it. For
simplicity we examine first the simplest case of the first pe-
riodic orbit to be formed in the system, with ¢,,, close to
¢.=~ . We take a particle moving horizontally, ®,=0, with
an impact parameter corresponding to the maximum deflec-
tion: b, is such that ¢(b,)= .= P.— €. Equations (2) and
(3) give us then ®,=—m+€ and b,=b,+D sin(—m+¢€). For
small €, we can approximate this by

b2 =~ b] + De.

In the next iteration, ®; is determined by ¢(b,)=d(b,
+De), from Eq. (3). But since b, is a maximum of the func-
tion ¢(b), to first order in € we have ¢(b,)= ¢(b,). Using
this fact, we find by following the same procedure that @4
~—1+2€ and

by=b,+2De.
In general, we find that
b,.1 = b, +nDe.
We can expand this expression as follows:
bpi1=b,_+ (n—1)De+nDe
=b,,+(n-2)De+ (n-1)De+nDe- -
=b;+(1+2+ - +n)De

1
=b, + Zn(n —1)De.

For sufficiently small e, the particle will go through a large
number of iterations before escaping; in other words, we can
assume n>> 1. In this case, we have with good approximation

1 2
bn+l = b] + Zn De.

Note that b does not increase exponentially with n, because
we are studying trajectories in the vicinity (in parameter
space) of nonhyperbolic orbits.
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If pnax is in the vicinity of a different critical angle ¢,,
the details of the above calculation will change, because of
the different geometry of the trajectories involved; but in
essence the result should be the same for large n, since it
only depends on ¢,,,, being close to ¢, (i.e., having a small
€). The details of the different orbit geometries enter in the
factor multiplying € in the equation above, which will be
different for different orbits. We can thus write

bn+1 = bl + CDI’[ZE,

where the factor C is determined by the orbit’s geometry.

The particle escapes when b, becomes sufficiently large,
so that the potential can no longer deflect it towards the other
centre. Let us denote this escaping impact parameter by B.
When b starts to approach B, we are no longer in the vicinity
of the peak of ¢(b), and the approximations we used to ob-
tain the above expressions are not valid. But for ¢, very
close to ¢, most of the trajectory’s time will be spent in the
vicinity of b, before it escapes, so that the escape time is
dominated by this regime. This allows us to estimate the time
(actually the number of iterations) n, for which the trajectory
escapes, by

by 1= by +CDn’e=B.

From this we have

, K K
n,~—_—=n,~ ——,
¢ De ° \De

where K= (B—-b,)/C is a constant. This means that the es-
cape time scales as (¢b.— ) /> as &y, approaches the
critical value ¢,, where it diverges.

A unit increase in n, means that trajectories are able to
bounce once more between the potentials before escaping.
We thus expect to have new maxima and minima in the
scattering function, resulting in the appearance of new rain-
bow singularities. So the successive increments of n, corre-
sponds to the birth of new singularities in the cross section,
as argued in the previous section. We want to determine the
interval A€ in the bifurcation parameter ¢,,,, separating two
such successive bifurcations in the cross section. Let us de-
note by € the value of ¢.— ¢, such that n,=N; then the
next rainbow singularities will appear when n, increases to
N+1, at a value of ¢.— ¢, equal to e—Ae. From the result
derived above, we have

K ! K
=, N+ 1=
\VDe VD(e—Ae€)

n,=

Expanding the latter expression in a Taylor series, we get

K 1 1 K
n,+ 1= /_—(6_1/2 + _6_3/2AE> =n,+——=¢€ Ae.
\J’D 2 2 \/D
From this we find
2\D
Ae=——¢€". (5)
K

This expression predicts that the intervals in the bifurca-
tion parameter ¢, separating two successive appearances
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of rainbow singularities decreases as a power law, and tends
to zero as ¢, approaches the critical value ¢.. Of course
there are many other bifurcations happening in the system,
which are not accounted for in this analysis. For example, as
soon as the first orbit is created at ¢, = 7, it undergoes an
extremely complicated sequence of bifurcations, typical of
Hamiltonian systems, in which KAM islands arise and orbits
of arbitrarily large periods appear. Many of these other bifur-
cations also give rise to rainbow singularities, and this may
make it difficult to distinguish clearly the A€ intervals pre-
dicted in this section. But Fig. 5 shows a clearly defined
sequence of creations of rainbow singularities which is a
good candidate to test our analysis. We determined numeri-
cally the position of the bifurcations which could be re-
solved, and estimated their accumulation point (that is, ¢,),
so as to calculate several consecutive values of Ae. The
above equation predicts that if we plot Ae and a function of
€ on a log-log plot, we should get a straight line, with slope
1.5. Figure 6 shows we have a decent straight line, and the
slope was found by fitting to be ~ 1.4, which is in reasonable
agreement with the predicted value. We stress that the expo-
nent 3/2 in the power law is entirely independent of the
details of the system, and is thus a universal feature of rain-
bow singularity cascades, in any scattering system.

V. CONCLUSIONS

Bifurcations play a prominent role in the study of chaotic
scattering, and a full understanding of how they are related to
the differential cross section is still missing. In this work we
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FIG. 6. (Color online) Log plot of the intervals of ¢, (A€)
separating two successive rainbow singularities. The slope of the
fitting is ~1.4.

showed that the differential cross section reflects the cascade
of bifurcations in the chaotic saddle through a corresponding
cascade of creations of rainbow singularities, and we estab-
lished a universal power-law relation satisfied by the cascade
of rainbow singularities which accompanies the creation of
new periodic orbits in the system. This analytical result is
akin to Feigenbaum’s law governing the vicinity of accumu-
lation points in period-doubling cascades in dissipative sys-
tems.
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