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Community structure is one of the most important features of real networks and reveals the internal orga-
nization of the nodes. Many algorithms have been proposed but the crucial issue of testing, i.e., the question of
how good an algorithm is, with respect to others, is still open. Standard tests include the analysis of simple
artificial graphs with a built-in community structure, that the algorithm has to recover. However, the special
graphs adopted in actual tests have a structure that does not reflect the real properties of nodes and commu-
nities found in real networks. Here we introduce a class of benchmark graphs, that account for the heteroge-
neity in the distributions of node degrees and of community sizes. We use this benchmark to test two popular
methods of community detection, modularity optimization, and Potts model clustering. The results show that
the benchmark poses a much more severe test to algorithms than standard benchmarks, revealing limits that
may not be apparent at a first analysis.
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I. INTRODUCTION

Many complex systems in nature, society, and technology
display a modular structure, i.e., they appear as a combina-
tion of compartments that are fairly independent of each
other. In the graph representation of complex systems �1,2�,
where the elementary units of a system are described as
nodes and their mutual interactions as links, such modular
structure is revealed by the existence of groups of nodes,
called communities or modules, with many links connecting
nodes of the same group and comparatively few links joining
nodes of different groups �3,4�. Communities reveal a non-
trivial internal organization of the network, and allow us to
infer special relationships between the nodes that may not be
easily accessible from direct empirical tests. Communities
may be groups of related individuals in social networks �3,5�,
sets of Web pages dealing with the same topic �6�, biochemi-
cal pathways in metabolic networks �7,8�, etc.

Detecting communities in networks is a big challenge.
Many methods have been devised over the last few years,
within different scientific disciplines such as physics, biol-
ogy, computer, and social sciences. This race towards the
ideal method aims at two main goals, i.e., improving the
accuracy in the determination of meaningful modules and
reducing the computational complexity of the algorithm. The
latter is a well defined objective: in many cases it is possible
to compute analytically the complexity of an algorithm, in
others one can derive it from simulations of the algorithm on
systems of different sizes. The main problem is then to esti-
mate the accuracy of a method and to compare it with other
methods. This issue of testing is in our opinion as crucial as
devising powerful algorithms, but until now it has not re-
ceived the attention it deserves.

Testing an algorithm essentially means analyzing a net-
work with a well-defined community structure and recover-
ing its communities. Ideally, one would like to have many
instances of real networks whose modules are precisely
known, but this is unfortunately not the case. Therefore, the
most extensive tests are performed on computer generated
networks, with a built-in community structure. The most fa-

mous benchmark for community detection is a class of net-
works introduced by Girvan and Newman �GN� �3�. Each
network has 128 nodes, divided into four groups with 32
nodes each. The average degree of the network is 16 and the
nodes have approximately the same degree, as in a random
graph. At variance with a random graph, nodes tend to be
connected preferentially to nodes of their group: a parameter
kout indicates what is the expected number of links joining
each node to nodes of different groups �external degree�.
When kout�8 each node shares more links with the other
nodes of its group than with the rest of the network. In this
case, the four groups are well defined communities and a
good algorithm should be able to identify them.

This benchmark is regularly used to test algorithms. How-
ever, there are several caveats that one has to consider: all
nodes of the network have essentially the same degree, the
communities are all of the same size, and the network is
small. The first two remarks indicate that the GN benchmark
cannot be considered a proxy of a real network with commu-
nity structure.

Real networks are characterized by heterogeneous distri-
butions of node degree, whose tails often decay as power
laws. Such heterogeneity is responsible for a number of re-
markable features of real networks, such as resilience to ran-
dom failures/attacks �9�, and the absence of a threshold for
percolation �10� and epidemic spreading �11�. Therefore, a
good benchmark should have a skewed degree distribution,
similar to real networks. Likewise, it is not correct to assume
that all communities have the same size: the distribution of
community sizes of real networks is also broad, with a tail
that can be fairly well approximated by a power law
�8,12–14�. A reliable benchmark should include communities
of very different sizes. A variant of the GN benchmark with
communities of different size was introduced in Ref. �15�.
Finally, the GN benchmark was a network of a reasonable
size for most existing algorithms at the time when it was
introduced. Nowadays, there are methods able to analyze
graphs with millions of nodes �14,16,17� and it is not appro-
priate to compare their performances on small graphs. In
general, an algorithm should be tested on benchmarks of
variable size and average degree, as these parameters may
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seriously affect the outcome of the method, and reveal its
limits, as we shall see.

In this paper we propose a realistic benchmark for com-
munity detection, that accounts for the heterogeneity of both
degree and community size. Detecting communities on this
class of graphs is a challenging task, as shown by applying
well known community detection algorithms.

II. THE BENCHMARK

We assume that both the degree and the community size
distributions are power laws, with exponents � and �, re-
spectively. The number of nodes is N, the average degree is
�k�.

In the GN benchmark a node may happen to have more
links outside than inside its community even when kout�8,
due to random fluctuations, which raises a conceptual prob-
lem concerning the natural classification of the node. The
construction of a realization of our benchmark proceeds
through the following steps.

�1� Each node is given a degree taken from a power law
distribution with exponent �. The extremes of the distribu-
tion kmin and kmax are chosen such that the average degree is
�k�. The configuration model �18� is used to connect the
nodes so to keep their degree sequence.

�2� Each node shares a fraction 1−� of its links with the
other nodes of its community and a fraction � with the other
nodes of the network; � is the mixing parameter.

�3� The sizes of the communities are taken from a power
law distribution with exponent �, such that the sum of all
sizes equals the number N of nodes of the graph. The mini-
mal and maximal community sizes smin and smax are chosen
so to respect the constraints imposed by our definition of
community: smin�kmin and smax�kmax. This ensures that a
node of any degree can be included in at least a community.

�4� At the beginning, all nodes are homeless, i.e., they are
not assigned to any community. In the first iteration, a node
is assigned to a randomly chosen community; if the commu-
nity size exceeds the internal degree of the node �i.e., the
number of its neighbors inside the community�, the node
enters the community, otherwise it remains homeless. In suc-
cessive iterations we place a homeless node to a randomly
chosen community: if the latter is complete, we kick out a
randomly selected node of the community, which becomes
homeless. The procedure stops when there are no more
homeless nodes.

�5� To enforce the condition on the fraction of internal
neighbors expressed by the mixing parameter �, several re-
wiring steps are performed, such that the degrees of all nodes
stay the same and only the split between internal and exter-
nal degree is affected, when needed. In this way the ratio
between external and internal degree of each node in its com-
munity can be set to the desired share � with good approxi-
mation �see Fig. 1�.

The prescription we have given leads to fast convergence.
In Fig. 2 we show how the time to completion scales with the
number of links of the graphs. The latter is expressed by the
average degree, as the number of nodes of the graphs is kept
fixed. The curves clearly show a linear relation between the

computer time and the number of links of the graph. There-
fore our procedure allows one to build fairly large networks
�up to 105–106 nodes� in a reasonable time.

Due to the strong constraints we impose to the system, in
some instances convergence may not be reached. However,

FIG. 1. �Color online� A realization of the new benchmark, with
500 nodes.
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FIG. 2. �Color online� Study of the complexity of our algorithm.
The plots show the scaling of the computer time �in s� with the
average degree of the graph. The curves correspond to different
choices for the exponents � and � and the value of �. The two
panels reproduce graphs with 1000 �a� and 10000 nodes �b�. The
calculations were performed on Opteron processors.
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this is very unlikely for the range of parameters we have
used. For the exponents we have taken typical values of real
networks: 2���3, 1���2.

Our algorithm tries to set the � value of each node to the
predefined input value, but of course this does not work in
general, especially for nodes of small degree, where the pos-
sible values of � are just a few and clearly separated. So, the
distribution of � values for a given benchmark graph cannot
be a � function, but it will have a bell-shaped curve, with a
pronounced peak �Fig. 3�.

III. TESTS

We have used our benchmark to test the performance of
two methods to detect communities in networks, i.e., modu-
larity optimization �7,19,20�, probably the most popular
method of all, and the algorithm based on the Potts model
introduced by Reichardt and Bornholdt �21�. For modularity,
the optimization was carried out through simulated anneal-
ing, as in Ref. �7�, which is not a fast technique but yields

good estimates of modularity maxima. In Fig. 4 we plot the
performance of the method as a function of the external de-
gree of the nodes for the GN benchmark.

To compare the built-in modular structure with the one
delivered by the algorithm we adopt the normalized mutual
information, a measure of similarity of partitions borrowed
from information theory, which has proved to be reliable
�22�. As we can see from the figure, the natural partition is
always found up until kout=6, then the method starts to fail,
although it finds good partitions even when communities are
fuzzy �kout�8�. Meanwhile, many algorithms are able to
achieve comparable performances, so the benchmark can
hardly discriminate between different methods. As we can

0 0.2 0.4 0.6 0.8 1
µ

0

5

10

15

P
(µ

)

N=1000 γ=2 β=1 µ=0.1 <k>=15

N=1000 γ=2 β=1 µ=0.5 <k>=15

N=1000 γ=3 β=2 µ=0.1 <k>=15

N=1000 γ=3 β=2 µ=0.5 <k>=15

N=10000 γ=2 β=1 µ=0.1 <k>=30

N=10000 γ=2 β=1 µ=0.5 <k>=30

N=10000 γ=3 β=2 µ=0.1 <k>=30

N=10000 γ=3 β=2 µ=0.5 <k>=30

FIG. 3. �Color online� Distribution of the � values for bench-
mark graphs obtained with our algorithm for different choices of the
exponents and system size.
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FIG. 4. �Color online� Test of modularity optimization on the
benchmark of Girvan and Newman.
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FIG. 5. �Color online� Test of modularity optimization on the
new benchmark. The number of nodes N=1000. The results clearly
depend on all parameters of the benchmark, from the exponents �
and � to the average degree �k�. The threshold �c=0.5 �dashed
vertical line in the plots� marks the border beyond which commu-
nities are no longer defined in the strong sense, i.e., such that each
node has more neighbors in its own community than in the others
�23�. Each point corresponds to an average over 100 graph
realizations.
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FIG. 6. �Color online� Test of modularity optimization on the
new benchmark. The number of nodes is now N=5000, the other
parameters are the same as in Fig. 5. Each point corresponds to an
average over 25 graph realizations.
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see from the figure, for kout�8 we are close to the top per-
formance and there seems to be little room for improvement.

In Fig. 5 we show what happens if one optimizes modu-
larity on the new benchmark, for N=1000. The four panels
correspond to four pairs for the exponents �� ,��
= �2,1� , �2,2� , �3,1� , �3,2�. We have chosen combinations of
the extremes of the exponents’ ranges in order to explore the
widest spectrum of graph structures. For each pair of expo-
nents, we have used three values for the average degree �k�
=15,20,25. Each curve shows the variation of the normal-
ized mutual information with the mixing parameter �.

In general, from Fig. 5 we can infer that the method gives
good results. However, we find that it begins to fail even
when communities are only loosely connected to each other
�small ��. This is due to the fact that modularity optimization
has an intrinsic resolution limit that makes small communi-
ties hard to detect �24�. Our benchmark is able to disclose
this limit. We have explicitely verified that the modularity of
the natural partition of the graph is lower than the maximum
obtained from the optimization, and that the partition found
by the algorithm has systematically a smaller number of
clusters, due to the merge of small communities into larger
groups.

We also see that the performance of the method is better
the larger the average degree �k�, whereas it gets worse when
the communities are more similar to each other in size �larger
��. To check how the performance is affected by the network
size, we have tested the method on a set of larger graphs
�Fig. 6�. Now N=5000, whereas the other parameters are the
same as before. Curves corresponding to the same param-
eters are similar, but shifted towards the bottom for larger
systems. We conclude that the performance of the method
worsens if the size of the graph increases. If we consider that

networks with 5000 nodes are much smaller than many
graphs one would like to analyze, modularity optimization
may give inaccurate results in practical cases, something
which could not be inferred from tests on existing bench-
marks.

We have repeated the same analysis for the Potts model
algorithm. We closely followed the implementation sug-
gested by the authors of Ref. �21�: we set the number of spin
states equal to the number of nodes of the network, the fer-
romagnetic coupling J was set to 1, whereas the antiferro-
magnetic coupling � equals the density of links of the net-
work. The results are shown in Figs. 7 and 8. The
performance of the method is fair, and it worsens for larger
system sizes, as for modularity optimization, which proves
superior.

IV. SUMMARY

We have introduced a class of graphs to test algorithms
identifying communities in networks. These graphs extend
the GN benchmark by introducing features of real networks,
i.e., the heterogeneity in the distributions of node degree and
community size. We found that these elements pose a harder
test to existing methods. We have tested modularity optimi-
zation and a clustering technique based on the Potts model
against the benchmark. From the results the resolution limit
of modularity emerges immediately. Furthermore, we have
seen that the size of the graph and the density of its links
have a sizeable effect on the performance of the algorithm,
so it is very important to study this dependence when testing
a new algorithm. The new benchmark is suitable for this type
of analysis, as the graphs can be constructed very quickly,
and one can span several orders of magnitude in network size
�25�.
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FIG. 7. �Color online� Test of Potts model clustering on the new
benchmark. The number of nodes N=1000. The results clearly de-
pend on all parameters of the benchmark, from the exponents � and
� to the average degree �k�. Each point corresponds to an average
over 100 graph realizations.
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FIG. 8. �Color online� Test of Potts model clustering on the new
benchmark. The number of nodes N=5000, the other parameters are
the same as in Fig. 7. Each point corresponds to an average over ten
graph realizations.
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