PHYSICAL REVIEW E 78, 046104 (2008)

Diffusive wave spectroscopy applied to the spatially resolved deformation of a solid
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We propose an experimental setup based on diffusive wave spectroscopy for studying deformations of a
solid material. The scattered waves are measured during the deformation of the solid material at different
locations of its surface. The correlations of the scattered intensities are measured. The loss of correlation can
be related to the invariants of the strain tensor of the solid, giving us a spatially resolved determination of the
deformation near the surface. Experiments dealing with a point stress on plate for two kinds of elastic materials
are presented and compared with the theoretical predictions.
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I. INTRODUCTION

Determining the deformations of solid materials under ap-
plied stresses is an important issue for many fields of re-
search such as the elastic deformations of a solid body [1],
apparition and propagation of failures [2], or the study of
plastic behavior of soils [3-5].

Optical methods are classical nondestructive methods for
these studies. The deformation of solid surfaces may be di-
rectly measured by recording with a camera different points
on the solid surfaces and analyzing their displacements using
techniques borrowed from fluid mechanics studies such as
particle image velocimetry [6] or digital image correlations
[7]. Speckle measurements use the random interference pat-
terns of coherent light reflected by the surface and measure
their displacements with different interferometric techniques
8].

In the displacement measurements mentioned above, the
light does not penetrate through the samples. The goal of this
paper is to propose an extension of these methods to the case
where the light interacts strongly with the material and pen-
etrates through the sample.

As a consequence of the interaction between light and the
material, a scattering of light takes place. The study of the
temporal variation of the scattered electric field or intensity
may be used to get information about the dynamics of scat-
tering media [9]. Those techniques are routinely used to
characterize the random motion of colloidal particles, foam
dynamics, or the dynamics of gelating processes [9,10]. The
application of light scattering techniques in highly diffusing
materials for studying the shear flow of a turbid fluid has
been proposed and demonstrated [11-14]. In these experi-
ments, the loss of the correlation of the scattered light comes
from the shearing flow of the scatterers, to which is added a
random Brownian motion of the scatterers.

In this paper, we analyzed the light scattered by an opti-
cally diffusing solid material after it penetrates through the
sample and used it to measure the heterogeneous deforma-
tion of this sample subject to stress. For this, we developed a
light scattering setup to measure the speckle pattern of the
light backscattered from a solid surface lightened by a planar
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wave. Light emerging from a point of the surface has ex-
plored a volume within the solid which is determined by the
optical properties of the material. This defines the spatial
resolution of the method. In order to study nonstationary
deformations of the body, we used a multispeckle scheme
[15]. The relation between the loss of correlation of the scat-
tered light and the deformation of the body is derived from
theoretical considerations on light propagation through a ran-
dom medium.

We begin this paper in Sec. II with a theoretical back-
ground where we recall some general considerations on dif-
fusive wave spectroscopy. The relation between the intensity
correlations and the variation of photon path lengths are re-
called. The relation between the length variations and the
strain tensor are then explained. In Sec. III we explain how
to design the experimental setup in order to have a spatially
resolved measurement of the deformation. In Sec. IV, we
introduce the experimental setup consisting of two different
elastic materials submitted to a variable point load. In Sec. V
we present the experimental maps of light intensity correla-
tion when the force is increased and decreased. In Sec. VI we
compare these maps with the ones expected from linear elas-
ticity. We first compare the results with a simple analytical
expression for the correlation of the scattered intensity in
Sec. VI A, and then with a numerical simulation of deformed
photon paths in Sec. VIB. We finish with concluding re-
marks in Sec. VIL

II. THEORETICAL BACKGROUND

In a dynamical light scattering experiment, a scattering
medium is illuminated by a coherent light field and the fluc-
tuations of the collected scattered light are used to analyze
the dynamics of the scattering medium [9]. Because of the
random structure of the medium, the scattered light shows a
speckle spatial structure defining areas of coherence in the
scattered field. Typically, the total intensity of one coherence
area is collected for two different states 1 and 2 of the scat-
tering medium, giving two intensities /; and /,. Information
on the displacements in the scattering medium can be de-
duced statistically from the correlations between those two
intensities, through the calculation of the autocorrelation
function (/,,) on a statistical ensemble, where (--) repre-
sents a temporal or ensemble average. When the dynamical
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system is stationary, a temporal average is used to calculate
autocorrelation functions, yet, such a method cannot deal
with slow dynamics and nonstationary systems. Otherwise, a
statistical average can be achieved by simultaneously collect-
ing intensities from several coherence areas forming a statis-
tical ensemble of independent intensities [15].

When the scattered field is Gaussian distributed, the in-
tensity autocorrelation function is linked to the normalized
electric field autocorrelation function between electric fields
scattered in two different states 1 and 2,

(E\E)
(12) _ 7727 1
8 = GENED W
via the Siegert relation [9]
<1112> _ 2
<Il><12> - 1 + B€|gE(1’2) s (2)

where S, is an experimental constant of order unity depend-
ing on the details of the experimental setup [9].

For highly diffusive materials, a photon propagating in-
side the sample follows a random walk which may be de-
scribed in the diffusion approximation [16—18]. In this
framework, the correlation function of the scattered field
may be expressed as [10,16]

8= f P(s)(exp/41:2)ds, 3

where A¢(1,2) is the phase difference of an optical path of
length s between the states 1 and 2 and contains the infor-
mation about the motion of the scatterers. {---) is an average
over all paths of length s. P(s) is the path length distribution,
and depends on the optical properties of the materials and on
the geometry of the experiment [18].

An example of deformation of an optical path between
two different states 1 and 2 is schematically represented in
Fig. 1(a) in a backscattering configuration.

For a scattering medium which is being deformed, the
phase variation for a path ¢(1,2)=¢(2)—¢(1) between the
two states 1 and 2 is linked to the displacement field u(r).
We define in Fig. 1(b) a discretized description of a path: If
v indexes the number of the scattering event among the N
events forming the path, each event takes place at a position
rgf) for state i. The displacement field is then defined as u,
=r(v2)—r5}1). The phase variation for a given path is then

N
A= ke, (e, Vu(r,), (4)
v=0

where k is the wave vector of the light field: k=27/\ with A
the wavelength of light in the medium, /,=|r,,,-r,|| is the
distance between two successive scattering events v and v
+1 along the direction e,=(r,.,,—r,)/l, [see Fig. 1(b)].

The diffusion of light length scale / is given by the aver-
age ([,). When the displacement field varies slowly at the
length scale [ [11,13], we can expand (4) to first order
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FIG. 1. (a) Schematic of a multiple dynamic light scattering
experiment in a backscattering configuration. The solid line repre-
sents an example of a path followed by a ray in the first state of the
scattering medium, the dashed line shows how this path has been
modified in state 2. (b) Discretized representation of the diffusion in
the medium: Circles represent the vth and v+ 1th scatterers for
states 1 (solid line) and 2 (dashed line). Vectors rs,i) give the position
of the vth scatterer in state i. The displacement field is given by

uy=r® D,

N
A¢=k2 ZVE ev,iev,jUij(rv): (5)

v=0 i,j

where U is the strain tensor of components Uj;
=(1/2)(du;/ 9j+du;/ di), and i and j designate Cartesian co-
ordinates.

In the multiple scattering limit, the number of events N
implied in a random path is large and by the central limit
theorem A¢ is a random Gaussian variable. Consequently,
when averaging over all the possible paths with the same

number of scattering events N, hence of same length s=NI,

Ad?) —(Agp,)?
(AgD) <¢3>). ©)

(exp(idg)) = eXp(i<A¢s>)exp<— 5

The mean value and the variance of the phase fluctuations
may then be related to the components of the strain tensor
Uj; along paths. Moreover, when the light is multiply scat-
tered, the orientation of the different directions of scattering
are isotropic, and (A¢,) and (A¢?) can be expressed as func-
tions of the isotropic invariants of the strain tensor. If there is
no correlation between the lengths /,, and the orientations e,,
averages are independent, and the first moment is then
[11,13]

(Adpy) = 3ks Tr(U), (7)

where Tr(U)=2,U; and where we used (e, e, ;)= 5;/3.
The general expression of the second moment is

<A¢?>=k22 <lle’> E <e,,,,»e,,,je,,r’l-re,,,’j,><U,-le-rjr>.

v, ij.i'j’
(8)

Further simplifications of (8) require some knowledge of
the path of photons through the solid medium. However, the
quadratic dependence on U;; combined with the isotropic ori-
entation of scattered rays leads to a dependence of the vari-
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ance on the two quadratic isotroplc invariants of the strain
tensor Tr*(U) and Tr(U?) =X, ;U; j Besides, the phase shift is
the sum of a large number of independent events. Conse-
quently, its variance is linear with the number of events N
and then with the path length s. Those considerations lead to

[19]
(AgD) = (A = K>s[(B— Y TrA(U) + 28Te(UY)],  (9)

where 8 and y are constants which have the dimension of
length. These values depend on the details of the light propa-
gation through the material. They may be calculated for a
medium consisting of Mie scatterers dispersed in a homoge-
neous matrix. In this case, Bicout et al. have shown that
=2/*/15 and x=0 [11,13]. In the former expression, the
transport mean free path /* has been introduced. It is the
distance over which the direction of light propagation is ran-
domized and differs from /, the mean length between two
scattering events, because of the local anisotropy of the scat-
tered field [18].

The determination of g~ may be obtained from Eq. (3).
For this, the path length distribution P(s) must be known.
This quantity depends on the experimental illumination and
detection geometry. It may be computed from the diffusion
equation with the boundary conditions corresponding to the
geometry of the experiment. Analytical expressions of the
integrals (3) are computed in the case of light diffusion in a
medium composed of independently moving scatterers (Sus-
pension of colloidal particles). In this case [10,16]

2
(86 - (ag =52 2L (10)

(1,2)

where (Ar?) is the mean quadratic displacement of scatterers.
Expression (9) may be linked to (10) with the formal substi-
tution
2(Ar?
(B-X)Tr*(U) + 28 Tr(U?) < §<z_:>' (11)
In the case of a backscattering geometry where the sample
is illuminated by a plane wave and with a point detection
[20]

|g4?| = exp[— mkI*\3£(U)], (12)

where we have introduced for the sake of simplicity

f(U) = Trz(U) o Tr(Uz) (13)

In (12), 7 is a numerical factor of order unity ranging
from 1.5 to 2.7 and depending on the polarization states of
the illuminating and the scattered light [10,21].

Expression (12) for the correlation function of the scat-
tered electric field has been obtained with the assumption
that the deformation is homogeneous inside the material.
When this is no longer true, the deformation must be
weighted by the photon density within the sample [12]. The
spatial resolution at which an heterogeneous deformation
may be imaged is then dependent on the photon density
within the sample. The resolution is then expected to depend
on the illumination and detection geometry. In the following,
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we will use the backscattering geometry. For a collimated
beam impacting a semi-infinite medium, the spatial reparti-
tion of the backscattered light may be obtained from radia-
tive transfer theory [22,23]. The backscattering intensity is
peaked around the collimated source with an extension of
order ~/[*. More precisely, assuming that a diffusing light
transport is fully valid, one-half the photons emerge at a
distance less than 2.7/* from the center of the beam. Recip-
rocally, one-half the photons collected at a given point of the
surface have been sent at a distance less than 2.7/* from the
collecting point. This indicates that in a backscattering ge-
ometry, the expected resolution is of the order of a few [*.
However, there are also photons propagating along paths of
length >[* through the sample that will not probe the defor-
mation locally. Thus, Eq. (12) is only expected to hold at a
precision level depending on the amount of photons which
explore the sample nonlocally. For a spatial resolution of
order a few I*, we then expect that (12) should be not able to
measure magnitude of deformation with more than a factor
~2 in precision. We did not try to quantify analytically these
effects in this paper. However, in Sec. VI, we will not only
compare Sec. VI A the experimental results with expression
(12), but also with the results of a numerical simulation of
photon paths which are deformed into a heterogeneous strain
field Sec. VI B.

III. PRINCIPLE OF THE MEASUREMENT

We designed the experimental setup in order to obtain the
characteristic function f(U) of the deformation field for a
body with an inhomogeneous deformation field. We use a
backscattering geometry: The front face of our sample is
conjugated with a lens on the matrix of a CCD camera. The
obtained image is divided into several zones, each of which
containing enough coherence areas in order to calculate an
average of the intensity autocorrelation functions for the
zone. A map of the field autocorrelation function can be de-
duced and compared to theoretical elasticity calculus using
Egs. (12) and (13).

The optical setup is chosen to take several constraints into
account. To begin with, several lengths are fixed in our setup
by our equipment: The wavelength of the laser A, the size of
one pixel lp and the size of the CCD matrix nplp, with n, the
number of pixels in a row, and finally, the transport mean
free length of the medium /*.

Two parameters are estimated to obtain optimal use of all
the pixels of the CCD camera. First, one coherence area must
cover several pixels of the camera but each pixel of the same
coherence area will contain the same information. The mini-
mal size expressed in number of pixels for a speckle has
been determined by Viasnoff e al. [15]: n.=3, then the typi-
cal size of a coherence area on the camera should be

le=ncl,. (14)

Second, as explained previously, a photon will explore a
volume of typical size [* in its random walk before leaving
the medium. The information is thus naturally averaged over
a volume of (/*)3, as shown in Fig. 2(a). Consequently, the
transport mean free length /* determines the maximal experi-

046104-3



ERPELDING, AMON, AND CRASSOUS

(@)

CCD

sample

FIG. 2. (a) Schematic of the optical imaging device. An example
of a ray path is shown as the solid line. P is a polarizer, L is the
lens, and A is the diaphragm aperture. (b) Example of a part of a
speckle image obtained on the CCD in a case where n.>3. A
coherence area has a typical size /.. Ensemble averages are done
over N, speckles and consequently on areas of size V“Elc: Each
square gives a unique final metapixel. The optical setup (a) is cho-
sen so that y,/[*= \e“ﬁclc.

mental resolution attainable. With a transversal lens magni-
fication of v, the size of the corresponding area on the image
is y,/* and determines the domain in which the ensemble
average over several coherence areas should be done [one
square on Fig. 2(b)]. If N, is the number of coherence areas
over which ensemble averages are performed, we have

=N, (15)
Yr cle

where N, is chosen large enough to obtain a respectable en-
semble average. As it has already been supposed that the
displacement field varies slowly on the length scale /¥, it can
be considered as a constant for the natural averaging over a
volume (/*)3. Consequently, for each area corresponding to
one metapixel, the deformation can be considered homoge-
neous and Eq. (12) locally holds. The size of the object is
ly=n,l,/ y;=n,l*/(\Nn,). Increasing [, would diminish 7,
and N, so that the ensemble for the average would be
smaller. The number of pixels in the final image, called
metapixels in the following and corresponding to one square
on Fig. 2(b), is N.(n,/n,)*.

There is only one adjustable parameter left: The diameter
of the aperture of the diaphragm d or the distance D between
the diaphragm and the camera, the two of which being linked
by d/D=N\/I..

We may notice that when the material is submitted to
stress, there is also a rigid displacement of the scattering
surface. This will produce a displacement of the speckle pat-
tern on the camera sensor, and this displacement may also
change the level of correlation of the scattered intensity. This
effect is expected to occur when the displacement of the
speckle pattern is of order ~/. on the camera sensor. This
corresponds to a displacement ~/./y, of the scattering sur-
face in the plane of observation. We will see in the next
section that ./ y,~ 50 um for our experimental setup. In the
following, the actual displacement of the surface is always at
least two orders of magnitude smaller. This makes the
change of correlation due to the shift of surfaces negligible
with respect to the change due to the bulk deformation of the
sample.

PHYSICAL REVIEW E 78, 046104 (2008)

IV. EXPERIMENTAL SETUP

We used two different kinds of elastic, light-scattering
materials. The first one is a dispersion of latex spheres in a
gelatine matrix. For this, we prepared an aqueous solution of
gelatin (Vahiné) with a mass fraction of 7% of gelatine. La-
tex spheres of diameter d=1.09 um from Sigma-Aldrich at a
0.5% volume fraction are then dispersed in the aqueous so-
lution. A (25X 15X 10) mm? block of gel is molded and left
to gel for a few hours at ambient temperature. An observa-
tion of the sample under the microscope shows that the latex
spheres are well dispersed in the gel and do not form any
clusters. The Young’s modulus of the gelatine block has been
measured £=5.5=*1.5 kPa. The second scattering material
considered is Teflon (polytetrafluoroethylene, PTFE, tabu-
lated Young’s Modulus E=500 MPa). We used a slab of Te-
flon of 4 cm X3 cm for a thickness of 5 mm. We will con-
sider that the two materials are incompressible (Poisson’s
ratio v=0.5). The optical scattering properties of the two
materials are measured by comparing the transmitted inten-
sity 7 of slabs to the transmission of a calibrated dispersion
of latex spheres. The transmission as a function of the thick-
ness, T(L), depends on two parameters: The absorption
length L, and the mean free length [* [24]. For I*<L,, keep-
ing notations of Ref. [24],

r* 1

510 1
T(L) = (yr+ ﬂT)l: =

— = ———— (16
sinh(L/L,) 3 L,sinh(L/L,) (16)

where y;=1 and B;y=2/3 are two transport parameters
which are defined in [24]. By fitting this function to the
experimental data at different thicknesses, we obtained the
mean free length. For gelatine we found /*=435 um, which
is close to the expected value [*=500 um for an aqueous
solution of latex spheres of the same concentration. This is in
agreement with the fact that the gel is mainly composed of
water, and the scattering properties of a latex sphere embed-
ded in gelatin should be close to those of the same sphere in
water. For Teflon, we found [*=260 wm.

The experimental setup is shown in Fig. 3. We use a Ven-
tus continuous-wave linearly polarized laser of wavelength
532 nm and maximal power ~50 mW. The beam emerging
from the laser source is expended by a microscope objective
(M in Fig. 3) of magnification X10. The beam incident on
the sample is sufficiently wide so that the intensity is roughly
spatially homogeneous on the imaged surface. Averaging per
zone smooths out the remaining inhomogeneities of the
transverse profile. The camera is a DALSA PT-41-04M60 of
2352 X 1728 resolution and pixel size 7.4 um.

The choice of the value of N, is a compromise for the
quality of the final image between the final resolution
(1/N.) and the signal-to-noise ratio of a single zone
(cyN.). A value of N.=180 coherence areas gives 58
X 43 metapixels for the final image, corresponding to an ob-
ject of size 3.6 cm X 2.6 cm. An example of an obtained im-
age is shown in Fig. 3. The magnification of the lens must be
v,=0.5 which is obtained by choosing a focal length f”
=100 mm for the lens L and a distance D=150 mm between
the lens L and the CCD of the camera. The diaphragm aper-
ture has then a diameter d==3.6 mm. The polarizer P allows
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FIG. 3. (Color online) Schematic of the experimental setup. M designates the microscope objective, P, L, and A are the same as on Fig.
2. The periodic displacement of a blade B thanks to a vibrator V exerts a force F on a side of the slab. The applied force is measured with
a force sensor FS. Parts of images taken by the camera at two different times corresponding to two different forces are shown. Under them
is the resulting calculation of the spatially resolved intensity correlation function.

us to collect one direction of polarization in the depolarized
scattered light.

To illustrate the principle of the measurement we consider
the deformation of an elastic body in a plane stress configu-
ration: A force is exerted normally by a blade on a side of a
slab of elastic material. The blade is in contact with the
sample side along a line oriented perpendicularly to the ob-
servation plane in order to produce a two-dimensional stress
field. Actually, even if the stress field is two dimensional in a
good approximation, the collected information is not two di-
mensional. The random walk of the optical rays is three di-
mensional, of characteristic length extension [*. To exert a
force we use a vibrator (Briiel&Kjer4810). The moving part
is a coil wound around a fixed permanent magnet. A ramp of
intensity in the coil leads to a normal stress on the slab. For
the gelatine sample, the applied force is measured with a
force sensor (Futek FSH02665) mounted between the sensor
and the blade, and for Teflon, the force is deduced from the
current applied to the coil.

Different states of the sample correspond to different val-
ues of the force. An example is given in Fig. 3: The two
states correspond to two different times during the ramp of
the vibrator. Parts of the two images taken by the camera at
times #; and t, are shown, as well as the resulting measured
spatially resolved intensity correlation function,

(1) _ (I = LXIp)
I,mes \’,/<1%> _ <11>2\/<I§> _ <12>2 5

(17)

where (---) designates average over all pixels of one
metapixel.

V. EXPERIMENTAL RESULTS

Figure 4 shows the experimental maps of correlation for
the two kinds of samples and for different values of the force
variation. The label ¢ refers to the Teflon slab and g to the
gelatine block. For the two materials, the sequence of applied
forces shown in Fig. 4 is the same, but with different mag-
nitudes. We started with a given force in the state 1, and we
increased the force to reach the state 2. The map ¢, (respec-
tively g,) shows the intensity correlation between the two
states 1 and 2 for Teflon (respectively, gelatine). The decor-
relation is stronger near the point of force application, and
decreases with the distance from this point. Moreover, the
curves of constant decorrelation are nearly circular and tan-
gent to the application point.

We may refer to the analytical solution of the stress prob-
lem corresponding to our experimental configuration. We
consider an idealized plane stress situation: The stress is two
dimensional, consisting in a point force applied normally to a
semi-infinite slab. The strain tensor is

2(Pv=1722) 0 l+v  xz
(x*+7%)? v (F+2%)?
_F2» 0 e 0 ,
emE x“+z
l+v  xz° 0 2(x? = Z22/v)
v (x2 + Z2)2 (x2 + Z2)2

(18)

where F is the applied force, e the thickness of the slab, E is
the Young’s modulus of the medium, and v its Poisson’s
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FIG. 4. (Color online) Experimental maps of the intensity correlation function for the two kinds of materials when submitted to an
increasing stress followed by a decreasing stress. Maps #, to t5 are for Teflon, and g, to g5 for latex spheres dispersed in gelatine. The change
of force between the state 1 and the following states are F=2.7 N for (1), 8.1 N (#3), 2.7 N, (#4), and 0 N (¢5) and F=0.065 mN for (z,),
0.085 mN (#3), 0.065 mN (#4), and O mN (z5). The arrows show the axis orientations used for analysis in Sec. VI. Images sizes are 19

X 27 mm for Teflon, and 14 X 10 mm for gelatine.

ratio. The force is exerted along the z direction in the xz
plane. Isostress solutions are circles all tangent to the point
of force application [25]. It follows from (12) and (13) that
curves of the same correlation level are also expected to be
circles tangent to the point of force application, as is indeed
observed.

The force is then increased again in state 3 and the maps
ty (respectively, g;) show the intensity correlation between
the two states 1 and 3 for Teflon (respectively, gelatine). The
nature and the orientation of the curves of constant correla-
tion remain the same, but their magnitude increases. In state
4, the force returned to its value in state 2. The maps 7, and
g4 show the correlations between the states 1 and 4 and these
maps are very similar to the maps #, and g,. This indicates a
reversibility of the imposed deformation. When in state 5 the
force is at the same level as in state 1, a recorrelation of the
scattered intensity occurs. It should be noted that the amount
of correlation after such a force cycle differs between Teflon
and gelatine samples. While the mean correlation level is
G nes=0.99 for Teflon, it is Gy,,,,=0.78 for gelatine. This
correlation level is also measured in experiments where no
stresses are applied to the gelatine and may then be attributed
to the intrinsic dynamics of the material. Some heterogene-
ities of the decorrelation are also present. Since their local-
izations vary with the experiment, they may be attributed to
imperfections in the preparation of the gelatine sample which
are not controlled. It has been checked experimentally that
the maps of correlation between two states are not sensitive
to the values of the applied force in each state, but only
depend on the difference of force between the two states.

VI. ANALYSIS OF RESULTS

A. Theoretical analysis

Previous results can be compared to an analytical expres-
sion obtained from the theoretical considerations of Sec. II
and from the expression of the strain tensor of the preceding
section. Deformations are considered incompressible and
Tr(U) may be neglected in Eq. (13). After some algebraic
manipulations, we obtain from Egs. (13) and (18),

B( 2F )2 Z2
U)="|—] (1+2) 5 53. 19
f(U) i\ o g ( )(x2+z2)2 (19)
For the backscattering geometry, Eqs. (12) and (19) lead
to
T T T T T
a4t P
A A
Foa A -
S 40 a AAA .
@ B AA AAA T
“= s K ]
Aa aat
L AAAAAAAAA‘A 4
ser ! ! ! ! ]

10 12 14 16 1.8x10°

F/e (N/m)

FIG. 5. (Color online) Plot of Xz(f) as defined by (21) as a
function of f
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FIG. 6. (Color online) Symbole (£ )optana s a function of the
applied force per unit length (£ 2 )app for the two materials. The force
varies from 0 to =8 N for Teﬂon (open symbols, top and right-hand
axis) and from 0 to =85 uN for gelatin (filled symbols, bottom and
left-hand axis). (f)opt’ana is determined by the best-fit procedure
described in the text. The charge (left-hand triangle) and the dis-
charge (right-hand triangle) are plotted. Affine fits of the experi-
mental values for each material are plotted. The slopes of the fits are
0.24 for Teflon and 0.20 for gelatine.

N
—\3(1+2/*
G§12’=exp<— E g2 2)_

7E X’ +zz>' (20)

In this expression, the experimental variable for a given
material is the force F. The mechanical and optical proper-
ties of the material are given in Sec. II. The value of 7 is
known to depend on the polarization of the illuminating and
scattered light [16,21]. We did not investigate this depen-
dence, and we set 7=2.0 as is usually observed in back-
scattering experiments where polarized light is detected. We
use B=2[*/15 as explained in Sec. III.

For every correlation map, we determined the best value
of f with the following procedure: For different values of f,
we compute the square difference

2
{93 ozl ] e

Xp,Zp
between the measured correlation function and the one ex-
pected from (20). In (21) Exp,zp designates a sum over all the
metapixels.

Figure 5 shows a plot of x? as a function of = for one
correlation map. The value of £ that minimizes X called
(£ 2 optana in the following, may be located with a typical rela-
tive error of few % for the two materials. Except for the first
pixel located near the tip and a few other pixels, the differ-
ence {Gﬁlnzlls( z},,) G\"x ,Z,,,( )opt wal? is everywhere
smaller than 10‘ for Teﬂon and 107! for gelatine. For the
latter, there is a natural decorrelation with time described in
Sec. V.

Fi gure 6 represents the variation of (£ 2 )opt.ana @8 a function
of (£ ¢ )app iN experiments where the applied force is increased
and then decreased back to its original value, as in Sec. V.
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The variation of (£ < )app ranges from 0 to 2X 10°* Nm™' for
Teflon and from 0 and 9x 1073 N m™! for gelatine. Because
of the huge difference in the order of magnitude of the ap-
plied forces, there are two different couples of axes on Fig.
6: Bottom left-hand side for gelatine and top right-hand side-
for Teflon. For each material, the charge and the discharge
are plotted with reverse orientation of the symbols.

The relation between (f)opl,am1 and (g)app is linear, in
agreement with the fact that the deformation is proportional
to the applied stress. In other words, for these experiments
the two media are indeed elastic. The affine fits shown in
Fig. 6 give a mean slope (f)opt’,m/(f)app of 0.24 for Teflon
and 0.20 for gelatine. This means that we measured a smaller
loss of correlation than expected. As discussed in Sec. II, the
theoretical model is expected to give the deformation within
a factor of ~2. Consequently, the model, leading to the
simple analytical expression of Eq. (12), indeed gives a good
qualitative and quantitative interpretation of the experimental
results.

The experimental measures of applied forces and our fit-
ting procedure induce errors that we estimate to be a few
percent, and our measures of [* typically have errors of 10%.
Light absorption within the samples is known to increase the
correlation compared to the absorptionless case. Absorption
indeed causes a shift of the photon path length distribution
within the sample to lower values. As a consequence, the
loss of correlation for a given motion of the scatterers de-
creases. However, this effect is expected to be negligible
given the measured absorptions. For the same reasons as for
absorption, considering a finite medium instead of a semi-
infinite one should decrease the expected loss of correlation.

To describe our experiments as realistically as possible,
we have performed numerical simulations presented in the
following section.

B. Numerical analysis

To obtain a complete description of the experiment, we
computed a realistic simulation of the scattering and defor-
mation processes in a finite geometry. The only material we
used that can be described numerically is the disperse Mie
scatterers in the matrix of gelatin for which we have a mi-
croscopic model of light propagation. The rules of Mie dif-
fusion for the orientation distribution of the rays can indeed

H T T T T
-3
/\E\ 6x10
s I
£ 4r-
2 I
L L
ol
~ 0)-3 1 1 1 1 =
0 o 8x10
( e)dpp(N/m)

FIG. 7. (Color online) Symbols (£ )optnum as a function of the
applied force per unit length (£ 2 )app- The affine fit giving a slope of
0.67 is plotted.

046104-7



ERPELDING, AMON, AND CRASSOUS

d

PHYSICAL REVIEW E 78, 046104 (2008)

FIG. 8. (Color online) Correlation maps: (a) Experiment, (f)app=0.0085 N/m, (b) analytic calculation, (f)opt,m=o.0018 N/m, (c)

numerical computation, (f)op[’num=0.0062 N/m.

be implemented in the random walk used to describe the
photon paths. The distance between the scattering events fol-
lows a negative exponential law with a mean distance given
by the scattering length. The random walk is performed into
a finite parallelepiped of dimension given in Sec. IV. Only
backscattered photons are considered in the simulation. For
those photons, backscattering paths thus obtained are de-
formed locally following the Boussinesq displacement field.
Phase variations are computed and a numerical correlation
function Gglz) can be calculated for different values of f

Using the fitting procedure described in Sec. V A, an op-
timal value (f)opt,num can be computed with the same accu-
racy (i.e., with a relative error of a few percent). Figure 7
represents the variation of (f)opl,num as a function of (f)app.
The affine fit gives a slope (f)opt,num/ (f)app of 0.67. Conse-
quently, the numerical simulations give a loss of correlation
close to the measured one, while the theoretical model given
by Eq. (12) tends to overestimate the loss of correlation.

To conclude this section, Fig. 8 shows correlation maps
obtained experimentally and by the analyses described pre-
viously. Figure 8(a) is the experimental correlation map ob-
tained for (f)app=0.0085 N/m. Figure 8(b) gives the corre-
sponding analytical correlation map calculated with
(f)om’ana:0.00lS N/m and Fig. 8(c) the corresponding nu-
merically computed one with (f)opl,num=0.0062 N/m. The
juxtaposition of those three maps clearly demonstrates the
accuracy of the method.

VII. CONCLUSION

In this paper we present an experimental method for spa-
tially resolved measurement of deformation of highly scat-
tering solids. We show results obtained with two different
scattering materials. To analyze the data, we give a simple
analytical expression obtained from theoretical consider-
ations. This model gives a good qualitative and quantitative
description of the experiment. Realistic computer simula-
tions allow us to take into account different hypothesis which
were neglected in the theoretical model, mainly loss of long
length rays because of sample finite size and contribution of
long paths experiencing heterogeneous deformation along
their length.

In conclusion, the method presented in this paper is an
efficient tool for imaging deformations of optically diffusing
materials. It gives access to a map of deformation of a layer
of thickness a few /* with a lateral resolution of order of a
few [*. This method is adequate to probe small deformations,
in a typical range of strain \Tr(U?) ~ 107>-1073 for common
diffusing materials. Experiments at those scales, which are
delicate to address with conventional optical methods, may
be applied to the apparition of failure and to the study of the
response of soils to stress.
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