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Community structure is common in various real-world networks; methods or algorithms for detecting such
communities in complex networks have attracted great attention in recent years. We introduced a different
adaptive clustering algorithm capable of extracting modules from complex networks with considerable accu-
racy and robustness. In this approach, each node in a network acts as an autonomous agent demonstrating
flocking behavior where vertices always travel toward their preferable neighboring groups. An optimal modular
structure can emerge from a collection of these active nodes during a self-organization process where vertices
constantly regroup. In addition, we show that our algorithm appears advantageous over other competing
methods (e.g., the Newman-fast algorithm) through intensive evaluation. The applications in three real-world
networks demonstrate the superiority of our algorithm to find communities that are parallel with the appropriate

organization in reality.
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INTRODUCTION

In the real world, interactions and connections of our mul-
tifacet life and surroundings are dominated by various net-
work relationships from the internet and power grids to
metabolic pathways that generate material and energy to fuel
our body. These networks can be illustrated as a graph with
nodes involving entities and edges, which is a manifestation
of functional association or relevance. The study of these
complex networks has attracted particular interest in the past
decade [1-3]. Statistical analyses of vast datasets from bio-
logical, technological, and sociological networks have re-
vealed some common properties in complex networks, such
as their small-world character and scale-free degree distribu-
tions [4,5].

Recently, the characterization of community (or module)
structures in complex networks has received a considerable
amount of attentions [6—-8], and it is widely believed that
large networks in the real world are composed of many sub-
levele ingredients, such as community structure or module
conformation, and that vertices are densely connected within
modules while being loosely connected to the rest of the
networks. Communities are of interest because they often
correspond to behavioral or functional units, such as cell-
cycle controls or metabolic pathways in biological networks
or social groups within social networks [9,10]. The presence
of communities can dramatically alter the behavior of dy-
namical processes on networks [11] and can be used as bases
for reduction or coarse graining of networks for visualiza-
tion, understanding, and other purposes [12]. Therefore re-
vealing constituents and their relatedness in networks un-
doubtedly brings richer information for gaining insight into
structures and dynamics of many interesting definable sys-
tems around us.

Although many questions remain to be addressed, the de-
tection of functional modules is a primary step. A number of
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mathematical tools and computer algorithms have been re-
cently designed to tackle community detection in complex
networks [13-16]. Girvan and Newman [17] have proposed a
divisive clustering algorithm that recursively remove edges
with the highest betweenness scores that are believed to run
between communities, a hierarchical tree is subsequently
constructed, and various partitions can be obtained by cutting
the tree at different points. However, this method demands
too expensive a computational cost that leads to impossible
application to large real-world networks. To overcome this
problem, Newman [18] suggested an alternative fast agglom-
erative clustering algorithm based on the definition of modu-
larity (typically represented by a Q function) over possible
divisions of a network. For a network with n nodes, this
method starts with an initial state where each vertex is a sole
member of one community among n communities, and it
then repeatedly joins communities together in pairs; the pro-
cedure often results in the greatest increase or smallest de-
crease in Q. Similar to the divisive method, a hierarchical
tree can be constructed and divided at the point with the
highest Q value. This method shows a significant speed gain
and moderately improved performance. However, regardless
of whether the edge-betweenness-based divisive or the
modularity-oriented agglomerative clustering approaches are
utilized, one major drawback persists where vertices have no
chance to shuffle between modules that have been estab-
lished in previous steps but are scrambled within modules for
further division or combination in the subsequent steps.
These traditional clustering methods all have intrinsic prob-
lems that hinder the improvement efforts [8,15].

Since a higher quantity of modularity indicates a better
quality of module structure for a network, many authors have
made great efforts to seek the best topological division by
optimizing Q function directly, relying upon various tech-
niques, including simulated annealing [19], external optimi-
zation [16], and matrix spectral analysis [14,15]. Unfortu-
nately, exhaustive optimization of modularity requires an
impractically large computational effort; these algorithms are
generally approximate techniques, more or less suffering
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from heavy computational costs or inaccurate performance
[20]. In addition, we need to pay attention to modularity
optimization that does not always bring the best clustering in
some cases; for instance, it suffers from resolution limit as
shown by Fortunato and Barthelemy [21], where small mod-
ules tend to merge into bigger ones. However, optimization
strategy is still an effective way to detect community struc-
ture in complex networks at the present time.

Here, we introduce a different adaptive clustering method
(AdClust) that is able to overcome limitations that traditional
clustering (divisive or agglomerative) algorithms encounter.
It is simply topology oriented, and has no demands for other
predefined parameter tuning present in other methods, such
as k-mean clustering [22]. In our approach, vertices are
treated as autonomous agents capable of adapting themselves
to appropriate modules according to their local context
through a self-organization process, and eventually reach a
satisfactory solution in a global scale. Furthermore, we ap-
plied our algorithm to three real-world networks to demon-
strate successful detection for community structures.

ALGORITHM

For a given decomposition of an undirected simple net-
work, Newman and Girvan [23] proposed a quantitative
modularity to measure the quality of module structure as
follows:

0=2 (e;-a)), (1)

where ei is the fraction of edges that connect two nodes
inside the module i; ai is the fraction of edges that have one
or both vertices inside the module i. The maximal modularity
corresponds to the partition that comprises the most inner
edges within modules and the least outer edges between
modules. This concept is essential to many algorithms, and
also paves the way for our approach where we also pursue
the best O value but assume a different model for the opti-
mization process.

The principle of our algorithm is for each vertex to repeat-
edly adapt itself to follow the most attractive module accord-
ing to its surrounding neighbours and local structures until it
reaches a satisfactory assignment that is naturally compatible
with a better outcome of modularity Q. We illustrate the
essence of our assumption in Fig. 1. In a network with an
initial community structure, each vertex is generally related
to two forces. One force (F;,) comes from the module where
a vertex belongs to and is responsible for holding the vertex
in its position. The opposite force (F,,,) originates from all
other connected modules, pulling the vertex to its potential
target modules. A battle among the two forces eventually
divides all vertices either to escape for their new destinies or
to stay put at their host or source modules. The critical mea-
sure that determines the motion of vertices is to pursue a
maximal increase of modularity Q within a local context.
Based on this assumption, we define our forces as positively
proportional to the increase of O when the vertex merges
into a relevant module, and formulate them as follows:
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FIG. 1. (Color online) A illustration of adaptive vertex move-
ments according to the force rules. For the square vertex, we can
calculate its forces and obtain the results as follows: Ff}’:2=0.333
>F§nC)=O.O74>F$2=—O.147, and it should move to module A (ar-
rowed line). Although a similar situation happens to the triangular
vertex, we should take care of the influence from the first motion of
the square vertex as it may alter the forces of the triangular vertex.
Moreover, we note that the motion of the triangular vertex reduces
the total number of modules. Such a self-organization process hap-
pens to all vertices iteratively until they become stabilized.

(s) _ (S)_w

in — %in 2E (2)
kd)

Filo= max {el)——20 0, 3)
te{ngbs} 2E

where el(-;) is the number of edges that connect a vertex within

the host module s, dl(;) is the total degree of vertices within a
source module. Similarly, eﬁflzl and dﬁfm are the counterparts of
et and d*¥ in a target module . We should emphasize that a
vertex only belongs to one source module, but may have
more than one neighbouring module {ngbs}. E denotes the
sum of edges in a network, and k is the degree of an imme-
diate node we are focusing on. In fact, the terms Fj,
and F,, can also be considered as F=(actual links)
— (expected links given that nodevwis in the respective module).
We subsequently calculate the two forces for each vertex
allowing them to move to a group with the strongest pulling
force.

When all vertices in the network stop moving and become
stable, a structure for all modules emerges spontaneously,
yielding a stage-specific Q at this time. At the subsequent
steps, we calculate the increase of Q for all possible module
pairs if they are combined, and merge the pairs with the
maximal increase (or minimal decrease) in Q values together.
This amalgamation may alter the two forces of related verti-
ces in the merged groups and drive other vertices near the
boundaries to move away, and thus affects more vertices,
provoking an avalanche of changes in the rest of the nodes,
which ultimately spreads to all vertices in the entire network.
Therefore we need to constantly compute forces of all verti-
ces and move them according to the force-related rules after
every merging event. We repeat such an adaptive procedure
and merge modules until all vertices converge into one mod-
ule. We describe the procedure as the following steps.

(1) Separate vertices into n modules.
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(2) Calculate F;, and F,,, for each vertex to make deci-
sions either to move vertices to target modules if F,,,> F;, or
to allow them to stay put if F,,<F;,

(3) Repeat step 2 until all vertices are stabilized. As a
modular structure emerges, record Q for module partition at
this stage.

(4) Calculate increases of Q for all possible module pairs
obtained in step 3.

(5) Choose the pairs with the maximal increase (or mini-
mal decrease) of Q for further mergers.

(6) Repeat steps 2-5 until all vertices form a single mod-
ule.

(7) Choose a stage achieving the maximal Q as the final
solution.

In this algorithm, the second routine is an essential step
where each vertex plays a role as an autonomous entity dem-
onstrating “flocking behavior” within local environments.
Each vertex only circumstantially decides its own fate to
move preferably in a direction that leads to an increase of Q
without a pre-existing global plan. However, in reality the
synchronized movement of multiple vertices appears to fol-
low a global plan and creates a pattern toward an increasing
modularity. The process where autonomous entities interact
in such a way to create a global order is known as self-
organization, as seen in different situations such as for ants to
line up while transporting food and for birds to form a flock
pattern for traveling long distances [24,25]. Therefore we
named our method adaptive clustering algorithm or AdClust,
inspired by these self-organization behaviors frequently ob-
served in nature.

Comparing with the Newman-fast algorithm, our method
introduces an additional self-organization routine for node
traveling before module pairs merge, and this routine will
take time O(n). Since there is a maximum of n—1 joining
operations among module pairs in the worst case scenario,
AdClust should be similar to the Newman-fast algorithm in
running time O(n?) on a sparse graph [18], but is theoreti-
cally slower as compared to the Newman-fast algorithm due
to the additional routines. However, it is worth mentioning
that the number of modules after the first self-organization
routine is usually dramatically decreased; for instance, the
initial 27 519 modules in the physicist network (detailed
later) reduced to about 4500 modules after the first self-
organization routine. This feature is quite different from the
stepwise procedure of the Newman-fast method that reduces
modules one at a time from the initial 27 519 modules.
Therefore AdClust reduces the number of iterative steps for
the mergence of module pairs.

COMPETITIVE MERITS OF ADCLUST

AdClust is considered an agglomerative approach of hier-
archical clustering techniques. Compared with others
[13,15,17], we believe that the uniqueness of AdClust is its
capability of self-organization where vertices are offered
flexibility to move around seeking their best destinations ac-
cording to their local contexts.

Let us look into an example. Newman [18] has introduced
a fast and greedy strategy for modularity maximization. It
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FIG. 2. (Color online) A sample network for a merit illustration
of AdClust when competing against Newman-fast algorithm. The
two nodes connected through edge E are grouped together first by
the agglomerative procedure due to their maximal increase of Q,
and remain together to form an isolated group ultimately. However,
it is clearly seen that E may belong to different groups. In the
adaptive clustering algorithm, the two nodes will be separated into
their respective groups according to the simple force rules (F,,,
>F;,), leading to an optimal partition.

initially separates each vertex uniquely into its respective
module and proceeds by grouping the nodes together to yield
a maximal increase of Q. By repeating such procedure, a
hierarchical tree can be constructed with modules forming
from the division of the tree at a maximal Q value. This
algorithm improves speed and performs well for a number of
real-world large networks. However, as shown in Fig. 2, it
fails when linking two modules with nodes of poor connec-
tivity. For example, the two nodes, @ and ®, are grouped
together initially through the agglomerative procedure due to
their maximal increment of Q in early steps, and remain
together until the end. This result contradicts the perfect di-
vision where the two-module structure gives maximal modu-
larity. In nonadaptive algorithms, initial steps often lead to an
unfavorable ending that is not repairable by steps thereafter
[8]. Similar situations are also encountered when divisible
clustering methods are used [15]. In contrast, our adaptive
clustering method ultimately pulls the two nodes apart re-
gardless if they are joined together at the first step or not. We
observed that the best conformation with three groups
(circled by dotted lines in Fig. 2) can be obtained by the
fast-greedy algorithm, but the structure is not stable when
our method is applied. When the two nodes (@ and ®) are
grouped together, the inner force on node @ in module B is
0.784, and the outer force from module A is 1.216; the same
situation happens to node ®. Therefore a differential affinity
(fpue>F;,) on the two nodes inevitably drives them apart.
Each vertex then migrates toward A and B modules sepa-
rately, forming a two-module structure.

In traditional clustering methods, such as the Newman-
fast algorithm, one major difficulty is the fact that vertices
bundled together into a module in previous steps, and these
vertices lose their chance to break away for potential im-
provement in subsequent steps. Furthermore, an ill-suited
combination in early stage may lead to worse outcomes in
later steps by iteratively magnifying and accumulating early
mistakes, especially when such events are common to real
complex networks.

EVALUATION

One way to test the performance of AdClust is to apply it
to ad hoc networks with a well-characterized module struc-
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FIG. 3. (Color) Performance tests with artificial networks. In
these computer-generated networks, four modules are predisposed
according to various parameters described in the text. Each data
point is an average over 100 graphs. As k,, grows bigger, the
boundary of module structure becomes more complicated. (a) When
ki,=14 and k,,=2. (b) When k;,=8, k,,;=8. (c) The fraction of
nodes correctly classified by the AdClust. Newman-fast algorithm
was used as a reference. (d) The average modularity obtained at
each point. The theoretical value corresponds to the four predefined
community structures.

ture to see if the algorithm is capable of recognizing and
extracting the same structure [23]. We generated a series of
artificial networks with n=128 nodes that are split into four
communities; each contains 32 nodes. Edges between two
nodes are introduced with different probabilities depending
on whether the two nodes belong to the same group (p;) or
not (p,): every node has k;,=31p; links on average to its
partners in the same community, and k,,=96p, links to the
outer world, keeping k;,+k,,,=16. While p, (and therefore
k,,.) is varied freely, the value of p; should be chosen condi-
tionally. As k,,, increases from zero, the modules become
more diffused and harder to identify [Figs. 3(a) and 3(b)].
According to Newman and Girvan [23], we calculated the
ratio of correctly classified nodes and the corresponding Q
values [Figs. 3(c) and 3(d)], using the Newman-fast algo-
rithm as a reference. AdClust appears better in the detecting
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module structure than the Newman-fast algorithm; it reaches
an accuracy of 74% as boundaries of communities become
blurry when £, equals 8, which exceeds the value of 40% in
the Newman-fast algorithm. Moreover, AdClust often yields
higher Q values than the theoretical predictions for a pre-
defined pattern, suggesting that the modular structures it con-
structs is closer to the reality, and the predefined pattern
would relatively lose its referential significance when the
boundary becomes more and more blurry. For instance, a
good modular quality of predefined structure may not be
authentic when we create random graphs at a growing k,,,
value.

We also would like to point out that AdClust is stochastic
in nature since the order to calculate moving forces for ver-
tices and to move them in subsequent steps is not pre-
determined. We do not enforce any rules to prioritize which
vertex to start. To test its robustness, we performed 100 ran-
dom runs with an artificial network [Fig. 3(b)] and recorded
the fraction of times when two nodes are classified in the
same group [Fig. 4(a)]. The module structure is clearly re-
vealed, and most node pairs are either always classified or
never classified into the same modules. We further calculated
relative standard deviation (RSD=1.68%) for Q values for
the 100 runs [Fig. 4(b)]. Even the smallest Q from our algo-
rithm is still higher than that of the Newman-fast algorithm
(0.234 versus 0.228).

APPLICATIONS

We applied AdClust to another well-known network ana-
lyzed by Zachary—the karaoke club network. This network
is widely used as a test case for new methods for complex
networks; it consists of 34 members of a karate club as nodes
and 78 edges representing friendships among members of the
club, which was observed over a period of two years. By
chance, a dispute arose and the club eventually split into two
smaller groups, centered on the club’s administrator and its
principle karate teacher [26].

As many authors have tested their approaches to this net-
work for module detection and accuracy evaluation [15,16],
we also offered the result based on AdClust, yielding a QO
value of 0.4198 (Fig. 5). Not only are the two groups well
separated according to the reality but also our algorithm di-
vides them further into four smaller fractions that revealed
finer structures. Our algorithm gives rise to more precise
answers than other competing algorithms (e.g., 0=0.4188 in
Refs [16]) even when it works on such a simple yet real
network.

A football network has also been used as a showcase to
demonstrate some weakness of the Newman-fast algorithm
[18], which records the schedule of games among American
college football teams in a single season. This network con-
tains 115 nodes and 1114 edges, each node represents a col-
lege football team and each edge represents the fact that two
teams played together. Because the teams are divided into
groups or conferences, with intraconference games being
more frequent than interconference games, we have a reason-
able idea ahead of time about what communities should be
identified. We applied AdClust to this network and obtained
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FIG. 4. (Color online) Robustness tests of AdClust. Due to the
stochastic feature of AdClust, we performed 100 runs over the net-
work as described in Fig. 3(b) to check for consistency among
different partitions. (a) Fractions of timing when two nodes are
classified into the same module indicated with a different gray
scheme from black (low) to white (high). The modular structure is
clearly revealed, and most pairs of nodes are either always classi-
fied into the same module (white) or never classified into the same
module (black), which suggests that the solution is robust. (b) The
modularity value Q for each partition corresponds to each run. The
horizontal solid line represents the mean value of total runs, and the
dotted line represents the Q value based on the Newman-fast algo-
rithm as a reference.

the modularity 0=0.605 that is higher than the value re-
ported, 0=0.546 [18]. As shown in Fig. 6, there are ten
communities defined by AdClust, whereas the Newman-fast
algorithm revealed six communities only [18]. Since the true
community structure has been previously known, we can
evaluate the two experimental partitions (AdClust and
Newman-fast) against the standard classification by the NMI
(normalized mutual information) index to measure which
partition is closer to the right classification [20]. Our result
(NMI,4=0.890) is significantly better than what is yielded
from the Newman-fast algorithm (NMI;,,=0.685).

We further applied Adclust on a large complex network:
the collaboration network of scientists working in condensed
matter physics. The network contains 27 519 nodes and
116 181 edges and it has been widely used by several authors
as a test bed for community-finding algorithms on large net-
works [14,16]. We obtained 0=0.761 with AdClust, greater
than the value of 0=0.679 arrived at with extreme optimi-
zation [16] and the value Q=0.723 with spectral partitioning
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FIG. 5. (Color online) A test case on the Zachary network. The
administrator and the instructor are defined as nodes 1 and 33,
respectively. AdClust divides this network into four parts as indi-
cated with four different shapes, yielding a Q value of 0.4198. The
two groups separated by the dashed line are consistent with disrup-
tion among members in reality.

[14]. These two methods are currently considered as good
algorithms that yield high Q values.

CONCLUSIONS

In this paper, we proposed an adaptive clustering algo-
rithm for module detection of complex networks. Taking the
advantage of adaptive characteristics and self-organization
dynamics, AdClust avoids trapping nodes in a transient state
of low quality, and gives more satisfactory solutions in real-
world applications. In traditional clustering methods, regard-
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FIG. 6. Clustering for the football network. The different shapes
represent 12 conferences in reality, and the ten circles indicate mod-
ules found by AdClust. The team members are homologous among
most modules.
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less if they are divisive or aggregative, a major drawback is
the fact that their structural outcomes from early steps are
inflexible and do not allow node exchange between estab-
lished modules in subsequent steps. AdClust provides a
mechanism to ensure that each node is capable of shuttling
among existing modules, and therefore overcoming limita-
tions occurred in early steps. AdClust keeps each vertex au-
tonomous, allowing the creation of globally optimized pat-
terns. The self-organization process implemented in AdClust
enables the vertex to migrate toward its most preferable
modules in an adaptive fashion resembling “flocking behav-
iors” of a living entity and relaxing the limitation of tradi-
tional clustering methods, and therefore substantially im-
proving the accuracy of module identifications. Moreover, a
series of tests on some predefined artificial networks showed
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that our adaptive clustering method possesses the capability
of gaining better quantity in modularity and accuracy for
module detection. Applying AdClust to real-world networks,
we showed that the modules found with AdClust exhibit
stronger association among members than what were defined
by other methods. AdClust provides a plausible solution for
clustering problems and is competent to promote analyses on
networks from complex systems.
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