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Particles suspended in a film flow can either settle out of the flow, remain well mixed, or even advance faster
than the fluid, accumulating at the moving contact line. Recent experiments by Zhou et al. �Phys. Rev. Lett.
94, 117803 �2005�� have demonstrated that these three settling behaviors can be achieved by control of the
average particle concentration � and inclination angle �. This work presents a theory for determining the
settling behavior in the Stokes regime by calculating the depth profile of � and the depth-averaged velocities
of the liquid and particle phases. It is found that shear-induced particle fluxes can lead to an inversely stratified
flow, in which the particles move on average faster than the liquid. The theory is directly compared to Zhou et
al.’s experimental data, and the implications of stratification for lubrication-type models are also discussed.
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I. INTRODUCTION

Film flow of particle-laden liquid occurs in many impor-
tant contexts, from geophysical flows such as erosion and
turbidity currents �1� to industrial processes including paper
making, food characterization, and the application of fertil-
izers. While sophisticated constitutive models have been de-
veloped for general suspension flow, their complexity often
makes them incompatible with fluid techniques such as lu-
brication theory. As a result, the mathematical description of
particle-laden films remains a challenging problem.

This paper addresses one of the most fundamental ques-
tions about such flows: whether the particles will remain in
suspension, or settle out of the flow. More generally, this is
the question of the stratification of the concentration � and is
intimately linked with the relative velocities of the two
phases. For although the aggregation of particles at the bot-
tom raises the difficult question of a stopping condition, it
must be preceded by an overall settling motion, which can be
identified in a continuum model by a decreasing profile of �.
Also, since the velocity of a film increases strongly with the
vertical coordinate z, a decreasing depth profile implies that
the particle phase moves on average more slowly than the
liquid, again consistent with settling out of the flow. Alterna-
tively, if an increasing depth profile were somehow achieved,
not only would it be rarer for particles to contact the bottom,
but, far from stopping, the particles would be carried down-
stream on average faster than the liquid.

Although it may seem that gravity will always enforce a
decreasing concentration profile, or stable stratification, in-
creasing depth profiles were seen in the theoretical work of
Carpen and Brady for the similar problem of inclined Poi-
seuille flow �2�. This is due to shear-induced particle fluxes,
consisting of a diffusive effect in shearing flow and a migra-
tion toward regions of lower shear rate �̇ in situations of
inhomogeneous shear �3�. These fluxes have been described
by diffusive flux models based on that of Leighton and Ac-
rivos �3� and by the suspension balance model due to Nott
and Brady �4�, and the two models have been seen to behave

similarly �5�. Carpen and Brady, employing the suspension
balance model, found that increasing concentration profiles
in the Poiseuille problem are indeed unstable to finite wave-
length disturbances in the spanwise direction.

Recent experiments by Zhou et al. demonstrate the com-
plexity of settling in inclined film flows �6�. They observed
three distinct settling behaviors: at low inclination angles �
and average concentrations � the particles settle to the bot-
tom substrate and are removed from the flow, at intermediate
� and � the suspension remained well mixed, and at larger �
and � the particles advanced faster than the fluid, accumu-
lating in a thick ridge at the advancing contact line. A lubri-
cation model, introduced in that paper and explored further
in �7�, addresses the growth of the ridge in the last case,
assuming an unstratified flow, by attributing the particle mo-
tion to settling in the downstream direction. However, no
theory currently exists for predicting the settling regime.
Also, in light of the above discussion, the effects of stratifi-
cation on the lubrication flow deserve further study, since
stratification can provide a separate mechanism for the accu-
mulation of particles in the ridge. This work presents a
model for stratification in a film flow with the goal of ad-
dressing these two issues1.

Similar models for stratified film flow have been studied
by Schaflinger et al. �8� and Timberlake and Morris �9�. Nei-
ther study, however, applies directly to the present problem.
Schaflinger et al. found stationary profiles of a stratified film
in which the downward settling flux is balanced by shear-
induced diffusion, without including a migration flux. A di-
rect consequence of this simplification is that the diffusive
flux is always directed upward, so the � profile is always
decreasing. Thus migration effects are required in order to
observe an unstable stratification.

The work of Timberlake and Morris included theory and
experiments for a neutrally buoyant suspension �9�. Their
work uses the suspension balance model, which includes ef-
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1Zhou et al. did not observe a spanwise instability analogous to
that described by Carpen and Brady; however, this does not neces-
sarily indicate that the film is stably stratified since in the film
problem any instability would be complicated by the fingering in-
stability of the contact line.
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fects analogous to both diffusion and migration. In this case,
the lack of a buoyant force requires that at steady state par-
ticle diffusion balances the migration flux, and this migration
is always directed up because in gravity-driven film flow the
shear stress decreases toward the free surface. Therefore, in
neutrally buoyant suspensions � must increase with z.

II. MODEL

This work uses a Newtonian rheology for the suspension,
using an empirical viscosity ���� that increases with the
concentration. Particle motion is described by the diffusive
flux model, and the derivation is similar to that of
Schaflinger et al. but differs in the inclusion of a migration
flux. This effect was introduced by Leighton and Acrivos �3�
and quantified by Phillips et al. �10� in the expression

D�

Dt
= a2 � · �Kc� � ��̇�� + K��̇

�2

����
� ����� �1�

representing the advection due to all shear-induced flux. The
terms involving �� and �����, representing diffusion, and
��̇, representing migration, are inferred from the scaling of
the mechanisms Leighton and Acrivos proposed to explain
shear-induced flux, which include anisotropy in the rate of
two-particle encounters �proportional to ��̇� and in the dis-
placement resulting from those encounters �proportional to
1 /�����. Although the reasoning of Leighton and Acrivos
suggests that Kc and K� could in general be functions of �,
the forms of these functions are unknown. This work uses
the values Kc=0.43 and K�=0.65 obtained by Phillips et al.
from an experiment conducted at high concentrations �0.45,
0.50, and 0.55� and under the assumption that the parameters
are approximately constant. Equation �1� corresponds to a
particle flux

Fm = − a2Kc� � � �

����
�� − a2�K� − Kc�

��2

����2 � ����

= −
a2�

����
�Kc � ���� + �K� − Kc�

��

����
� ����� , �2�

where the shear rate �̇ has been eliminated in favor of the
shear stress �=�����̇.

For a flat film on an incline, equilibrium is reached when
this flux balances that of gravitational settling in the z direc-
tion. Settling rates are commonly expressed as a product of
the velocity of a single sphere vs=−�2 /9��	g /� f by a hin-
dered settling function f��� for which many empirical for-
mulas exist. Here 	 and � f are the density and viscosity of
the fluid, g is the gravitational constant, and �= �	p−	� /	 is
the density difference for particles of density 	p. The follow-
ing calculations use �=1.7, the value in Zhou et al.’s experi-
ments. At this point it is convenient to follow Schaflinger et
al. and use the hindered settling function f���= �1
−�� /����, leading to the settling flux

Fs = −
2

9

a2�	g cos �

� f

��1 − ��
����

, �3�

where � is the angle of inclination.

The balance of flux Fm+Fs=0 then takes the form

Kc����� + �K� − Kc�
��

����
����� = −

2

9

�	g cos �

� f
�1 − ��

�4�

where the gradients have been replaced by primes denoting
differentiation by z. Substituting the standard formula ����
=� f�1−� /�m�−2 �11� with the maximum packing fraction
�m�0.67 and differentiating yields

�1 +
2�K� − Kc�

Kc

�

�m − �
���� = ��1 + ���

−
2�

9Kc
�cot ���1 − �� ,

�5�

where z and � have now been nondimensionalized using the
depth of the film h and the unit of stress, �	g /h�sin �.

For a flat film there is no capillary force, so the pressure
can be set to zero at the free surface z=1, and is assumed to
be hydrostatic in the suspension. The nondimensional shear
stress then satisfies the equation

�� = − �1 + ��� . �6�

Equations �5� and �6� constitute the system to be studied
here, with the understanding that �5� is replaced by ��=0
when �=0 or �m to ensure that pure fluid and packed par-
ticles are admissible solutions and to keep the concentration
within its meaningful range. The physical boundary condi-
tions both involve the stress: ��0�= �1+��0� and ��1�=0,
where �0 is the imposed average concentration. Thus for
these two equations there is only a one-parameter family of
physically meaningful solutions, parametrized by �0. In
practice this system was easiest to solve by shooting with a
Runge-Kutta method from z=0 while adjusting the value of
��0�. Once � and � are determined, the mixture velocity can
be calculated using dv /dz= �̇=��z� /�(��z�) and v�0�=0.

Note that while modeling of mixtures at or very near the
maximum packing concentration is difficult, as non-
Newtonian behavior has been observed, these regions can be
expected to contribute little to the overall flow structure. Re-
gardless of the rheological model used, most of the shearing
occurs in areas of lower concentration, so the near plug flow
resulting from a diverging viscosity is generally a good ap-
proximation.

III. SOLUTIONS

Unlike the previous studies, this model incorporates the
opposing effects of particle migration and buoyancy which
are necessary to allow both stable and unstable stratifica-
tions. Still the structure of the equations permits some gen-
eralizations about the solutions. Since �
0, it is apparent
from Eq. �5� that a single solution ��z� is monotone, because
��� is determined by a function of � only with a single
unstable root �*=�*��� in its allowable domain �between 0
and �m�. There are then two possibilities: �0���0���*
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with ��1�=�m, or �0���0���m with ��1�=0.
It is also possible to deduce that the concentration at the

free surface is either 0 or �m, the conditions under which Eq.
�5� is replaced by ��=0, since otherwise the equation be-
comes degenerate due to the vanishing shear stress. Inciden-
tally, this same conclusion applies to Schaflinger et al.’s
model, because the diffusion flux is simply proportional to
the also vanishing shear rate. However, in that case �=�m is
not possible because the profile is always decreasing,
whereas here both extreme values can be achieved.

Thus by continuity the concentration either decreases
monotonically from ��0���*��� to zero or increases mono-
tonically from ��0���*��� to �m with increasing z. As dis-
cussed in the Introduction we associate the former case with
the regime in Zhou et al.’s experimental work, characterized
by particles settling out of the flow, and the latter case with
the particle-rich ridge regime. While there is no obvious rea-
son why there should be a third regime �other than the single
solution ���*� where the fluid and particles move at the
same velocity, it may be that experiments in which the sus-
pension stayed well mixed had �0��* and the relatively
small difference between the two velocities did not have time
to produce noticeable segregation on the experimental time
scale.

Plotted in Fig. 1 is the calculated transition point �*���
and the experimental data from �6�. As expected, the transi-
tion lies within the well-mixed regime. This calculation in-
volves no fitting parameters, and the agreement is remark-
able considering the simplifying assumptions of one-
dimensional, time-independent flow. The position of the
curve �*��� also suggests that the experimentally observed
well-mixed films mostly lie in the �0��*��� range, and
therefore would likely result in particles settling out of the
flow were the experiments continued longer.

Examples of the two cases ��0��* and �0��*� are
shown in Fig. 2 for �=45°, �*����0.35. The effect of the
increasing concentration profile for �0=0.45 is to flatten the
velocity near the top from the parabolic shape of an unstrati-

fied film, while for �0=0.25 the absence of particles near the
top increases the shear in this area. Also of interest is the fact
that when d� /dz�0 both phases move faster than the veloc-
ity of an unstratified film, because of the high-shear, low-�
region at the bottom and the low shear at the top where v is
at its greatest. Both phases are slower when d� /dz�0.

Figure 3 investigates the importance of the differential
velocities due to stratification as a mechanism for phase
separation and the eventual formation of a ridge in the ex-
periment of Zhou et al. In order to facilitate a comparison
between this mechanism and that of gravitational settling in
the downstream direction, proposed by Zhou et al., the ratio

FIG. 1. Function �*��� determining whether particles tend to-
ward the top or bottom of the film. Overlaid are Zhou et al.’s ex-
perimental parameters for which particles settle to the substrate ��,
white�, remain well mixed ��, light�, or accumulate in a ridge ��,
dark�. Experimental data are from Fig. 2 of �6�.

FIG. 2. Depth profiles of � and v for two average concentra-
tions at �=45°. Bulk concentration �0=0.25: velocity �dotted line�
and concentration �long-dashed line�. Bulk concentration �0=0.45:
velocity �short-dashed line� and concentration �solid line�. Veloci-
ties are scaled by the average velocity of a homogeneous film at the
same concentration. With this rescaling the average velocities at
�0=0.25 of the particle and liquid phases are 0.57 and 0.70, and at
�0=0.45 the velocities are 1.41 and 1.33, respectively.
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FIG. 3. Ratio vrel /vav= �vp−v f� / ��vp+ �1−��v f� of velocities
relevant for formation of the particle-rich ridge in Zhou et al.’s
experiment. Calculated velocity difference due to the stratified flow
at �=30° �dotted line�, 45° �dashed line�, and 60° �dot-dashed line�.
The solid line represents the velocity difference due to direct gravi-
tational settling in the flow direction as described by Zhou et al.,
which is independent of �.
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vrel /vav= �vp−v f� / ��vp+ �1−��v f� was chosen. This ratio
determines the accumulation of particles in an experiment
limited by the length of the channel. At large values of � and
�, the regime in which the ridge was observed, stratification
has a larger effect than in-plane settling. Thus the stratified
flow appears to be the more important mechanism in forming
the ridge.

A description of the ridge evolution including stratifica-
tion is possible within the lubrication context if the film is
assumed to be always in equilibrium between settling and
migration, by using the calculations of Fig. 3 to determine
the relative velocity from �. This would result in a system
similar to that in �7�, which for length scales greater than a
modified capillary length describes a ridge that grows lin-
early with time. If this route is followed, care must be taken
to ensure the length scale is also large enough to justify the
equilibrium assumption. The experiments and two-
dimensional calculations of Timberlake and Morris �9� indi-
cate that the distance traveled before reaching equilibrium
�which is proportional to �h /a�2� can be as large as tens of
centimeters, even for an experiment with fairly large par-

ticles such as �6�. At shorter length scales, such a two-
dimensional model may therefore be necessary, which would
generalize the above results by allowing nonequilibrium con-
centration profiles. The most likely effect of nonequilibrium
physics would be to lengthen the time scale of phase sepa-
ration, making the well-mixed regime more likely for length-
limited experiments.

This vertical equilibrium theory demonstrates the impor-
tance of particle migration in determining the flow, and if
extended to two or three dimensions could provide a model
for effects such as ridge formation, particle deposition in the
clear fluid regime, the contact-line instability, and spanwise
particle banding �2�.
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