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We study numerically the effect of a scale-free topology on the signal-to-noise ratio of networked two-state
systems and find a double resonance phenomenon, i.e., a resonance on coupling strength and a stochastic
resonance on noise strength. This finding suggests an alternative approach of self-tuning, i.e., tuning from the
scale-free topology, instead of the self-tuning of potential. A heuristic theory through a starlike network is
presented to explain the double resonance.
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Two-state systems are ubiquitous in nature and many of
them are connected networks. The key importance of these
systems is that they can be used as models for signal detec-
tion. It has been found that there is stochastic resonance �SR�
in these systems where the signal-to-noise ratio �SNR� is
sensitive to the noise amplitude and can reach a maximum
value at an optimal noise level �1–4�. SR has been well stud-
ied in a single or an array of two-state systems and a large
number of its applications have been reported �2–9�, espe-
cially in the biological systems.

SR can be also observed in other systems, such as the
monostable systems �9,10� and systems without external sig-
nal �11–13�, etc. For the former, Zaikin et al. found that the
added multiplicative noise can make the monostable poten-
tial of the system become an “effective” double-well poten-
tial and then the added additive noise can cause a SR in this
“effective” potential. While for the latter, the resonance is
called coherence resonance so as to distinguish from the situ-
ation with signal. Except the noise induced resonance, it has
been revealed that resonance can be also induced by other
factors, such as the system size �14� and the coupling
strength �15�. For an ensemble of noise-driven bistable over-
damped oscillators, Pikovsky et al. shows that when a small
periodic force acts on the ensemble, the linear response of
the system has a maximum at a certain system size, thus
called the system size resonance.

Recently, Acebron et al. investigates the situation of an
ensemble of bistable oscillators on a scale-free �SF� network
and finds that the amplitude amplification at the hub shows
an effect of resonance on the coupling strength �15�. In this
work, they focus on the situation of no external noise, hence
the individual two-state system at a node oscillates around
one of its two equilibria and have no jumping between them
for a weak signal, see the left-hand panels of Fig. 1. That is,
the observed amplitude amplification is not based on the
jumping or firing between the two equilibria. The signifi-
cance of this finding is that the SF topology can be used to
sustain the high sensitivity of signaling devices.

Considering the fact that signal detection in neurons is
through the firings and neurons can exhibit excitable behav-
ior, we may simplify the behavior of neuron as two states,
i.e., quiescence and firing. It has been pointed out that the
residence-time distribution of a double-well system can ex-
hibit the main features of the interspike interval histograms
of firing neurons �16�, thus it is necessary to know whether

the effect of amplitude amplification still exist when there is
firings in neurons or jumping in double-well systems. For
answering this question, we here study the situation of noise
and focus on how the SF topology influences the SNR of a
weak signal in coupled two-states systems. Our study shows
that with noise, the effect of amplitude amplification disap-
pears but a new interesting phenomenon appears. That is,
there are a SR on noise strength and another resonance on
coupling strength at the hub of the SF network, whose
mechanism is completely different from the case of no firing
or noise. In the case of no firings, each node oscillates
around one of the two equilibria, thus has memory on its
initial condition. The influence of the neighboring nodes on
the hub can be considered as an external noise because of
their random initial conditions and thus induce a resonance.
While for the case with firings, the oscillators will lose their
memory on initial conditions and the resonance comes from
the reducing of barrier height. On the other hand, our case is
different from the situations in Refs. �9,14� in the aspect that
the firing behavior in our case is sustained by an additive
noise and the resonance is induced by the coupling strength.

Very interestingly, it has been reported that the visual and
auditory systems of animals show high sensitivity to external
signals �17–20�. The mechanism for this phenomenon has
been considered to be self-tuning of barrier height for firing
�17,18�. For example, consider a two-state system with po-
tential V�x�=a�x−1�2�x+1�2. Self-tuning in a somewhat sim-
plified form means that for a weak signal, the barrier height
of V�x� for firing decreases automatically through the varia-
tion of a, reflecting rare firing events �21�. Obviously, the
self-tuning of parameter a and the resonance on coupling
strength have the same effect: The reducing of barrier height.
Thus, our finding suggests an alternative approach of self-
tuning, i.e., tuning from the strength of scale-free topology,
instead of the self-tuning of potential.

We first construct a SF network according to the algo-
rithm given by Barabasi-Albert �BA� where the number of
total nodes is N, the average link is �k�, and the degree dis-
tribution satisfies P�k��k−3 �22,23�. Then we let each node
be a double-well system, i.e., a typical two-state system, and
let each link have a coupling strength �. The networked
double-well systems are as follows:
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ẋi = − dV�xi�/dxi + ��
j=1

ki

�xj − xi� + A cos �t + �i�t� , �1�

where the potential V�x�= �x−1�2�x+1�2, ki denotes the links
of node i, A cos �t is the weak signal, and the noise �i�t� are
independent Gaussian white noise with average zero and sat-
isfy

��i�t�� j�t��� = 2T�ij��t − t�� . �2�

The potential V�x� has an unstable maximum at x=0 and two
stable minima at x= �1. Without external force, a particle
will finally stay at one of the two minima. We choose the
signal strength A=0.8 so that there is no firing or jumping
between the two minima in Eq. �1� when T=0, see Fig. 2. In
this work, we fix N=500, �k�=6, and �=0.5.

Reference �15� shows that without noise, the coupling can
amplify the amplitude of oscillation at the hub, see Fig. 1�a�
for T=0 and �=0.02 where the dotted, dashed, and solid
lines represent the evolutions on the hub with links khub
=68, a general node with links kge=5, and the average on all
the nodes, respectively. Obviously, the hub’s oscillation am-

plitude is much larger than that of the general node. For an
optimal coupling strength �=0.05, the hub’s amplitude
reaches its maximum, see Fig. 1�c�. When � is over the op-
timal value, the hub’s amplitude will be reduced again, see
Fig. 1�e�. Thus, the amplitude amplification of the hub shows
a resonance on the coupling strength �15�. Here, an important
feature is that there is no jumping or firing between the two
minima for both the hub and general nodes for all of the �.

With introduction of noise the situation will be completely
changed as noise may induce the jumping or firing between
the two equilibria which are located at x= �1 if there were
no interactions among nodes. Our numerical simulations
show that the amplitude of the hub will not change anymore
with the increase of coupling strength, i.e., the effect of am-
plitude amplification on � disappear because of the jumping
induced by noise. The right-hand panels of Fig. 1 show the
results for T=0.2 and �=0.02,0.05, and 0.1, respectively. It
is easy to see that the averages in Figs. 1�b� and 1�d� the
solid line waves are oscillations around x=0, which is differ-
ent from the corresponding �a� and �c� for T=0 where the
waves are away from x=0. The reason is that the case with-
out noise has no jumping and thus can keep its memory on
initial condition. The asymmetric initial conditions around
�1 on different nodes result in the average away from x=0.
In contrast, the case with noise has jumping and thus loses its
memory on initial condition, resulting in an approximate
symmetric distribution of nodes at the two equilibria and
hence the average turns out to perform oscillation around x
=0.

Very strangely, for the case of larger �, we find that the
jumping rate is not increased further but reduced very much,
see Fig. 1�f�. For understanding the mechanism we have
checked the relationship between the jumping rate and noise
strength T and found that there is a threshold Tc for each �
where there is jumping for T�Tc and no jumping for T
�Tc during a certain time interval 	t. We specify Tc by
checking the jumping in the time interval 	t=100. Figure 2
shows Tc as a function of �, where the “squares” and
“circles” represent the results for the hub with links khub
=68 and a general node with links kge=5, respectively. It is
easy to see that Tc does not change much for the general

FIG. 1. �Color online� How noise influences the evolution of
double-well systems on Barabasi-Albert �BA� network with N
=500 where the dotted, dashed, and solid lines represent the evolu-
tions on the hub with links khub=68, a general node with links kge

=5, and the average on all the nodes, respectively. The left-hand
panels �a�, �c�, and �e� are for the case of no noise and the right-
hand panels �b�, �d�, and �f� are for the case of noise strength T
=0.2. The coupling strength is �=0.02 in �a� and �b�, 0.05 in �c�
and �d�, and 0.1 in �e� and �f�.

FIG. 2. �Color online� Critical noise strength for inducing jump-
ing in the BA model with N=500 where the “squares” and “circles”
represent the thresholds for the hub with links khub=68 and a gen-
eral node with links kge=5, respectively.
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node but it changes significantly for the hub. For the hub at
T=0.2, we have T�Tc for �
0.08, Figs. 1�b� and 1�d�, and
T�Tc for ��0.08, Fig. 1�f�. Figure 2 also shows that there
is a specific �c for each given T, i.e., �c depends on T. For
example, �c will be over 0.15 for T=0.3.

We now turn to study how the coupling strength and noise
strength influence the SNR. We first fix T and let the cou-
pling strength � change. By taking time series for each � and
making the Fourier transformation to get its power spectrum,
we can obtain the SNR at the reference frequency �. Figures
3�a� and 3�b� show how the SNR changes with the coupling
strength at T=0.2 for the general node and the hub, respec-
tively. It is easy to see that both the general node and the hub
show resonance on coupling strength for 0����c	0.08,
and SNR for the hub is about 20 times larger than that for the
general node, indicating the hub can amplify the weak signal
detected by a large number of surrounding general nodes.
After ���c, there is no jumping at the hub and thus the hub
just oscillates around one of the two equilibria �see Fig. 1�f��.
Our numerical simulations show that in this region of the
coupling strength local clusters of the general nodes are
formed and more than one-half of the nodes are staying
around in the same equilibrium with the hub. With further
increase of �, this number of clustering nodes will increase
until the appearance of synchronization. �The detailed syn-
chronization results will be reported elsewhere.� This syn-
chronization makes the hub oscillate around one equilibrium
�no firing� and at the same time increases the SNR with �
�10�, which is just what we have observed in Fig. 3�b� for
���c=0.08.

Next we fix �=0.03 and let T change. We find that the
SNR also shows resonance on the noise strength T which is
the traditional SR. Figures 3�c� and 3�d� show the results on
the general node and the hub, respectively. In sum, the SF
networked two-state systems show an enhanced double reso-
nance at the hub, i.e., resonance on both coupling strength
and noise strength.

The characteristic feature of the SF network is the exis-
tence of a few hubs whose link number is much larger than
the general nodes. As a hub is connected with a large number
of surrounding nodes, the hub and its surrounding nodes can
be roughly modeled by a starlike subnetwork where every
general node is connected to the hub and there is no connec-
tion among the general nodes �15�. That is, the starlike net-
work captures the main trait of SF networks. Therefore, we
here use the starlike network to illustrate heuristically the
mechanism of the double resonance.

The dynamics on general nodes and the hub of the starlike
network are as follows:

ẋi = −
dV�xi�

dxi
+ ��xH − xi� + A cos �t + �i�t� ,

ẋH = −
dV�xH�

dxH
+ �

i=1

m−1

��xi − xH� + A cos �t + �H�t� , �3�

where xi and xH denote the general node and the hub, respec-
tively, i=1, . . . ,m−1, and �i and �H are independent Gauss-
ian white noise with average zero and satisfy ��i�t�� j�t���
=2T�ij��t− t��, ��i�t��H�t���=0, and ��H�t��H�t���=2T��t− t��.

For ��1, the dynamics on the general nodes can be writ-
ten as ẋi=4xi−4xi

3+A cos �t+�i�t�, which is the standard
double-well system with a weak periodic signal and an ex-
ternal noise. It is well known that this system can show SR
on noise strength �2�, implying that the case of general nodes
is trivial. Thus, we here only focus on xH of the hub. The
sum �i=1

m−1xi
�m−1��x�t�� is in fact an average over m−1
realizations. In the stationary state, each xi has lost its
memory on initial condition because of the jumping and
�x�t�� becomes a periodic function of time, i.e., �x�t��
= �x�t+���� with ��=2 /� �4�. For small �, the average
�x�t�� can be written as �4�

�x�t�� = x̄ cos��t − �̄� , �4�

with amplitude x̄=
A�x2�0

T

2rk

�4rk
2+�2 and a phase lag �̄

=arctan� �
2rk

� where �x2�0 is the T-dependent variance of the
stationary unperturbed system �A=0� and rk= 1

�2
exp�− 1

T � is
the Kramers rate.

Substituting Eq. �4� into Eq. �3� we obtain

ẋH = �4 − ��m − 1��xH − 4xH
3 + A� cos��t − �� + �H�t� ,

�5�

where A�=��A+��m−1�x̄ cos �̄�2+ ���m−1�x̄ sin �̄�2 and

tan �= ��m−1�x̄ sin �̄

A+��m−1�x̄ cos �̄
. Thus, Eq. �5� becomes a standard

double-well system with two minima at x
= ��4−��m−1� /2 and the barrier height U0=1−�2�m
−1�2 /16. For guaranteeing U0�0, the resonance range of �
is limited to ��4 / �m−1�.

Considering the fact that a general node has two minima
at x= �1 and the barrier height U0=1, we see that the barrier
height of the hub is reduced and the distance between the
minima become shorter. Thus, comparing with the general
nodes, the jumping at the hub is much easy to occur. This is

λ λ

FIG. 3. How SNR changes with the coupling strength and noise
strength in the BA model where R represents the SNR, �a� and �c�
denote the case of a general node with links kge=5 and �b� and �d�
the case of the hub with links khub=68. �a� and �b� SNR versus
coupling strength with T=0.2; �c� and �d� SNR versus noise
strength with �=0.03.
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the reason why the coupling strength in SF network can en-
hance the SNR at the hub. On the other hand, Eq. �5� sug-
gests a new mechanism for the high sensitivity observed in
the visual and auditory systems of animals �17–20�. As we
know, most of the technical and biology networks are SF
networks �24,25� and there are evidences that the functional
connections among different areas of the human brain and
the cat brain are also SF networks �26–28�. Suppose each
node in the SF network represents a bunch of neuron sensors.
The collected signals at nodes are transferred to the hub and
then implement the amplification by an optimal �. Thus, the
self-tuning of coupling strength � is equivalent to the self-
tuning of parameter a in potential.

Equation �4� is not always correct and its effective range
of validity can be estimated by checking the solid line waves
in the right-hand panels of Fig. 1. Take Fig. 1�b� as an ex-
ample: We may measure the maximum and minimum of the
solid line wave for each period �� and then take their aver-
ages. Figure 4�a� shows how the two averages change with �
for the SF network. From Fig. 4�a� we see that the two av-
erages are symmetric only when ���c. When ���c, they
will be both on the same side �x�0 in this example�, con-

firming that most of the nodes become a cluster in their
single wells, with Fig. 1�f� showing the precursor. Moreover,
we find that for fixed �, the two averages also show reso-
nance for the noise strength T �see Fig. 4�b��, which corre-
sponds to the SR shown in Fig. 3�c� for the SF network. We
note that this resonance in Fig. 4�b� can be explained by the
expression of x̄ in Eq. �4�.

The SNR of the double-well system, Eq. �5�, can be easily
figured out. Following the derivation of Eq. �5.9� in Ref. �2�
we obtain the SNR of Eq. �5� as

R �
�2A�2�4 − ��m − 1��2

16T2 e−16−��2�m − 1�2�/16T. �6�

By dR /dT=0 we find that the maximum SNR for a fixed �
occurs at Top=1 /2−�2�m−1�2 /32; and by dR /d�=0 we find
that the maximum SNR for a fixed T occurs at �op

= �2��4−16T� / �m−1�, where the A� is approximately
treated as a constant. As khub=68 in SF network, we take
m=68 in Eq. �6�, which gives Top�3 /8 for �=0.03 and
�op�0.043 for T=0.2. These two values are very close to the
optimal values in Figs. 3�b� and 3�d� and thus explains the
double resonance observed in the SF network. On the other
hand, we know from Eq. �5� that the barrier height U0 de-
pends on the coupling strength �. The existence of the opti-
mal �op implies that the coupling strength may be self-tuned
to its optimal value, confirming the mechanism of the self-
tuning of coupling strength.

In sum, we have found a mechanism, i.e., SF topology
assisted tuning for the effect of self-tuning. This finding is
significant as it may enrich our understanding on the effect of
high sensitivity to external noise in biological systems and
also have potential applications in designing the signaling
devices.
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